
STA258H5

Al Nosedal
and Alison Weir

Winter 2017

Al Nosedal and Alison Weir STA258H5 Winter 2017 1 / 56



NONPARAMETRIC TESTS
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Example

The managing director of a mail-order company is concerned about the
possible slow progress of orders through her administration department.
She tells the administration manager to ensure that at least half of the
orders received are processed within one day (eight working hours). Some
weeks later she times 18 orders selected at random to check whether her
demand has been met.
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Hypotheses

Being somewhat distrustful of her administration manager’s ability, the
managing director’s main aim in performing the test is to check for
evidence that her instructions have not been met. This happens when less
than half of the orders are being processed with eight working hours, or in
other words, that the median processing time φ exceeds 8 hours. The
hypotheses may be summarized as follows:

H0 : φ = 8

Ha : φ > 8
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Data

The times spent by the 18 orders in the administration process were
recorded as:

16 h 30 min 14 h 00 min 5 h 40 min 9h 10 min 11 h 45 min
4 h 20 min 7 h 55 min 10 h 15 min 7 h 45 min 16 h 05 min

10 h 05 min 7 h 30 min 9 h 15 min 11 h 55 min 9 h 25 min
10 h 35 min 8 h 20 min 10 h 10 min
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Statistic

The test statistic is called the sign test because the statistic used is
computed from the data that are in (or have been reduced to) the form of
”+” and ”-” signs. So here let us write a ”+” for all those times greater
than 8 h and a ”-” for those times less than 8 h.

+ + - + +
- - + - +
+ - + + +
+ + +
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Statistic

The test statistic, which we will denote by S , may be either the number of
”+” signs or the number of ”-” signs, according to the context. Clearly, if
H0 is true we would expect the number of ”+”s and ”-”s to be roughly
equal, whereas if Ha : φ > 8 is true, we would expect a relatively large
number of ”+”s and correspondingly few ”-”s.
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Statistic

Let us define S as the number of ”+” signs. With S defined in this way,
the larger the value of S then the more evidence there is against H0. Thus
rejection regions are of the form:

S ≥ critical value
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P-value

Significance level = α = 0.05.
P-value = P(S ≥ 13) = 1− P(S < 13) = 1− P(S ≤ 12)
(Note that S has a Binomial distribution with parameters n = 18 and
p = 1/2, under H0)
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P-value (R code)

p.value = 1 - pbinom(12,18,0.5);

p.value

## [1] 0.04812622
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Conclusion

The 18 signs include 13 ”+” signs. This result is significant at the
α = 5% level, and consequently the managing director has obtained
evidence against H0. It seems quite likely that her requirement is not
being met by the administration department.
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Example

We shall illustrate Wilcoxon’s signed-rank test with the same problem as
for the sign test, i.e. using the times that 18 orders took to be processed
by an administration system.
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Hypotheses

As before, we have

H0 : φ = 8

Ha : φ > 8
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Statistic

For each observation we compute the difference between the time taken
and the hypothesized median value of 8 h.

+8 h 30 min +6 h 00 min -2 h 20 min +1h 10 min +3 h 45 min
-3 h 40 min -0 h 05 min +2 h 15 min -0 h 15 min +8 h 05 min
+2 h 05 min -0 h 30 min +1 h 15 min +3 h 55 min +1 h 25 min
+2 h 35 min +0 h 20 min +2 h 10 min
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Statistic

Next, these differences are ranked, ignoring whether they are positive
or negative, from 1 for the smallest to 18 for the largest.

Difference Rank Difference Rank

+8 h 30 min 18 +6 h 00 min 16
-2 h 20 min 11 +1h 10 min 5
+3 h 45 min 14 -3 h 40 min 13
-0 h 05 min 1 +2 h 15 min 10
-0 h 15 min 2 +8 h 05 min 17
+2 h 05 min 8 -0 h 30 min 4
+1 h 15 min 6 +3 h 55 min 15
+1 h 25 min 7 +2 h 35 min 12
+0 h 20 min 3 +2 h 10 min 9
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Statistic

The Wilcoxon signed-rank statistic T is then calculated as the sum of the
ranks of either the positive differences or the negative differences,
whichever the one-sided alternative hypothesis suggests should be
the smaller. In our problem Ha suggests that there should be a smaller
number of negative differences than positive ones, and so we take T to
be the sum of the ranks of the negative differences.
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Rejection Regions

The critical values in our Table are given in terms of small values of the
signed-rank statistic, critical regions for the Wilcoxon signed-rank test are
of the form

T ≤ critical value

For n = 18 and significance level α = 0.05, the critical region is T ≤ 47.
(Significance levels relevant to one-sided tests are denoted by α1 and those
relevant to two-sided tests by α2. )
The sum of the ranks for the negative differences ( -2 h 20 min, -3 h 40
min, -0 h 05 min, -0 h 30 min, and -0 h 15 min) is given by

