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My momma always said: ”Life was like a box of chocolates. You
never know what you’re gonna get.”

Forrest Gump.
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There are situations where one might be interested in more that
one random variable. For example, an automobile insurance policy
may cover collision and liability. The loss on collision and the loss
on liability are random variables.
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Definition 5.1

Let Y1 and Y2 be discrete random variables. The joint
probability function for Y1 and Y2 is given by

p(y1, y2) = P(Y1 = y1,Y2 = y2),

where −∞ < y1 <∞, −∞ < y2 <∞.
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Theorem 5.1

If Y1 and Y2 are discrete random variables with joint probability
function p(y1, y2), then
1. 0 ≤ p(y1, y2) ≤ 1 for all y1, y2.
2.
∑

y1,y2
p(y1, y2) = 1, where the sum is over all values (y1, y2)

that are assigned nonzero probabilities.
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Example 5.1

A local supermarket has three checkout counters. Two customers
arrive at the counters at different times when the counters are
serving no other customers. Each customer chooses a counter at
random, independently of the other. Let Y1 denote the number of
customers who choose counter 1 and Y2, the number who select
counter 2. Find the joint probability function of Y1 and Y2.
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Solution

Let the pair (i , j) denote the simple event that the first customer
chose counter i and the second customer chose counter j , where i ,
j = 1, 2, and 3. The sample space consists of 3× 3 = 9 sample
points. Under the assumptions given earlier, each sample point is
equally likely and has probability 1

9 . The sample space associated
with the experiment is

S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.

Recall that Y1 = number of customers who choose counter 1 and
Y2 = number who select counter 2.
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Solution (cont.)

Joint probability function for Y1 and Y2.

Y1

Y2 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0
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Graph of joint probability function

0.0 0.5 1.0 1.5 2.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.0

0.5

1.0

1.5

2.0

y1

y2

pr
ob

s

●●

●

●

●●

●

●

●

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Definition 5.1

Let Y1 and Y2 be discrete random variables. The joint probability
function for Y1 and Y2 is given by

p(y1, y2) = P(Y1 = y1,Y2 = y2),

where −∞ < y1 <∞ and −∞ < y2 <∞.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Definition 5.2

For any random variables Y1 and Y2, the joint distribution
function F (y1, y2) is

F (y1, y2) = P(Y1 ≤ y1,Y2 ≤ y2),

where −∞ < y1 <∞ and −∞ < y2 <∞.
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Definition 5.3

Let Y1 and Y2 be continuous random variables with joint
distribution function F (y1, y2). If there exists a nonnegative
function f (y1, y2), such that

F (y1, y2) =

∫ y1

−∞

∫ y2

−∞
f (t1, t2)dt2dt1,

for all −∞ < y1 <∞, −∞ < y2 <∞, then Y1 and Y2 are said to
be jointly continuous random variables. The function f (y1, y2) is
called the joint probability density function.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Theorem 5.2

If Y1 and Y2 are jointly continuous random variables with a joint
density function given by f (y1, y2), then
1. f (y1, y2) ≥ 0 for all y1, y2.
2.
∫∞
−∞

∫∞
−∞ f (y1, y2)dy2dy1 = 1.
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Exercise 5.6

If a radioactive particle is randomly located in a square of unit
length, a reasonable model for the joint density function for Y1 and
Y2 is

f (y1, y2) =

{
1, 0 < y1 < 1, 0 < y2 < 1,
0, elsewhere

a. What is P(Y1 − Y2 > 0.5)?
b. What is P(Y1Y2 < 0.5)?
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Graph of joint probability function
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Solution a)

The region Y1 > Y2 + 0.5 is shown in the figure below.
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Solution a)

a) P(Y1 − Y2 > 0.5) = P(Y1 > Y2 + 0.5) =
∫ 0.5

0

∫ 1
y2+0.5 dy1dy2

=
∫ 0.5

0 (1− y2 − 0.5)dy2

=
∫ 0.5

0 (0.5− y2)dy2

=
∫ 0.5

0 0.5dy2 −
∫ 0.5

0 y2dy2

= (0.5)2 − (0.5)2

2 = 0.125
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Solution b)

The region Y1 < 0.5/Y2 is shown in the figure below.
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Solution b)

b) P(Y1Y2 < 0.5) = P(Y1 <
0.5
Y2

)

= 0.5 +
∫ 1

0.5

∫ 0.5/y2

0 dy1dy2

= 0.5 + 0.5
∫ 1

0.5
1
y2
dy2 = 0.5 + 0.5(ln(1)− ln(0.5))

= 0.5 + 0.5(−ln(0.5)) = 0.5 + 0.3465736 = 0.8465736.
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Exercise 5.8

Let Y1 and Y2 have the joint probability density function given by

f (y1, y2) =

{
ky1y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,
0, elsewhere

a. Find the value of k that makes this a probability density
function.
b. Find the joint distribution function for Y1 and Y2.
c. Find P(Y1 ≤ 1/2,Y2 ≤ 3/4).
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Solution a)

∫ 1
0

∫ 1
0 y1y2dy1dy2 =

∫ 1
0 y2

∫ 1
0 y1dy1dy2∫ 1

0
y2
2 dy2 = 1

2

∫ 1
0 y2dy2 = (1/2)(1/2) = 1/4

k = 4
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Graph of joint probability function
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Cumulative Distribution Function (cases)
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Case 1: 
s > 0 and t < 0

Case 2: 
s < 0 and t < 0

Case 3: 
s < 0 and t > 0

Case 4: 
0 < s < 1 and 0 < t < 1

Case 5: 
0 < s < 1 and t > 1

Case 6: 
s > 1 and t > 1

Case 7: 
s > 1 and 0 < t < 1
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Solution b)

Case 1, Case 2, and Case 3.
F (s, t) =

∫ t
0

∫ s
0 0dy1dy2 = 0
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Solution b)

Case 4. 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1.
F (s, t) =

∫ t
0

∫ s
0 4y1y2dy1dy2 = 4

∫ t
0

∫ s
0 y1y2dy1dy2

= 4
∫ t

0 y2

∫ s
0 y1dy1dy2

= 4
∫ t

0 y2

(
s2

2

)
dy2 = 4s2

2

∫ t
0 y2dy2

= 2s2
(
t2

2

)
= s2t2.
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Solution b)

Case 5. 0 ≤ s ≤ 1 and t > 1.

