STA258H5

Al Nosedal
and Alison Weir

Winter 2017

INTRODUCING R AND ASSESSING NORMALITY

History of R

- S: language for data analysis developed at Bell Labs circa 1976
- Licensed by AT\&T/Lucent to Insightful Corp. Product name: S-plus.
- R: initially written and released as an open source software by Ross Ihaka and Robert Gentleman at U Auckland during 90s (R plays on name S)
- Since 1997: international R-core team 15 people \& 1000s of code writers and statisticians happy to share their libraries! AWESOME!

But it's open source...

Doesn't that mean it's lousy? NO!!

- Provides hundreds of thousands of functions and algorithms
- Lets users fix bugs and add functionality
- It is CUTTING EDGE, statistically and every other way.
- Ensures that researchers around the world - not just ones in rich countries - are the co-owners of the software tools needed to carry out research
- Most of R is written in? R ! This makes it quite easy to see what functions are actually doing.

What exactly is R ?

R is used for data manipulation, statistics, and graphics.
It is made of:

- operators ($+-<-$?) for calculations on vectors, arrays and matrices
- a huge collection of functions
- facilities for making unlimited types quality graphs
- user contributed packages (sets of related functions)
- the ability to interface with procedures written in $\mathrm{C}, \mathrm{C}+$, or FORTRAN and to write additional primitives.

Advantages of R

- Fast and free.
- State of the art statistically
- Only MATLAB has better graphics.
- Lots of other programs use R (like Google).
- Active user community
- Excellent for simulation, programming, analysis ?
- Forces you to think about your analysis.
- Easy interface with database storage software

Disadvantages of R

- Not user friendly, minimal GUI.
- Steep initial learning curve
- No commercial support
- Easy to make mistakes and not know.
- Data prep and cleaning can be messy

The R GUI

\square
\& R File Edit Format Workspace Packeges 8 Data Misc Window Help
 :

[^0]$>$

Openning a script in R

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
Type ' $q($ ()' to quit R.
[R.app GUI 1.65 (6833) x86_64-apple-darwin10.8.0]
[History restored from /Users/alvaro/.Rapp.history]
$>$

Homework

This course uses R. R is an open-source computing package which has seen a huge growth in popularity in the last few years. R can be downloaded from https://cran.r-project.org

Please, download R and bring your laptop next time.

What is RStudio?

RStudio is a relatively new editor specially targeted at R. RStudio is cross-platform, free and open-source software.

More homework: Obtaining RStudio

Just go to:
http://www.rstudio.com
download the corresponding file, execute it locally and follow the instructions given by the installer.

R Studio

Getting your data into R Studio

(1) Save data file as a something.csv file.
(2) Click on Import Dataset in top right window

Working in R Studio

Enter your commands in the console window Arithmetic Operations
$2+3$;
\#\# [1] 5

3-2;
\#\# [1] 1

3*2;
\#\# [1] 6

Working in R Studio

Enter your commands in the console window Arithmetic Operations

$$
3 / 2 \text {; }
$$

```
## [1] 1.5
```

$3^{\wedge} 2$;
\#\# [1] 9

Working in R Studio

Enter your commands in the console window Assignment

- To assign a value to a variable use $<-$ Example:
$\mathrm{a}<-19$;

How to use help in R?

If you know which function you want help with simply use help. Example:

```
help(histogram);
```


For now: R-Fiddle

R-Fiddle is a programming environment for R available online. It allows us to encode and to run a program written in R . The tool is available at this URL: http://www.r-fiddle.org

Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA. (A data frame with 272 observations on 2 variables.)

R Fiddle

R Fiddle

R Fiddle

R Fiddle

Histogram

```
## Basic plot.
hist(faithful$eruptions);
```


Histogram

Histogram of faithful\$eruptions

faithful\$eruntions

Histogram (with title)

```
## Nicer plot.
hist(faithful$eruptions,
main="Duration of Old Faithful Eruptions (min)");
```


Histogram (with title)

Duration of Old Faithful Eruptions (min)

faithful\$eruntions

Histogram

```
## Add axes labels and color.
hist(faithful$eruptions,
main="Duration of Old Faithful Eruptions (min)",
xlab="duration",ylab="count", col="blue");
```


Histogram

Duration of Old Faithful Eruptions (min)