T = 11 + 13 + 1 + 2 + 4 = 31
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Conclusion

The result is in the 5% critical region (also in the 1% critical region), and
so we have strong evidence to support the alternative hypothesis that the
median processing time is greater than 8 h.
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Null distributions

Under the null hypothesis, the true median of the differences is zero. Thus,
assuming that the distribution of the differences is symmetric about zero,
the chances are even that the smallest difference (with rank 1) is positive
or negative; the same is true for the next smallest difference (with rank 2);
and similarly for every one of the ranked differences. (The theory assumes
that there are no ties.) It follows that all possible allocations (2n in all) of
signs to ranks are equally likely. So if one generates these 2n allocations
and calculates the value of T for each, a frequency distribution for T can
be constructed and then the null probability distribution of T is obtained
by simply dividing the frequencies by 2n.
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Null distributions

We now outline this procedure for n = 8. We will consider the one-sided
case where T is the rank sum of negative differences.
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### one simulation;

matrix.signs<-rbinom(8,1,0.5);

matrix.signs

## [1] 0 1 0 0 1 1 0 0

#ranks = vector that contains ranks;

ranks<-matrix(1:8,nrow=8,ncol=1);

t(ranks)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] 1 2 3 4 5 6 7 8

# vec.T = vector with values of T;

vec.T<-matrix.signs%*%ranks;

vec.T

## [,1]

## [1,] 13
Al Nosedal and Alison Weir STA258H5 Winter 2017 21 / 56



### a bunch of simulations;

# sim = number of simulations

sim<-2000

# matrix.signs = possible allocations;

matrix.signs<-matrix(rbinom(8*sim,1,0.5),sim,ncol=8)

#ranks = vector that contains ranks;

ranks<-matrix(1:8,nrow=8,ncol=1)

# vec.T = vector with values of T;

vec.T<-matrix.signs%*%ranks;

hist(vec.T,freq=FALSE)
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Histogram of vec.T
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mean(vec.T);

## [1] 17.6865

sd(vec.T);

## [1] 7.313957
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Large sample sizes

As the sample size increases, the shape becomes ever closer to that of the
Normal distribution. This enables us to obtain approximate critical values
for T when n is large. It can be shown that T has mean µ = n(n+1)

4 and

standard deviation σ =
√

n(n + 1)(2n + 1)/24
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Example

Does the presence of small numbers of weeds reduce the yield of corn?
Lamb’s-quarter is a common weed in corn fields. A researcher planted corn
at the same rate in 8 small plots of ground, then weeded the corn rows by
hand to allow no weeds in 4 randomly selected plots and exactly 3
lamb’s-quarter plants per meter of row in the other 4 plots. Here are the
yields of corn (bushels per acre) in each of the plots.

Weeds per meter Yield (bu/acre)

0 166.7 172.2 165.0 176.9
3 158.6 176.4 153.1 156.0

The samples are too small to rely on the robustness of the two-sample t
test. We may prefer to use a test that does not require Normality.
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Example (cont.)

We first rank all 8 observations together. To do this, arrange them in
order from smallest to largest:
153.1 156.0 158.6 165.0 166.7 172.2 176.4 1 176.9
The boldface entries in the list are the yields with no weeds present.
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Example (cont.)

We see that four of the five highest yields come from that group,
suggesting that yields are higher with no weeds. The idea of rank tests is
to look just at position in this ordered list. To do this, replace each
observation by its order, from 1 (smallest) to 8 (largest). These numbers
are the ranks:

Yield 153.1 156.0 158.6 165.0 166.7 172.2 176.4 176.9
Rank 1 2 3 4 5 6 7 8
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Ranks

To rank observations, first arrange them in order from smallest to largest.
The rank of each observation is its position in this ordered list, starting
with rank 1 for the smallest observation.
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Moving from the original observations to their ranks retains only the
ordering of the observations and makes no other use of their numerical
values. Working with ranks allows us to dispense with specific assumptions
about the shape of the distribution, such as Normality.
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If the presence of weeds reduces corn yields, we expect the ranks of the
yields from plots with weeds to be smaller as a group than the ranks from
plots without weeds. We might compare the sums of the ranks from the
two treatments:

Treatment Sum of ranks

No weeds 23
Weeds 13

Note that the sum of the ranks from 1 to 8 is always equal to 36, so it is
enough to report the sum for one of the two groups. If the weeds have no
effect, we would expect the sum of the ranks in either group to be 18 (half
of 36).
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THE WILCOXON RANK SUM TEST

Draw an SRS of size n1 from one population and draw an independent
SRS of size n2 from a second population. There are N observations in all,
where N = n1 + n2. Rank all N observations. The sum W of the ranks for
the first sample is the Wilcoxon rank sum statistic. If the two
populations have the same continuous distribution, then W has mean

µW =
n1(N + 1)

2

and standard deviation

σW =

√
n1n2(N + 1)

12

The Wilcoxon rank sum test rejects the hypothesis that the two
populations have identical distributions when the rank sum W is far from
its mean.
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In the corn yield study of our Example, we want to test
H0 : no difference in distribution of yields
against the one-sided alternative
Ha : yields are systematically higher in weed-free plots.
Our test statistic is the rank sum W = 23 for the weed-free plots.
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Example (cont.)