F (s, t) =

∫ 1

0

∫ s

0
4y1y2dy1dy2 +

∫ t

1

∫ s

0
0dy1dy2

= 4

∫ 1

0

s2

2
y2dy2

= 2s2

(
1

2

)
= s2
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Solution b)

Case 6. s > 1 and t > 1.

F (s, t) =

∫ 1

0

∫ 1

0
4y1y2dy1dy2 +

∫ t

1

∫ s

1
0dy1dy2

= 1
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Solution b)

Case 7. s > 1 and 0 ≤ t ≤ 1.

F (s, t) =

∫ t

0

∫ 1

0
4y1y2dy1dy2 +

∫ t

0

∫ s

1
0dy1dy2

= 4

∫ t

0

1

2
y2dy2

= 2

(
t2

2

)
= t2
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Solution c)

P(Y1 ≤ 1/2,Y2 ≤ 3/4) = (1/2)2(3/4)2 = (1/4)(9/16) = 9/64.
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Exercise 5.12

Let Y1 and Y2 denote the proportions of two different types of
components in a sample from a mixture of chemicals used as an
insecticide. Suppose that Y1 and Y2 have the joint density
function given by

f (y1, y2) =

{
2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0 ≤ y1 + y2 ≤ 1,
0, elsewhere

Find
a. P(Y1 ≤ 3/4,Y2 ≤ 3/4).
b. P(Y1 ≤ 1/2,Y2 ≤ 1/2).
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Solution a)
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Solution a)

P(Y1 ≤ 3/4,Y2 ≤ 3/4) = 1− (2)(2)(1/2)(1/4)2

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Solution b)
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Solution b)

P(Y1 ≤ 1/2,Y2 ≤ 1/2) = (2)(1/2)2 = (2)(1/4) = 1/2
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Exercise 5.9

Let Y1 and Y2 have the joint probability density function given by

f (y1, y2) =

{
k(1− y2), 0 ≤ y1 ≤ y2 ≤ 1,
0 elsewhere

a. Find the value of k that makes this a probability density
function.
b. Find P(Y1 ≤ 3/4, Y2 ≥ 1/2).
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Solution a)

∫ 1
0

∫ y2

0 (1− y2)dy1dy2 =
∫ 1

0 (1− y2)
∫ y2

0 dy1dy2

=
∫ 1

0 (1− y2)y2dy2

=
∫ 1

0 (y2 − y2
2 )dy2

= 1
2 −

1
3 = 1

6

Therefore, k = 6.
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Solution b)
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Solution b)

We are interested in the ”blue region”. We are dividing it in two
regions (see previous slide).
P(Y 1 ≤ 3/4,Y2 ≥ 1/2) =∫ 0.75

0.5

∫ y2

0 6(1− y2)dy1dy2 +
∫ 1

0.75

∫ 0.75
0 6(1− y2)dy1dy2

= 6
[∫ 0.75

0.5 (y2 − y2
2 )dy2 +

∫ 1
0.75 0.75(1− y2)dy2

]
= 0.484375 = 31

64
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Definition 5.4

a. Let Y1 and Y2 be jointly discrete random variables with
probability function p(y1, y2). Then the marginal probability
functions of Y1 and Y2, respectively, are given by
p1(y1) =

∑
all y2

p(y1, y2) and p2(y2) =
∑

all y1
p(y1, y2).

b. Let Y1 and Y2 be jointly continuous random variables with joint
density function f (y1, y2). Then the marginal density functions
of Y1 and Y2, respectively, are given by
f1(y1) =

∫∞
−∞ f (y1, y2)dy2 and f2(y2) =

∫∞
−∞ f (y1, y2)dy1.

The term ”marginal” refers to the fact they are the entries in the
margins of a table as illustrated by the following example.
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Example

The joint probability function of X and Y is given by:

p(1,1) = 0.1 p(1,2) = 0.2 p(1,3) = 0.1
p(2,1) = 0.04 p(2,2) = 0.06 p(2,3) = 0.1
p(3,1) = 0.05 p(3,2) = 0.1 p(3,3) = 0.25

Calculate the marginal probability functions of X and Y .
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Solution

We can exhibit the values of the joint probability function in the
following array:

j

i 1 2 3 p(i) = sum along row

1 0.1 0.2 0.1 0.4
2 0.04 0.06 0.1 0.2
3 0.05 0.1 0.25 0.4

p(j) = sum along column 0.19 0.36 0.45 Total = 1
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Solution (cont.)

Marginal probability function of X :
P(X = 1) = 0.4, P(X = 2) = 0.2, P(X = 3) = 0.4.

Marginal probability function of Y :
P(Y = 1) = 0.19, P(Y = 2) = 0.36, P(Y = 3) = 0.45.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Example

If f (x , y) = ce−x−2y , x > 0, y > 0 and 0 otherwise, calculate
1. c .
2. The marginal densities of X and Y .
3. P(1 < X < 2).
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Solution 1)

Since the joint pdf must integrate to 1,

c

∫ ∞
0

∫ ∞
0

e−x−2ydydx =
c

2

∫ ∞
0

e−xdx =
c

2
= 1.

Therefore c = 2.
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Solution 2)

fX (x) = 2

∫ ∞
0

e−xe−2ydy = e−x , x > 0

fY (y) = 2

∫ ∞
0

e−xe−2ydx = 2e−2y , y > 0.
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Solution 3)

One way is to get it from the marginal probability density function
of X .

P(1 < X < 2) =

∫ 2

1
fX (x)dx =

∫ 2

1
e−xdx = e−1−e−2 = 0.2325442.
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Example

For the random variables in our last example, calculate P(X < Y ).
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Solution

The region X < Y is shown in the figure below.
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Solution

The required probability is the integral of the joint probability
density function over this region. From the figure, x goes from 0
to ∞ and for each fixed x , y goes from x to ∞.