+ $\stackrel{5}{3}$ 0

Boxplot

```
## Basic plot.
boxplot(faithful$eruptions);
```


Boxplot

Boxplot

```
## Add axes labels and color.
boxplot(faithful$eruptions,
main="Duration of Old Faithful Eruptions (min)",
xlab="duration",ylab="count", col="blue");
```


Boxplot

Duration of Old Faithful Eruptions (min)

duration
Winter 2017

Scatterplot

\#\# Basic plot.
plot(faithful\$eruptions,faithful\$waiting) ;

Scatterplot

faithful\$eruntions

Scatterplot

```
## Nicer plot.
plot(faithful$eruptions,faithful$waiting,
main="Eruption Duration vs Waiting Times (mins)",
xlab="duration",ylab="waiting time",
pch=19, col="blue");
```


Scatterplot

Eruption Duration vs Waiting Times (mins)

Making a panel of graphs

If you want more than one graph in a panel.

```
par(mfrow=c(nrow,ncol ) )
# where nrow= number of rows
# and ncol=number of columns;
```


Panel of graphs

```
par(mfrow=c(1,2) )
hist(faithful$eruptions,
main="Duration (min)",
xlab="duration",ylab="count", col="blue");
hist(faithful$waiting,
main="Waiting (min)",
xlab="waiting time",ylab="count", col="red");
```


Panel of graphs

Duration (min)
Waiting (min)

Panel of graphs

```
prototype<-rnorm(1000,mean=0,sd=1);
par(mfrow=c (2,2) )
hist(prototype,
main="prototype",
col="orange");
hist(faithful$eruptions,
main="Duration (min)",
xlab="duration",ylab="count", col="blue");
hist(faithful$waiting,
main="Waiting (min)",
xlab="waiting time",ylab="count", col="red");
```


Panel of graphs

prototype

O O O O 흔

 prototype

Duration (min)

duration

Waiting (min)
II
0
0
0

How much do people with a bachelor's degree (but no higher degree) earn? Here are the incomes of 15 such people, chosen at random by the Census Bureau in March 2002 and asked how much they earned in 2001. Most people reported their incomes to the nearest thousand dollars, so we have rounded their responses to thousands of dollars: 1102550505530 35304325030327460. How could we find the "typical" income for people with a bachelor's degree (but no higher degree)?

Measuring center: the median

The median M is the midpoint of a distribution, the number such that half the observations are smaller and the other half are larger. To find the median of the distribution:
Arrange all observations in order of size, from smallest to largest. If the number of observations n is odd, the median M is the center observation in the ordered list. Find the location of the median by counting $\frac{n+1}{2}$ observations up from the bottom of the list. If the number of observations n is even, the median M is the mean of the two center observations in the ordered list. Find the location of the median by counting $\frac{n+1}{2}$ observations up from the bottom of the list.

Income Problem (Median)

We know that if we want to find the median, M, we have to order our observations from smallest to largest: 42530303032323550505055 6074 110. Let's find the location of M
location of $M=\frac{n+1}{2}=\frac{15+1}{2}=8$
Therefore, $M=x_{8}=35$ ($x_{8}=8$ th observation on our ordered list).

The quartiles Q_{1} and Q_{3}

To calculate the quartiles:
Arrange the observations in increasing order and locate the median M in the ordered list of observations.
The first quartile Q_{1} is the median of the observations whose position in the ordered list is to the left of the location of the overall median.
The third quartile Q_{3} is the median of the observations whose position in the ordered list is to the right of the location of the overall median.

Income Problem $\left(Q_{1}\right)$

Data:
425303030323235505050556074110.

From previous work, we know that $M=x_{8}=35$.
This implies that the first half of our data has $n_{1}=7$ observations. Let us
find the location of Q_{1} :
location of $Q_{1}=\frac{n_{1}+1}{2}=\frac{7+1}{2}=4$.
This means that $Q_{1}=x_{4}=30$.

Income Problem $\left(Q_{3}\right)$

Data:
425303030323235505050556074110.

From previous work, we know that $M=x_{8}=35$.
This implies that the first half of our data has $n_{2}=7$ observations. Let us find the location of Q_{3} : location of $Q_{3}=\frac{n_{2}+1}{2}=\frac{7+1}{2}=4$.
This means that $Q_{3}=55$.

