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Distribution of Sample Mean

Let Xi for i = 1, 2, ..., n be a sample of iid random variables with
E (Xi ) = µ and Var(Xi ) = σ2. The sample mean is defined by

X̄ =
1

n

n∑
i=1

Xi

Using the properties of expected value, it is easy to show that E (X̄ ) = µ

and Var(X̄ ) = σ2

n , Right?
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Example

Here we draw a list of 25 uniformly distributed random numbers, compute
the mean, and repeat this 100 times. This will give us 100 different
estimates of the mean of the underlying distribution.
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R Code

# vector of means = vec.means

vec.means<-matrix(0,nrow=100,ncol=1)

for (i in 1:100){

vec.means[i,1]<-mean( runif(25) )

}

bins<-seq(0,1,by=0.05)

hist(vec.means,prob=TRUE,breaks=bins)
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Histogram of vec.means
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Example (cont.)

Let us look at the distribution of these 100 calculated means; this
histogram can be viewed as an estimate of the true sampling distribution.
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Example (cont.)

From our table, we have that

E (X̄ ) = 0.5

and

V (X̄ ) =
1/12

25
≈ 0.003333
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The Bootstrap (cont.)

Unfortunately, in most cases we do not know the underlying distribution
from which the sample is drawn. At best we may suspect that the true
distribution is in some family of distributions, but we generally do not
know the parameters of the distribution.
So suppose that we have just one sample. Is there any way to use that one
sample to compute an estimate of the sampling distribution of a statistic?
This is where the bootstrap comes in.
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The Bootstrap (cont.)

The idea is to repeatedly sample (with replacement) from the single
sample you have, and use these ”samples” to compute the sampling
distribution of the statistic in which you are interested. If our original
sample is reasonably representative of the population, then resampling
from that sample should look pretty much like drawing a new sample.
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Resampling

### original = original sample;

original.sample<-seq(1,6,by=1);

original.sample

## [1] 1 2 3 4 5 6

sample(original.sample,replace=TRUE);

## [1] 1 2 2 6 5 5
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R Code (Bootstrap Sample)

### original = original sample;

original<-runif(25);

# vector of means = vec.means

boot.vec.means<-matrix(0,nrow=5000,ncol=1)

for (i in 1:5000){
boot.vec.means[i,1]<-mean( sample(original,replace=TRUE) )

}

bins<-seq(0,1,by=0.05)

hist(boot.vec.means,prob=TRUE,breaks=bins)
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Histogram of boot.vec.means

boot.vec.means
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Summary statistics (bootstrap distribution)

# estimate of population mean;

mean(boot.vec.means);

## [1] 0.5125034

# estimate of variance of x bar;

var(boot.vec.means);

## [,1]

## [1,] 0.003183633
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Note that the distributions are reasonably similar. This is the genius of the
bootstrap: resampling from the single sample provides a reasonable way to
estimate what would happen if we actually drew many separate samples.
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The empirical bootstrap

Suppose we have n data points x1, x2, ..., xn drawn from a distribution F .
An empirical bootstrap sample is a resample of the same size n:
x∗1 , x

∗
2 , ..., x

∗
n .

You should think of the latter as a sample of size n drawn from the
empirical distribution F ∗. For any statistic v computed from the original
sample data, we can define a statistic v∗ by the same formula but
computed instead using the resampled data. With this notation we can
state the bootstrap principle:

F ∗ ≈ F .

The distribution of v∗ approximates the distribution of v .
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The empirical bootstrap (cont.)

It turns out that in practice the approximation of v by v∗ may not be very
good. However, the variation of v is usually well-approximated by the
variation of v∗.
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Toy example of an empirical bootstrap confidence interval

The sample data is 30, 37, 36, 43, 42, 43, 43, 46, 41, 42.
Estimate the mean µ of the underlying distribution and give an 80%
confidence interval.
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Solution

We use x̄ = 40.3 to estimate the true mean µ of the underlying
distribution. To make the confidence interval we need to know how much
the distribution of x̄ varies around µ. That is, we would like to know the
distribution of

δ = x̄ − µ.
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Solution

If we knew this distribution we could find δ0.1 and δ0.9 critical values of δ.
Then we would have

P(δ0.1 < x̄ − µ < δ0.9) = 0.8

which is equivalent to

P(x̄ − δ0.9 < µ < x̄ − δ0.1) = 0.8
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Solution

The bootstrap principle offers a practical approach to estimating the
distribution of δ = x̄ − µ. It says that we can approximate it by the
distribution of

δ∗ = x̄∗ − x̄

where x̄∗ is the mean of an empirical bootstrap sample.
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R Code

set.seed(686);

# x = data;

x <- c(30,37,36,43,42,43,43,46,41,42);

n <- length(x);

xbar<-mean(x);

# nboot = bootstrap samples;

nboot <-20;

resamples <- sample(x,n*nboot, replace = TRUE);

boot_sample<-matrix(resamples, nrow=n, ncol=nboot);
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R Code

# xbar.star = bootstrap sample means;

xbar.star <- colMeans(boot_sample);

delta.star<-xbar.star - xbar;

# order results;

new.delta.star<-sort(delta.star);

# Find quantiles

d9 <-delta.star[18];

d1<-delta.star[2];

CI<-xbar-c(d9,d1);

print(CI);

## [1] 39.1 41.5
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Another example

#Step 0. Install R Package boot;

library(boot);

#Step 1. Read data;

glass<-read.csv(file="glass.csv", header=TRUE);

names(glass);

## [1] "id" "ri" "na" "mg" "al" "si" "k" "ca" "ba" "fe"

## [11] "type"
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Another example

#Step 2. Create Bootstrap Sample;

y<-glass$ri;

mean.fn<-function(y,id){mean(y[id])}

boot.out<-boot(y,mean.fn,R=2000)

boot.out$t[1:5]

## [1] 1.518274 1.517992 1.518184 1.518347 1.517809

Al Nosedal and Alison Weir STA258H5 Winter 2017 25 / 27



Another example (Basic)

#Step 3. Construct CI;

boot.ci(boot.out,type="basic");

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 2000 bootstrap replicates

##

## CALL :

## boot.ci(boot.out = boot.out, type = "basic")

##

## Intervals :

## Level Basic

## 95% ( 1.518, 1.519 )

## Calculations and Intervals on Original Scale
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Another example (Percentile)

#Step 3. Construct CI;

boot.ci(boot.out,type="perc");

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 2000 bootstrap replicates

##

## CALL :

## boot.ci(boot.out = boot.out, type = "perc")

##

## Intervals :

## Level Percentile

## 95% ( 1.518, 1.519 )

## Calculations and Intervals on Original Scale
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