P(X < Y ) = 2

∫ ∞
0

∫ ∞
x

e−x−2ydydx =

∫ ∞
0

e−x
∫ ∞
x

2e−2ydydx

P(X < Y ) =

∫ ∞
0

e−xe−2xdx =
1

3

∫ ∞
0

3e−3xdx = 1/3.
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Example

f (x , y) = 1/4 if 0 < x < 2 and 0 < y < 2.
What is P(X + Y < 1)?
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Solution

The desired probability is the integral of f (x , y) over the shaded
region in the figure below. Let us call this region D.
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Solution

P(X+Y < 1) =

∫ ∫
D

1

4
dxdy =

1

4
Area of D =

(
1

4

)(
1

2

)
(1)(1) =

1

8
.
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Example

The joint PDF of X and Y is f (x , y) = cx , 0 < y < x and
0 < x < 2, 0 elsewhere. Find
1. c .
2. The marginal densities of X and Y .
3. P(X < 2Y ).
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Solution

1. Since the PDF should integrate to 1,

c

∫ 2

0

∫ x

0
xdydx = c

∫ 2

0
x2dx = c

(
8

3

)
= 1

Therefore c = 3
8 .
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Solution

2. The marginal density of X is given by

fX (x) =

∫ ∞
−∞

f (x , y)dy .

Note that f (x , y) = 0 if y < 0 or y > x or if x > 2. Therefore

fX (x) =

∫ x

0

3

8
xdy =

3

8
x2, 0 < x < 2

and 0 elsewhere.
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Solution

Similarly, since the PDF is 0 if x < y or if x > 2,

fY (y) =

∫ ∞
−∞

f (x , y)dx =
3

8

∫ 2

y
xdx =

3

16
(4− y2), 0 < y < 2

and 0 elsewhere.
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Solution

3. The event X < 2Y corresponds to the region between the lines
y = x and y = x

2 . The probability of it is

P(X < 2Y ) =

(
3

8

)∫ 2

0

∫ x

x/2
xdydx =

(
3

8

)∫ 2

0
x(x − x/2)dx

=

(
3

8

)∫ 2

0

x2

2
dx =

1

2
.
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Conditional distributions

Let us first consider the discrete case. Let
p(x , y) = P(X = x ,Y = y) be the joint PF of the random
variables, X and Y . Recall that the conditional probability of the
occurrence of event A given that B has occurred is

P(A|B) =
P(A ∩ B)

P(B)

If A is the event that X = x and B is the event that Y = y then
P(A) = P(X = x) = pX (x), the marginal PF of X ,
P(B) = pY (y), the marginal PF of Y and P(A∩B) = p(x , y), the
joint PF of X and Y .
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Conditional distributions (discrete case)

We can then define a conditional probability function for the
probability that X = x given Y = y by

pX |Y (x |y) = P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

p(x , y)

pY (y)

Similarly

pY |X (y |x) = P(Y = y |X = x) =
P(X = x ,Y = y)

P(X = x)
=

p(x , y)

pX (x)
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Conditional densities (continuous case)

In the continuous case we extend the same concept and define
conditional densities or conditional PDFs by

fX |Y (x |y) =
f (x , y)

fY (y)

fY |X (y |x) =
f (x , y)

fX (x)
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Example

The joint PF of X and Y is given by:

p(1,1) = 0.1 p(1,2) = 0.2 p(1,3) = 0.1
p(2,1) = 0.04 p(2,2) = 0.06 p(2,3) = 0.1
p(3,1) = 0.05 p(3,2) = 0.1 p(3,3) = 0.25

Find the conditional PF pX |Y (x |1).
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Solution

pY (1) = p(1, 1) + p(2, 1) + p(3, 1) = 0.1 + 0.04 + 0.05 = 0.19.

pX |Y (1|1) = p(1,1)
pY (1) = 0.1

0.19 = 10
19 .

pX |Y (2|1) = p(2,1)
pY (1) = 0.04

0.19 = 4
19 .

pX |Y (3|1) = p(3,1)
pY (1) = 0.05

0.19 = 5
19 .
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Example

If f (x , y) = 2 exp−x−2y , x > 0, y > 0 and 0 otherwise. Find the
conditional densities, fX |Y (x |y) and fY |X (y |x) .
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Solution

Marginals.

fX (x) = 2

∫ ∞
0

e−xe−2ydy = e−x , x > 0.

fY (y) = 2

∫ ∞
0

e−xe−2ydx = 2e−2y , y > 0.
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Solution (cont.)

Conditional densities.
fX |Y (x |y) = f (x ,y)

fY (y) = 2e−x−2y

2e−2y = e−x , x > 0.

fY |X (y |x) = f (x ,y)
fX (x) = 2e−x−2y

e−x = 2e−2y , y > 0.
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Example

The joint PDF of X and Y is f (x , y) = 3
8x , 0 < y < x and

0 < x < 2, and 0 elsewhere. Calculate the conditional PDFs.
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Solution

Marginal densities.

fX (x) =

∫ ∞
−∞

f (x , y)dy =

∫ x

0

3

8
xdy =

3

8
x2, 0 < x < 2

and 0 elsewhere.

fY (y) =

∫ ∞
−∞

f (x , y)dx =
3

8

∫ 2

y
xdx =

3

16
(4− y2), 0 < y < 2

and 0 elsewhere.
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Solution

We have everything we need. We just have to be careful with the
domains. For given Y = y , y < x < 2. For given X = x ,
0 < y < x < 2.
fX |Y (x |y) = f (x ,y)

fY (y) = (3/8)x
(3/16)(4−y2)

= 2x
4−y2 , y < x < 2,

and 0 elsewhere.

fY |X (y |x) = f (x ,y)
fX (x) = (3/8)x

(3/8)(x2)
= 1

x , 0 < y < x ,

and 0 elsewhere.
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Exercise 5.27