Five-number summary

The five-number summary of a distribution consists of the smallest observation, the first quartile, the median, the third quartile, and the largest observation, written in order from smallest to largest. In symbols, the five-number summary is $\min Q_{1} M Q_{3} M A X$.

Income Problem (five-number summary)

Data: 425303030323235505050556074 110. The five-number summary for our income problem is given by: 4303555110

R Code

```
# Step 1. Entering Data;
income=c(4,25,30,30,30,32,32,35,50,50,50,55,60,74,110);
```


R Code

```
# Step 2. Finding five-number summary;
fivenum(income);
```


R Code

\#\# [1] $4.0 \quad 30.0 \quad 35.0 \quad 52.5 \quad 110.0$

Note. Sometimes, R will give you a slightly different five-number summary.

Box plot

A boxplot is a graph of the five-number summary.
A central box spans the quartiles Q_{1} and Q_{3}.
A line in the box marks the median M.
Lines extended from the box out to the smallest and largest observations.

Boxplot

```
par(mfrow=c(1,3) )
boxplot(prototype,
main="prototype",
col="orange");
boxplot(faithful$eruptions,
main="eruption duration ",
col="blue");
boxplot(faithful$waiting,
main="time between eruptions",
    col="red");
```


Boxplot

prototype

eruption duration

time
between eruption

Boxplot

prototype

Should be:

- Symmetric
- $\approx 5 \%$ outliers
- Tails ≈ 1.5 IQR

The 68-95-99.7 rule

In the Normal distribution with mean μ and standard deviation σ :
Approximately 68% of the observations fall within σ of the mean μ. Approximately 95% of the observations fall within 2σ of μ. Approximately 99.7% of the observations fall within 3σ of μ. Note. The 68-95-99.7 rule is also know as the empirical rule.

Example $N(\mu=0, \sigma=1)$

Example $N(\mu=0, \sigma=1)$

R Code

```
meanP<-mean(prototype);
sdP<-sqrt(var(prototype));
lower<-meanP-sdP;
upper<-meanP+sdP;
N<-length(prototype);
100*length(prototype[ lower<prototype & prototype<upper])/N;
## [1] 69.8
```


R Code

```
meanP<-mean(prototype);
sdP<-sqrt(var(prototype));
lower<-meanP-2*sdP;
upper<-meanP+2*sdP;
N<-length(prototype);
100*length(prototype[ lower<prototype & prototype<upper])/N;
## [1] 94.9
```


R Code

```
meanP<-mean(prototype);
sdP<-sqrt(var(prototype));
lower<-meanP-3*sdP;
upper<-meanP+3*sdP;
N<-length(prototype);
100*length(prototype[ lower<prototype & prototype<upper])/N;
## [1] 99.5
```


R Code

```
eruptions<-faithful$eruptions;
meanE<-mean(eruptions);
sdE<-sqrt(var(eruptions));
lower<-meanE-sdE;
upper<-meanE+sdE;
N<-length(eruptions);
100*length(eruptions[ lower<eruptions & eruptions<upper])/N;
## [1] 55.14706
```


R Code

```
eruptions<-faithful$eruptions;
meanE<-mean(eruptions);
sdE<-sqrt(var(eruptions));
lower<-meanE-2*sdE;
upper<-meanE+2*sdE;
N<-length(eruptions);
100*length(eruptions[ lower<eruptions & eruptions<upper])/N;
## [1] 100
```


R Code

```
eruptions<-faithful$eruptions;
meanE<-mean(eruptions);
sdE<-sqrt(var(eruptions));
lower<-meanE-3*sdE;
upper<-meanE+3*sdE;
N<-length(eruptions);
100*length(eruptions[ lower<eruptions & eruptions<upper])/N;
## [1] 100
```


Homework?

Modify R Code given above and see what happens with waiting time.

Q-Q Plot (Example)

A sample of $n=10$ observations gives the values in the following table:

Ordered Observations $x_{(j)}$	Probability levels $(j-1 / 2) / n$	Standard Normal Quantiles $q_{(j)}$
-1	0.05	-1.645
-0.10	0.15	-1.036
0.16	0.25	-0.674
0.41	0.35	-0.385
0.62	0.45	-0.125
0.80	0.55	0.125
1.26	0.65	0.385
1.54	0.75	0.674
1.71	0.85	1.036
2.30	0.95	1.645

Here, for example, $P[Z \leq 0.385]=\int_{-\infty}^{0.385} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=0.65$.

