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My momma always said: ”Life was like a box of chocolates. You
never know what you’re gonna get.”

Forrest Gump.
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Exercise 4.1

Let X be a random variable with p(x) given in the table below.

x 1 2 3 4

p(x) 0.4 0.3 0.2 0.1

a) Find an expression for the function F (x) = P(X ≤ x).
b) Sketch the function given in part a).
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Solution

If x < 1, then
F (x) = P(X ≤ x) = 0 because X does not assume values that are
less than 1.

If 1 ≤ x < 2, then
F (x) = P(X ≤ x) = P(X = 1) = 0.4.
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Solution

If 2 ≤ x < 3, then
F (x) = P(X ≤ x) = P(X = 1) + P(X = 2)

= 0.4 + 0.3 = 0.7.

If 3 ≤ x < 4, then
F (x) = P(X ≤ x) = P(X = 1) + P(X = 2) + P(X = 3)

= 0.4 + 0.3 + 0.2 = 0.9.

If 4 ≤ x <∞, then
F (x) = P(X ≤ x)

= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)
= 0.4 + 0.3 + 0.2 + 0.1 = 1.
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Solution
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Definition 4.1

Let Y denote any random variable. The distribution function (or
cumulative distribution function ) of Y , denoted by F (y), is
such that F (y) = P(Y ≤ y) for −∞ < y <∞.
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Theorem 4.1

Properties of a Distribution Function1. If F (y) is a distribution
function, then
1. limy→−∞ F (y) = 0.
2. limy→∞ F (y) = 1.
3. F (y) is a nondecreasing function of y .[If y1 and y2 are any
values such that y1 < y2, then F (y1) ≤ F (y2).]

1 To be mathematically rigorous, if F (y) is a valid distribution
function, then F (y) also must be right continuous.
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Definition 4.2

A random variable Y with distribution function F (y) is said to be
continuous if F (y) is continuous, for −∞ < y <∞.
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Definition 4.3

Let F (y) be the distribution function for a continuous random
variable Y . Then f (y), given by

f (y) =
dF (y)

dy
= F

′
(y)

wherever the derivative exists, is called the probability density
function for the random variable Y .
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Theorem 4.2

Properties of a Density Function. If f (y) is a density function for a
continuous random variable, then
1. f (y) ≥ 0 for all y , −∞ < y <∞.

2.
∫∞
−∞ f (y)dy = 1.
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Exercise 4.11

Suppose that Y possesses the density function

f (y) =

{
cy , 0 ≤ y ≤ 2,
0 elsewhere.

a. Find the value of c that makes f (y) a probability density
function.
b. Find F (y).
c. Graph f (y) and F (y).
d. Use F (y) to find P(1 ≤ Y ≤ 2).
e. Use f (y) and geometry to find P(1 ≤ Y ≤ 2).
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Solution a)

∫ 0
−∞ 0dy +

∫ 2
0 cydy +

∫∞
2 0dy = 1∫ 2

0 cydy = 1

c
∫ 2

0 ydy = 1∫ 2
0 ydy = 1

c
22

2 −
02

2 = 1
c

4
2 = 1

c
Therefore, c = 1

2
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Solution b)

If y < 0, then F (y) = 0.

If 0 ≤ y < 2, then

F (y) = P(Y ≤ y) =
∫ y

0
t
2dt = 1

2

∫ y
0 tdt = y2

4 .