In Exercise 5.9, we determined that

f (y1, y2) =

{
6(1− y2), 0 ≤ y1 ≤ y2 ≤ 1,
0 elsewhere

is a valid joint probability density function. Find
a. the marginal density functions for Y1 and Y2.
b. P(Y2 ≤ 1/2|Y1 ≤ 3/4).
c. the conditional density function of Y1 given Y2 = y2.
d. the conditional density function of Y2 given Y1 = y1.
e. P(Y2 ≥ 3/4|Y1 = 1/2).
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Solution a)

By definition, fY1(y1) =
∫∞
−∞ f (y1, y2)dy2. In this case,

fY1(y1) =
∫ 1
y1

6(1− y2)dy2 (recall that y1 ≤ y2 ≤ 1)

= 6
[∫ 1

y1
dy2 −

∫ 1
y1
y2dy2

]
= 6

[
(1− y1)− 1−y2

1
2

]
= 3(1− y1)2, 0 ≤ y1 ≤ 1.
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Solution a)

By definition, fY2(y2) =
∫∞
−∞ f (y1, y2)dy1. In this case,

fY2(y2) =
∫ y2

0 6(1− y2)dy1 (recall that 0 ≤ y1 ≤ y2)
= 6(1− y2)y2

= 6(y2 − y2
2 ), 0 ≤ y2 ≤ 1.
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Solution b)

P(Y2 ≤ 1/2|Y1 ≤ 3/4) = P(Y1≤3/4andY2≤1/2)
P(Y1≤3/4)

= P(Y1≤3/4,Y2≤1/2)
P(Y1≤3/4)

=
∫ 1/2

0

∫ y2
0 6(1−y2)dy1dy2∫ 3/4

0 3(1−y1)2dy1

= 1/2
63/64 = 32

63 .
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Solution c) and d)

By definition, f (y1|y2) = f (y1,y2)
fY2

(y2) . In this case,

f (y1|y2) = 6(1−y2)
6(1−y2)y2

= 1
y2

, 0 ≤ y1 ≤ y2 ≤ 1.

Similarly, f (y2|y1) = f (y1,y2)
fY1

(y1) . In this case,

f (y2|y1) = 6(1−y2)
3(1−y1)2 = 2(1−y2)

(1−y1)2 , 0 ≤ y1 ≤ y2 ≤ 1.
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Solution e)

P(Y2 ≥ 3/4|Y1 = 1/2) =
∫ 1

3/4 f (y2|1/2)dy2

=
∫ 1

3/4
2(1−y2)

(1−1/2)2 dy2

= 8
∫ 1

3/4(1− y2)dy2

= 8
(

1
32

)
= 8

32 = 1
4 .
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Independent random variables

In one of our examples,

f (x , y) = 2 exp−x−2y , fX (x) = exp−x , fY (y) = 2 exp−2y ,

and so

f (x , y) = fX (x)fY (y).

If the joint density function is the product of the marginal density
functions we say that the random variables are independent.
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Theorem 5.4

If Y1 and Y2 are discrete random variables with joint probability
function p(y1, y2) and marginal probability functions p1(y1) and
p2(y2), respectively, then Y1 and Y2 are independent if and only if

p(y1, y2) = p1(y1)p2(y2)

for all pairs of real numbers (y1, y2).

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Theorem 5.4 (cont.)

If Y1 and Y2 are continuous random variables with joint density
function f (y1, y2) and marginal density functions f1(y1) and f2(y2),
respectively, then Y1 and Y2 are independent if and only if

f (y1, y2) = f1(y1)f2(y2)

for al pairs of real numbers (y1, y2).
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Exercise 5.43

Let Y1 and Y2 have joint density functions f (y1, y2) and marginal
densities f1(y1) and f2(y2), respectively. Show that Y1 and Y2 are
independent if and only if f (y1|y2) = f1(y1) for all values of y1 and
for all y2 such that f2(y2) > 0. A completely analogous argument
establishes that Y1 and Y2 are independent if and only if
f (y2|y1) = f2(y2) for all values of y2 and for all y1 such that
f1(y1) > 0.
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Proof

Assume that Y1 and Y2 are independent. We have to show that
f (y1|y2) = f1(y1).

f (y1|y2) = f (y1,y2)
f2(y2) (by definition)

f (y1|y2) = f1(y1)f2(y2)
f2(y2) (Y1 and Y2 are independent)

f (y1|y2) = f1(y1).
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Proof

Assume f (y1|y2) = f1(y1). We have to show that Y1 and Y2 are
independent.
f (y1|y2) = f1(y1)
f (y1,y2)
f2(y2) = f1(y1) (By definition)

f (y1, y2) = f1(y1)f2(y2) (Multiplying both sides by f2(y2))
Therefore Y1 and Y2 are independent.
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Example

If the joint PDF of X and Y is

f (x , y) =
1

8
, 0 < x < 4, 0 < y < 2, and 0 elsewhere.

Determine whether X and Y are independent.
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Solution

We have to verify whether or not f (x , y) = fX (x)fY (y).

fX (x) =

∫ ∞
−∞

f (x , y)dy =

∫ 2

0

1

8
dy =

1

8
(2− 0) =

1

4
, 0 < x < 4,

and 0 elsewhere.

fY (y) =

∫ ∞
−∞

f (x , y)dx =

∫ 4

0

1

8
dx =

1

8
(4− 0) =

1

2
, 0 < y < 2,

Clearly f (x , y) = fX (x)fY (y). So X and Y are independent.
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Example

If the joint PDF of X and Y is given by
f (x , y) = 2, 0 < y < x and 0 < x < 1, and 0 elsewhere.
Determine whether or not X and Y are independent.
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Solution

fX (x) =
∫∞
−∞ f (x , y)dy = 2

∫ x
0 dy = 2x , 0 < x < 1, and 0

elsewhere.

fY (y) =
∫∞
−∞ f (x , y)dx = 2

∫ 1
y dx = 2(1− y), 0 < y < 1, and 0

elsewhere.
So X and Y are NOT independent.
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Exercise 5.53

In Exercise 5.9, we determined that

f (y1, y2) =

{
6(1− y2), 0 ≤ y1 ≤ y2 ≤ 1,
0 elsewhere

is a valid joint probability density function. Are Y1 and Y2

independent?
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Definition 5.9

Let g(Y1,Y2) be a function of the discrete random variables, Y1

and Y2, which have probability function p(y1, y2). Then the
expected value of g(Y1,Y2) is

E [g(Y1,Y2)] =
∑

all y1

∑
all y2

g(y1, y2)p(y1, y2).