Q-Q Plot (Example)

Let us now construct the Q-Q plot and comment on its appearance. The Q-Q plot for the foregoing data, which is a plot of the ordered data $x_{(j)}$ against the normal quantiles is shown below. The pairs of points $\left(q_{(j)}, x_{(j)}\right)$ lie very nearly along a straight line, and we would not reject the notion that these data are Normally distributed-particularly with a sample size as small as $n=10$.

R Code

```
## Ordered observations;
obs<-c(-1,-0.1,0.16,0.41,0.62,0.80,1.26,1.54,1.71,2.30);
n<-length(obs);
## Corresponding probability values;
prob.levels<-(seq(1:n)-0.5)/n;
## Standard Normal Quantiles;
norm.quantiles<-qnorm(prob.levels);
```


R Code

```
## Q-Q plot;
plot(norm.quantiles,obs,
xlab=expression(q[(j)]),
ylab=expression(x[(j)]),
main="Ours",col="blue",pch=19);
## Q-Q plot (using R function);
qqnorm(obs,col="blue",pch=19);
```


R Code

Ours

R Code

```
## Q-Q plot (using R function);
qqnorm(obs,col="blue",pch=19);
```


R Code

Normal Q-Q Plot

Theoretical Ouantiles

Q-Q plots

prototype

Theoretical Ouantiles

Q-Q plots

Duration (min)

duration

Q-Q plots

Waiting (min)

- If plots are $\mathrm{OK} \rightarrow$ data could come from a Normal distribution . . . but it could come from some other distribution. So good plots don't prove data came from a Normal distribution
- If plots are not OK \rightarrow data probably does not come from a Normal distribution, we can't assume data is from Normal population

Panel of graphs

$\mathrm{n}=30, \mathrm{~N}(0,1)$

$\mathrm{n}=30, \mathrm{~N}(0,1)$

$\mathrm{n}=30, \mathrm{~N}(0,1)$

$\mathrm{n}=30, \mathrm{~N}(0,1)$

Q-Q plots

$\mathrm{n}=30, \mathrm{~N}(\mathbf{0}, \mathbf{1})$

$\mathrm{n}=30, \mathrm{~N}(0,1)$

Theoretical_Ouantiles
Theoretical Oüanfiles

Q-Q plots

$\mathrm{n}=30, \mathrm{~N}(0,1)$

$\mathrm{n}=30, \mathrm{~N}(0,1)$

Theoretical_Ouantiles
Theoretical Qüanfiles

Panel of graphs

$\mathrm{n}=70, \mathrm{~N}(0,1)$

$\mathrm{n}=70, \mathrm{~N}(0,1)$

$\mathrm{n}=70, \mathrm{~N}(0,1)$

$\mathrm{n}=70, \mathrm{~N}(0,1)$

QQ plots

$\mathrm{n}=\mathbf{7 0}, \mathrm{N}(0,1)$

$\mathrm{n}=70, \mathrm{~N}(0,1)$

Theoretical Ouantiles
Theoretical Oüanfiles

QQ plots

$\mathrm{n}=\mathbf{7 0}, \mathrm{N}(0,1)$

$\mathrm{n}=70, \mathrm{~N}(0,1)$

Theoretical Ouantiles
Theoretical Qüanfiles

Panel of graphs

QQ plots

$\mathrm{n}=120, \mathrm{~N}(0,1)$

 $n=120, N(0,1)$

Theoretical_Ouantiles
Theoretical Oüanfiles

QQ plots

$\mathrm{n}=120, \mathrm{~N}(0,1)$

 $n=120, N(0,1)$

Theoretical_Ouantiles
Theoretical Oüanfiles

[^0]: R version 3.1.2 (2014-10-31) -- "Pumpkin Helmet" Copyright (C) 2014 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin10.8.0 (64-bit)
 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale
 R is a collaborative project with many contributors.
 Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

 Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
 Type ' $q($ ()' to quit R.
 [R.app GUI 1.65 (6833) x86_64-apple-darwin10.8.0]
 [History restored from /Users/alvaro/.Rapp.history]