In our Example, n1 = 4, n2 = 4, and there are N = 8 observations in all.
The sum of ranks for the weed-free plots has mean

µW =
n1(N + 1)

2
=

(4)(9)

2
= 18

and standard deviation

σW =

√
n1n2(N + 1)

12
=

√
(4)(4)(9)

12
=
√

12 = 3.464
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Example (cont.)

Although the observed rank sum W = 23 is higher than the mean, it is
only about 1.4 standard deviations high. We now suspect that the data do
not give strong evidence that yields are higher in the population of
weed-free corn.
The P-value for our one-sided alternative is P(W ≥ 23), the probability
that W is at least as large as the value for our data when H0 is true.
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To calculate the P-value P(W ≥ 23) for our Example, we need to know
the sampling distribution of the rank sum W when the null hypothesis is
true. This distribution depends on the two sample sizes n1 and n2. Most
statistical software will give you P-values, as well as carry out the ranking
and calculate W . However, many software packages give only approximate
P-values. You must learn what your software offers. With or without
software, P-values for the Wilcoxon test are often based on the fact that
the rank sum statistic W becomes approximately Normal as the two
sample sizes increase.
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We can then form yet another z∗ statistic by standardizing W :

z∗ =
W − µW
σW

=
W − n1(N + 1)/2√
n1n2(N + 1)/12

Use standard Normal probability calculations to find P-values for this
statistic. Because W takes only whole-number values, we use a trick called
continuity correction to improve the accuracy of the approximation.
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P-value (without correction)

The standardized rank sum statistic W in our corn yield example is

z∗ =
W − µW
σW

=
23− 18

3.464
= 1.44

We expect W to be larger when the alternative hypothesis is true, so the
approximate P-value is

P(Z ≥ 1.44) = 0.0749
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P-value (WITH continuity correction)

We can improve this approximation by using the continuity correction. To
do this, act as if the whole number 23 occupies the entire interval from
22.5 to 23.5. Calculate the P-value P(W ≥ 23) as P(W ≥ 22.5) because
the value 23 is included in the range whose probability we want.

P(W ≥ 22.5) = P

(
W − µW
σW

≥ 22.5− 18

3.464

)
= P(Z ≥ 1.30) = 0.0968
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R Code

# Entering data;

zero<-c(166.7,172.2,165,176.9);

three<-c(158.6,176.4,153.1,156);

# Doing HT;

wilcox.test(zero,three,alternative="greater",

exact=TRUE,paired=FALSE);

##

## Wilcoxon rank sum test

##

## data: zero and three

## W = 13, p-value = 0.1

## alternative hypothesis: true location shift is greater than 0
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R Code

wilcox.test(zero,three,alternative="greater",

exact=FALSE,paired=FALSE);

##

## Wilcoxon rank sum test with continuity correction

##

## data: zero and three

## W = 13, p-value = 0.09697

## alternative hypothesis: true location shift is greater than 0
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What hypotheses does Wilcoxon test?

When the distributions may not be Normal, we might restate the
hypotheses in terms of population medians rather than means:
H0: median1 = median2

Ha: median1 > median2

The Wilcoxon rank sum test provides a significance test for these
hypotheses, but only if an additional condition is met: both populations
must have distributions of the same shape. That is, the density curve for
corn yields with 3 weeds per meter looks exactly like that for no weeds
except that it may slide to a different location on the scale of yields.
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What hypotheses does Wilcoxon test?

The same-shape condition is too strict to be reasonable in practice.
Fortunately, the Wilcoxon test also applies in a much more general and
more useful setting. It tests hypotheses that we can state in words as
H0 : two distributions are the same

Ha : one has values that are systematically larger
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Dealing with ties in rank tests

The exact distribution for the Wilcoxon rank sum is obtained assuming
that all observations in both samples take different values. This allows us
to rank them all. In practice, however, we often find observations tied at
the same value. What shall we do? The usual practice is to assign all tied
values the average of the ranks they occupy. Here is an example with 6
observations:

Observation 153 155 158 158 161 164
Rank 1 2 3.5 3.5 5 6
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Dealing with ties in rank tests