If Y1, Y2 are continuous random variables with joint density
function f (y1, y2), then

E [g(Y1,Y2)] =

∫ ∞
−∞

∫ ∞
−∞

g(y1, y2)f (y1, y2)dy1dy2.
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Theorem 5.6

Let c be a constant. Then

E (c) = c.
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Theorem 5.7

Let g(Y1,Y2) be a function of the random variables Y1 and Y2

and let c be a constant. Then

E [cg(Y1,Y2)] = cE [g(Y1,Y2)].
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Theorem 5.8

Let Y1 and Y2 be random variables and g1(Y1,Y2), g2(Y1,Y2), . .
. , gk(Y1,Y2) be functions of Y1 and Y2. Then

E [g1(Y1,Y2) + g2(Y1,Y2) + ...+ gk(Y1,Y2)]

= E [g1(Y1,Y2)] + E [g2(Y1,Y2)] + ...+ E [gk(Y1,Y2)].
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Theorem 5.9

Let Y1 and Y2 be independent random variables and g(Y1) and
h(Y2) be functions of only Y1 and Y2, respectively. Then

E [g(Y1)h(Y2)] = E [g(Y1)]E [h(Y2)],

provided that the expectations exist.
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Particular case

Let X and Y be independent random variables with joint density
given by f (x , y). Then

E [XY ] = E [X ]E [Y ],

provided that the expectations exist.
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Proof

By definition 5.9,

E [XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyf (x , y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xyf (x)f (y)dxdy (by independence)

=

∫ ∞
−∞

yf (y)

[∫ ∞
−∞

xf (x)dx

]
dy

=

∫ ∞
−∞

yf (y) [E (X )] dy (by definition of E (X ))

= E (X )

∫ ∞
−∞

yf (y)dy

= E (X )E (Y ) (by definition of E (Y ))
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Exercise 5.77

In Exercise 5.9, we determined that

f (y1, y2) =

{
6(1− y2), 0 ≤ y1 ≤ y2 ≤ 1,
0 elsewhere

is a valid joint probability density function. Find
a. E (Y1) and E (Y2).
b. V (Y1) and V (Y2).
c. E (Y1 − 3Y2).
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Solution a)

Using the marginal densities we found in Exercise 5.27, we have
that
E (Y1) =

∫ 1
0 3y1(1− y1)2dy1 = 1

4

E (Y2) =
∫ 1

0 6y2
2 (1− y2)dy2 = 1

2
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Solution b)

E (Y 2
1 ) =

∫ 1
0 3y2

1 (1− y1)2dy1 = 1
10

V (Y1) = 1
10 −

(
1
4

)2
= 3

80 .

E (Y 2
2 ) =

∫ 1
0 6y3

2 (1− y2)dy2 = 3
10

V (Y2) = 3
10 −

(
1
2

)2
= 1

20 .
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Solution c)

E (Y1 − 3Y2) = E (Y1)− 3E (Y2) = 1
4 −

3
2 = −5

4 .
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Whether X and Y are independent or not,

E (X + Y ) = E (X ) + E (Y )

Now let us try to calculate Var(X + Y ).
E [(X + Y )2] = E [X 2 + 2XY + Y 2]

= E (X 2) + 2E (XY ) + E (Y 2)]
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Var(X + Y ) = E [(X + Y )2]− [E (X + Y )]2

= E (X 2) + 2E (XY ) + E (Y 2)− [E (X ) + E (Y )]2

= E (X 2) + 2E (XY ) + E (Y 2)− [E (X )]2 − 2E (X )E (Y )− [E (Y )]2

= Var(X ) + Var(Y ) + 2[E (XY )− E (X )E (Y )]
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Now you can see that the variance of a sum of random variables is
NOT, in general, the sum of their variances.
If X and Y are independent, however, the last term becomes zero
and the variance of the sum is the sum of the variances.
The entity E (XY )− E (X )E (Y ) is known as the covariance of X
and Y .
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Definition

If Y1 and Y2 are random variables with means µ1 and µ2,
respectively, the covariance of Y1 and Y2 is

Cov(Y1,Y2) = E [(Y1 − µ1)(Y2 − µ2)].

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Definition

It is difficult to employ the covariance as an absolute measure of
dependence because its value depends upon the scale of
measurement. This problem can be eliminated by standardizing its
value and using the correlation coefficient, ρ, a quantity related
to the covariance and defined as

ρ =
Cov(Y1, Y2)√
V (Y1)

√
V (Y2)

.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Theorem

If Y1 and Y2 are random variables with means µ1 and µ2,
respectively, then

Cov(Y1,Y2) = E (Y1Y2)− E (Y1)E (Y2).

OR

Cov(Y1,Y2) = E (Y1Y2)− µ1µ2.
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Proof

By definition,

Cov(Y1,Y2) = E [(Y1 − µ1)(Y2 − µ2)]

= E [Y1Y2 − Y1µ2 − µ1Y2 + µ1µ2]

= E [Y1Y2]− E [Y1µ2]− E [µ1Y2] + E [µ1µ2]

= E [Y1Y2]− µ2E [Y1]− µ1E [Y2] + µ1µ2

= E [Y1Y2]− µ1µ2 − µ1µ2 + µ1µ2

= E [Y1Y2]− µ1µ2
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Theorem

If Y1 and Y2 are independent random variables, then

Cov(Y1,Y2) = 0.
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Theorem

Let Y1,Y2, ...,Yn and X1,X2, ...,Xm be random variables with
E (Yi ) = µi and E (Xj) = ξj . Define

U1 =
n∑

i=1

aiYi and U2 =
m∑
j=1

bjXj

for constants a1, a2, ..., an and b1, b2, ..., bm. Then the following
hold:
a. E (U1) =

∑n
i=1 aiµi

b. Cov(U1,U2) =
∑n

i=1

∑m
j=1 aibjCov(Yi ,Xj).
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Proof

We are going to prove b), when n = 2 and m = 2.
Let U1 = a1X1 + a2X2 and U2 = b1Y1 + b2Y2. Now, recall that

cov(U1,U2) = E (U1U2)− E (U1)E (U2).

First, we find U1U2 and then we compute its expected value.
U1U2 = a1b1X1Y1 + a1b2X1Y2 + a2b1X2Y1 + a2b2X2Y2.
E (U1U2) =
a1b1E (X1Y1) + a1b2E (X1Y2) + a2b1E (X2Y1) + a2b2E (X2Y2).
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Proof (cont.)

Now, we find E (U1)E (U2). Clearly, E (U1) = a1µ1 + a2µ2 and
E (U2) = b1ξ1 +2 ξ2. Thus,

E (U1)E (U2) = a1b1µ1ξ1 + a1b2µ1ξ2 + a2b1µ2ξ1 + a2b2µ2ξ2
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Proof (cont.)

Finally, E (U1U2)− E (U1)E (U2) turns out to be
a1b1[E (X1Y1)− µ1ξ1] + a1b2[E (X1Y2)− µ1ξ2]
+a2b1[E (X2Y1)− µ2ξ1] + a2b2[E (X2Y2)− µ2ξ2]
which is equivalent to
a1b1[cov(X1,Y1)] + a1b2[cov(X1,Y2)]
+a2b1[cov(X2,Y1)] + a2b2[cov(X2,Y2)] =

∑∑
aibjcov(Xi ,Yj)
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Example

Suppose that the random variables X and Y have joint probability
density function, f (x , y), given by

f (x , y) =

{
6(1− y), 0 ≤ x < y ≤ 1
0 elsewhere

Find
a) E (X ).
b) E (Y ).
c) E (XY ).
d) Cov(X ,Y ).
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Solution

a) E (X ) =
∫ 1

0

∫ 1
x x(6− 6y)dydx =

∫ 1
0 x
(∫ 1

x 6dy −
∫ 1
x 6ydy

)
=
∫ 1

0 x
(

6(1− x)− 6[ 1−x2

2 ]
)

=
∫ 1

0 x(6− 6x − 3 + 3x2)dx

=
∫ 1

0 3x − 6x2 + 3x3dx

= 3x2

2 |
1
0

6x3

3 |
1
0 + 3x4

4 |
1
0

= 3
2 −

6
3 + 3

4 = 18−24+9
12 = 1

4 .
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Solution

b) E (Y ) =
∫ 1

0

∫ y
0 y(6− 6y)dxdy =

∫ 1
0 (6y − 6y2)(

∫ y
0 dx)dy

=
∫ 1

0 (6y − 6y2)(y)dy

=
∫ 1

0 (6y2 − 6y3)dy

= 6y3

3 |
1
0

6y4

4 |
1
0

= 6
3 −

6
4 = 24−18

12 = 1
2 .
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Solution

c) E (XY ) =
∫ 1

0

∫ y
0 (xy)(6− 6y)dxdy =

∫ 1
0

∫ y
0 (x)(6y − 6y2)dxdy

=
∫ 1

0 (6y − 6y2)
(∫ y

0 xdx
)
dy

=
∫ 1

0 (6y − 6y2)
(
x2

2 |
y
0

)
dy

=
∫ 1

0 (6y − 6y2)
(
y2

2

)
dy

=
∫ 1

0 (3y3 − 3y4)dy

= 3y4

4 |
1
0 −

3y5

5 |
1
0 = 3

4 −
3
5 = 15−12

20 = 3
20 .
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Solution

d) Cov(X ,Y ) = E (XY )− E (X )E (Y )
Cov(X ,Y ) = 3

20 −
(

1
4

) (
1
2

)
Cov(X ,Y ) = 3

20 −
1
8 = 6−5

40 = 1
40 .
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Exercise 5.89

In Exercise 5.1, we determined that the joint distribution of Y1, the
number of contracts awarded to firm A, and Y2, the number of
contracts awarded to firm B, is given by the entries in the following
table.

y1

y2 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

Find Cov(Y1, Y2).
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Solution

E (Y1) = 0P(Y1 = 0) + 1P(Y1 = 1) + 2P(Y1 = 2)
E (Y1) = 4

9 + 2
9 = 2

3 .

E (Y2) = 0P(Y2 = 0) + 1P(Y2 = 1) + 2P(Y2 = 2)
E (Y2) = 4

9 + 2
9 = 2

3 .
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Solution

E (Y1Y2) = (0)(0)P(Y1 = 0, Y2 = 0) + (0)(1)P(Y1 = 0, Y2 =
1) + ...+ (2)(2)P(Y1 = 2, Y2 = 2)

= 0(1/9) + 0(2/9) + 0(1/9) + 0(2/9) + 1(2/9) + 2(0) +
0(1/9) + 2(0) + 4(0)
E (Y1Y2) = 2

9

Finally, cov(Y1,Y2) = E (Y1Y2)− E (Y1)E (Y2) = 2
9 −

4
9 = −2

9 .
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Exercise 5.103

Assume that Y1, Y2, and Y3 are random variables, with
E (Y1) = 2, E (Y2) = −1, E (Y3) = 4,
V (Y1) = 4, V (Y2) = 6, V (Y3) = 8,
Cov(Y1,Y2) = 1, Cov(Y1,Y3) = −1, Cov(Y2,Y3) = 0.
Find E (3Y1 + 4Y2 − 6Y3) and V (3Y1 + 4Y2 − 6Y3).
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Solution

E (3Y1 + 4Y2 − 6Y3) = 3E (Y1) + 4E (Y2)− 6E (Y3)
= 3(2) + 4(−1)− 6(4)
= 6− 4− 24 = 6− 28 = −22.
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Solution