The tied observations occupy the third and fourth places in the ordered
list, so they share rank 3.5. The exact distribution for the Wilcoxon rank
sum W applies only to data without ties. Moreover, the standard
deviation σW must be adjusted if ties are present. The Normal
approximation can be used after the standard deviation is adjusted.
Statistical software will detect ties, make the necessary adjustment, and
switch to the Normal approximation. In practice, software is required if
you want to use rank tests when the data contain tied values.
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Example

A study of early childhood education asked kindergarten students to tell
fairy tales that had been read to them earlier in the week. Each child told
two stories. The first had been read to them and the second had been
read but also illustrated with pictures. An expert listened to a recording of
the children and assigned a score for certain uses of language. Here are
the data for five low-progress readers in a pilot study:

Child 1 2 3 4 5

Story 2 0.77 0.49 0.66 0.28 0.38
Story 1 0.40 0.72 0.00 0.36 0.55

Difference 0.37 -0.23 0.66 -0.08 -0.17
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We wonder if illustrations improve how the children retell a story. We
would like to test the hypotheses
H0: scores have the same distribution for both stories

Ha : scores are systematically higher for Story 2
Because this is a matched pairs design, we base our inference on the
differences. The matched pairs t test gives t∗ = 0.635 with one-sided
P-value P = 0.280. We cannot assess Normality from so few observations.
We would therefore like to use a rank test.
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Positive differences in our Example indicate that the child performed
better telling Story 2. If scores are generally higher with illustrations, the
positive differences should be farther from zero in the positive direction
than the negative differences are in the negative direction. We therefore
compare the absolute values of the differences, that is, their magnitudes
without a sign. Here they are, with boldface indicating the positive values:
0.37 0.23 0.66 0.08 0.17
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Arrange these in increasing order and assign ranks, keeping track of which
values were originally positive. Tied values receive the average of their
ranks. If there are zero differences, discard them before ranking.

Absolute value 0.08 0.17 0.23 0.37 0.66
Rank 1 2 3 4 5

The test statistic is the sum of the ranks of the positive differences. (We
could equally well use the sum of the ranks of the negative differences.)
This is the Wilcoxon signed rank statistic. Its value here is W+ = 9.
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THE WILCOXON SIGNED RANK TEST FOR
MATCHED PAIRS

Draw an SRS of size n from a population for a matched pairs study and
take the differences in responses within pairs. Rank the absolute values of
these differences. The sum W+ of the ranks for the positive differences is
the Wilcoxon signed rank statistic. If the distribution of the responses is
not affected by the different treatments within pairs, then W+ has mean

µW+ =
n(n + 1)

4

and standard deviation

σW+ =

√
n(n + 1)(2n + 1)

24

The Wilcoxon signed rank test rejects the hypothesis that there are no
systematic differences within pairs when the rank sum W+ is far from its
mean.
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Example (cont.)

In the storytelling study of our Example, n = 5. If the null hypothesis (no
systematic effect of illustrations) is true, the mean of the signed rank
statistic is

µW+ =
n(n + 1)

4
=

(5)(6)

4
= 7.5

The standard deviation of W+ under the null hypothesis is

σW+ =

√
n(n + 1)(2n + 1)

24
=

√
(5)(6)(11)

24
=
√

13.75 = 3.708

The observed value W+ = 9 is only slightly larger than the mean. We now
expect that the data are not statistically significant.
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The distribution of the signed rank statistic when the null hypothesis (no
difference) is true becomes approximately Normal as the sample size
becomes large. We can then use Normal probability calculations (with the
continuity correction) to obtain approximate P-values for W+. Let’s see
how this works in the storytelling example, even though n = 5 is certainly
not a large sample.
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Example (P-value)

We observed W = 9, so the one-sided P-value is P(W+ ≥ 9). The
continuity correction calculates this as P(W+ ≥ 8.5).

P(W+ ≥ 8.5) = P

(
W+ − 7.5

3.708
≥ 8.5− 7.5

3.708

)
= P(Z ≥ 0.27) = 0.394
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Conclusion

Our test tells us that this very small sample gives no evidence that seeing
illustrations improves the storytelling of low-progress readers.
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R Code

story2<-c(0.77, 0.49, 0.66, 0.28, 0.38);

story1<-c(0.40, 0.72, 0.00, 0.36, 0.55);

wilcox.test(story2,story1,alternative="greater",

exact=TRUE,paired=TRUE);

##

## Wilcoxon signed rank test

##

## data: story2 and story1

## V = 9, p-value = 0.4062

## alternative hypothesis: true location shift is greater than 0
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R Code

story2<-c(0.77, 0.49, 0.66, 0.28, 0.38);

story1<-c(0.40, 0.72, 0.00, 0.36, 0.55);

wilcox.test(story2,story1,alternative="greater",

exact=FALSE,paired=TRUE);

##

## Wilcoxon signed rank test with continuity correction

##

## data: story2 and story1

## V = 9, p-value = 0.3937

## alternative hypothesis: true location shift is greater than 0
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