V (3Y1 + 4Y2 − 6Y3) = V (3Y1) + V (4Y2) + V (−6Y3)
+2Cov(3Y1, 4Y2) + 2Cov(3Y1,−6Y3) + 2Cov(4Y2,−6Y3)
= (3)2V (Y1) + (4)2V (Y2) + (−6)2V (Y3)
+(2)(3)(4)Cov(Y1,Y2) + (2)(3)(−6)Cov(Y1,Y3)
+(2)(4)(−6)Cov(Y2,Y3)
= 9(4) + 16(6) + 36(8) + 24(1)− 36(−1)− 48(0)
= 36 + 96 + 288 + 24 + 36 = 480.
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3Y1 4Y2 −6Y3

3Y1 9(Y1,Y1) 12(Y1,Y2) −18(Y1,Y3)
4Y2 12(Y1,Y2) 16(Y2,Y2) −24(Y2,Y3)
−6Y3 −18(Y1,Y3) −24(Y2,Y3) 36(Y3,Y3)
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3Y1 4Y2 −6Y3

3Y1 9cov(Y1,Y1) 12cov(Y1,Y2) −18cov(Y1,Y3)
4Y2 12cov(Y1,Y2) 16cov(Y2,Y2) −24cov(Y2,Y3)
−6Y3 −18cov(Y1,Y3) −24cov(Y2,Y3) 36cov(Y3,Y3)
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3Y1 4Y2 −6Y3

3Y1 9V (Y1) 12Cov(Y1,Y2) −18Cov(Y1,Y3)
4Y2 12Cov(Y1,Y2) 16V (Y2) −24Cov(Y2,Y3)
−6Y3 −18Cov(Y1,Y3) −24Cov(Y2,Y3) 36V (Y3)

V (3Y1 + 4Y2 − 6Y3) = 9V (Y1) + 16V (Y2) + 36V (Y3)

+ 24Cov(Y1,Y2)− 36Cov(Y1,Y3)

− 48Cov(Y2,Y3)
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V (3Y1 + 4Y2 − 6Y3) = 9V (Y1) + 16V (Y2) + 36V (Y3)

+ 24Cov(Y1,Y2)− 36Cov(Y1,Y3)

− 48Cov(Y2,Y3)

V (3Y1 + 4Y2 − 6Y3) = 9(4) + 16(6) + 36(8)

+ 24(1)− 36(−1)

− 48(0)

V (3Y1 + 4Y2 − 6Y3) = 36 + 96 + 288

+ 24 + 36− 0

= 480
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Example. Construction of an optimal portfolio

We would like to invest $10,000 into shares of companies XX and
YY. Shares of XX cost $20 per share. The market analysis shows
that their expected return is $1 per share with a standard deviation
of $0.5. Shares of YY cost $50 per share, with an expected return
of $2.50 and a standard deviation of $1 per share, and returns
from the two companies are independent. In order to maximize the
expected return and minimize the risk (standard deviation or
variance), is it better to invest (A) all $10, 000 into XX, (B) all
$10,000 into YY, or (C) $5,000 in each company?
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Solution (A)

Let X be the actual (random) return from each share of XX, and
Y be the actual return from each share of YY. Compute the
expectation and variance of the return for each of the proposed
portfolios (A,B, and C )
At $20 a piece, we can use $10,000 to buy 500 shares of XX, thus
A = 500X .

E (A) = 500E (X ) = (500)(1) = 500;

V (A) = 5002V (X ) = 5002(0.5)2 = 62, 500.
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Solution (B)

Investing all $10,000 into YY, we buy 10, 000/50 = 200 shares of
it, so that B = 200Y ,

E (B) = 200E (Y ) = (200)(2.50) = 500;

V (B) = 2002V (Y ) = 2002(1)2 = 40, 000.
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Solution (C)

Investing $5,000 into each company makes a portfolio consisting of
250 shares of XX and 100 shares of YY, so that
C = 250X + 100Y . Since independence yields uncorrelation,

E (C ) = 250E (X )+100E (Y ) = 250(1)+100(2.5) = 250+250 = 500;

V (C ) = 2502V (X )+1002V (Y ) = 2502(0.5)2+1002(1)2 = 25, 625.
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Solution

The expected return is the same for each of the proposed three
portfolios because each share of each company is expected to
return 500

10,000 = 1
20 , which is 5%. In terms of the expected return,

all three portfolios are equivalent. Portfolio C, where investment is
split between two companies, has the lowest variance, therefore, it
is the least risky. This supports one of the basic principles in
finance: to minimize the risk, diversify the portfolio.
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Definition 5.13

If Y1 and Y2 are any two random variables, the conditional
expectation of g(Y1), given that Y2 = y2, is defined to be

E [g(Y1)|Y2 = y2] =

∫ ∞
−∞

g(y1)f (y1|y2)dy1

if Y1 and Y2 are jointly continuous and

E [g(Y1)|Y2 = y2] =
∑

all y1

g(y1)p(y1|y2)

if Y1 and Y2 are jointly discrete.
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Theorem 5.14

Let Y1 and Y2 denote random variables. Then

E (Y1) = E [E (Y1|Y2)],

where on the right-hand side the inside expectation is with respect
to the conditional distribution of Y1 given Y2 and the outside
expectation is with respect to the distribution of Y2.
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Theorem 5.15

Let Y1 and Y2 denote random variables. Then

V (Y1) = E [V (Y1|Y2)] + V [E (Y1|Y2)].
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Example

Assume that Y denotes the number of bacteria per cubic
centimeter in a particular liquid and that Y has a Poisson
distribution with parameter x . Further assume that x varies from
location to location and has an exponential distribution with
parameter β = 1.
a) Find f (x , y), the joint probability function of X and Y .
b) Find fY (y), the marginal probability function of Y .
c) Find E (Y ).
d) Find f (X |Y = y).
e) Find E (X |Y = 0).
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Solution

a) f (x , y) = f (y |x)fX (x)

f (x , y) =
(
xy e−x

y !

)
(e−x)

f (x , y) = xy e−2x

y !
where x > 0 and y = 0, 1, 2, 3, ....
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Solution

b) fY (y) =
∫∞

0
xy e−2x

y ! dx

= 1
y !

∫∞
0 xye−2xdx

(We note that xye−2x is ”almost” a Gamma pdf with α = y + 1
and β = 1/2).

= Γ(y+1)(1/2)y+1

y !

∫∞
0

1
Γ(y+1)(1/2)y+1 x

ye−2xdx

= Γ(y+1)(1/2)y+1

y !
(Recalling that Γ(N) = (N − 1)! provided that N is a positive
integer).

fY (y) =
(

1
2

)y+1

where y = 0, 1, 2, 3, ....
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Solution (using theorem)

c) E (Y ) = E (E (Y |X )) = E (X ) = 1
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Solution (by definition)

c) By definition,

E [Y ] =
∞∑
y=0

y

(
1

2

)y+1

(first term is zero)

=
∞∑
x=1

y

(
1

2

)y+1

=

(
1

2

) ∞∑
y=1

y

(
1

2

)y

=

(
1

2

) ∞∑
y=1

y

(
1

2

)y−1+1

multiplying by ”one”

=

(
1

2

) ∞∑
y=1

y

(
1

2

)y−1(1

2

)
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Solution (by definition)

Note that
∑∞

y=1 y
(

1
2

)y−1 (1
2

)
is the ”formula” you would use to

find the expected value of a Geometric random variable with
parameter p = 1

2 . Therefore,

E [Y ] =

(
1

2

)(
1

1/2

)
(we know this from table)

=

(
1

2

)
(2) = 1.
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Solution

d) f (x |y) = f (x ,y)
fY (y)

f (x |y) = 2y+1xy e−2x

y !
where x > 0.
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Solution

e) Note that f (x |y = 0) = 20+1x0e−2x

0! = 2e−2x

E (X |Y = 0) =
∫∞

0 x [2e−2x ]dx
= 2

∫∞
0 xe−2xdx

= 2Γ(2)(1/2)2
∫∞

0
1

Γ(2)(1/2)2 x
2−1e−x/(1/2)dx

= 2Γ(2)(1/2)2 = 2
(

1
4

)
= 1

2

(Note. Try doing this by parts, too).

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Exercise 5.141

Let X have an exponential distribution with mean λ and the
conditional density of Y given X = x be

f (y | x) =

{
1
x , 0 ≤ y ≤ x
0 elsewhere.

Find E (Y ) and V (Y ), the unconditional mean and variance of Y .
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Solution (using joint density function)

Recall that f (y | x) = f (x ,y)
f (x) . Therefore, f (x , y) = f (y | x)f (x).

f (x , y) =

{
1
λx
−1e−x/λ, 0 ≤ y ≤ x and x > 0

0 elsewhere.
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Solution (using joint density function)

By definition (5.9),

E (Y ) =

∫ ∞
−∞

∫ ∞
−∞

yf (x , y)dydx

=

∫ ∞
0

∫ x

0
y

[
1

λ
x−1e−x/λ

]
dydx

=

∫ ∞
0

[
1

λ
x−1e−x/λ

] [∫ x

0
ydy

]
dx

=

∫ ∞
0

[
1

λ
x−1e−x/λ

] [
y2

2

]x
0

dx

=

∫ ∞
0

[
1

λ
x−1e−x/λ

] [
x2

2

]
dx
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Solution (using joint density function)

E (Y ) =
1

2λ

∫ ∞
0

xe−x/λdx

=
1

2λ

∫ ∞
0

x2−1e−x/λdx (multiplying by ”one”)

=
λ2Γ(2)

2λ

∫ ∞
0

1

λ2Γ(2)
x2−1e−x/λdx

=
λ

2
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Solution (using joint density function)

By definition (5.9),

E (Y 2) =

∫ ∞
−∞

∫ ∞
−∞

y2f (x , y)dydx

=

∫ ∞
0

∫ x

0
y2

[
1

λ
x−1e−x/λ

]
dydx

=

∫ ∞
0

[
1

λ
x−1e−x/λ

] [∫ x

0
y2dy

]
dx

=

∫ ∞
0

[
1

λ
x−1e−x/λ

] [
y3

3

]x
0

dx

=

∫ ∞
0

[
1

λ
x−1e−x/λ

] [
x3

3

]
dx
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Solution (using joint density function)

E (Y 2) =
1

3λ

∫ ∞
0

x2e−x/λdx

=
1

3λ

∫ ∞
0

x3−1e−x/λdx (multiplying by ”one”)

=
λ3Γ(3)

3λ

∫ ∞
0

1

λ3Γ(3)
x3−1e−x/λdx

=
2

3
λ2
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Solution (using joint density function)

Using the fact that V (Y ) = E (Y 2)− [E (Y )]2.

V (Y ) =
2

3
λ2 −

[
λ

2

]2

=
2

3
λ2 − 1

4
λ2

=
5

12
λ2
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Solution (using theorems)

Recalling that E (Y ) = E [E (Y |X )] and using the fact that Y given
X = x has a uniform probability distribution on the interval [0, x ],
we have

E (Y ) = E [E (Y |X )]

= E

[
X

2

]
(from our table, for instance)

=
1

2
E [X ]

=
λ

2
(from our table, again)
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Solution (using theorems)

Recalling that V (Y ) = E [V (Y |X )] + V [E (Y |X )] and using the
fact that Y given X = x has a uniform probability distribution on
the interval [0, x ], we have

V (Y ) = E [V (Y |X )] + V [E (Y |X )]

= E

[
X 2

12

]
+ V

[
X

2

]
(from our table)

=
1

12
E [X 2] +

1

4
V [X ]
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Solution (using theorems)

V (X ) = E [X 2]− [E (X )]2, Right? Then,
E [X 2] = V (X ) + [E (X )]2. Using this fact, we have

V (Y ) =
1

12
E [X 2] +

1

4
V [X ] (from our table)

=
1

12
[λ2 + λ2] +

1

4
λ2

=
5

12
λ2.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I