If y ≥ 2, then F (y) = 1.
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Solution c)
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Solution c)
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Solution d)

P(1 ≤ Y ≤ 2) = P(Y ≤ 2)− P(Y < 1)
Since Y is a continuous random variable P(Y < 1) = P(Y ≤ 1)

= P(Y ≤ 2)− P(Y ≤ 1)
= F (2)− F (1)

= 1− 12

4 = 3
4 .
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Exercise 4.19

Let the distribution function of a random variable Y be

F (y) =


0, y ≤ 0,
y
8 , 0 < y < 2,
y2

16 , 2 ≤ y < 4,
1, y ≥ 4.
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Exercise 4.19

a. Find the density function of Y .
b. Find P(1 ≤ Y ≤ 3).
c. Find P(Y ≥ 1.5).
d. Find P(Y ≥ 1|Y ≤ 3).
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Solution a)

f (y) =


0, y ≤ 0,
1
8 , 0 < y < 2,
y
8 , 2 ≤ y < 4,
0, y ≥ 4.
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Solution b)

P(1 ≤ Y ≤ 3) = P(Y ≤ 3)− P(Y < 1)
= P(Y ≤ 3)− P(Y ≤ 1)
= F (3)− F (1)

= 32

16 −
1
8 = 7

16 .
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Solution c) and d)

P(Y ≥ 1.5) = 1− P(Y < 1.5)
(Y is a continuous random variable)

= 1− P(Y ≤ 1.5)
= 1− 1.5

8 = 13
16

P(Y ≥ 1|Y ≤ 3) = P(1≤Y≤3)
P(Y≤3) = 7/16

9/16 = 7
9 .
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Definition 4.5

The expected value of a continuous random variable Y is

E (Y ) =

∫ ∞
−∞

yf (y)dy ,

provided that the integral exists.
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Theorem 4.4

Let g(Y ) be a function of Y ; then the expected value of g(Y ) is
given by

E [g(Y )] =

∫ ∞
−∞

g(y)f (y)dy ,

provided that the integral exists.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Theorem 4.5

Let c be a constant and let g(Y ), g1(y), g2(y), . . . , gk(y) be
functions of a continuous random variable Y . Then the following
results hold:
1. E (c) = c .
2. E [cg(Y )] = cE [g(Y )].
3. E [g1(Y ) + g2(Y ) + ...+ gk(Y )] =
E [g1(Y )] + E [g2(Y )] + ...+ E [gk(Y )].
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Exercise 4.23

Prove Theorem 4.5.
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Proof

1. E (c) =
∫∞
−∞ cf (y)dy = c

∫∞
−∞ f (y)dy = c(1) = c

2. E [cg(Y )] =
∫∞
−∞ cg(y)f (y)dy

= c
∫∞
−∞ g(y)f (y)dy = cE [g(Y )]

3. E [g1(Y ) + ...+ gk(Y )] =
∫∞
−∞[g1(y) + ...+ gk(y)]f (y)dy

=
∫∞
−∞ g1(y)f (y)dy + ...+

∫∞
−∞ gk(y)f (y)dy

= E [g1(Y )] + ...+ E [gk(Y )].
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Exercise 4.26

If Y is a continuous random variable with mean µ and variance σ2

and a and b are constants, use Theorem 4.5 to prove the following:
a. E (aY + b) = aE (Y ) + b.
b. V (aY + b) = a2V (Y ) = a2σ2.
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Proof a)

E (aY + b) = E (aY ) + E (b) (Theorem 4.5, part 3)
= aE (Y ) + b (Theorem 4.5, parts 1 and 2).
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Proof a)

(By definition of variance of aY + b)
V (aY + b) = E{[(aY + b)− (aE (Y ) + b)]2}

= E{[aY + b − aE (Y )− b]2}
= E{[aY − aE (Y )]2}
= E{a2[Y − E (Y )]2}
= a2E{[Y − E (Y )]2} (Theorem 4.5, part 2)
= a2V (Y ) (Definition of variance of Y )
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Definition 4.6

If θ1 < θ2, a random variable Y is said to have a continuous
uniform probability distribution on the interval (θ1, θ2) if and
only if the density function of Y is

f (y) =

{ 1
θ2−θ1

, θ1 ≤ y ≤ θ2,

0, elsewhere.
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Theorem 4.6

If θ1 < θ2 and Y is a random variable uniformly distributed on the
interval (θ1, θ2), then

µ = E (Y ) =
θ1 + θ2

2
and σ2 = V (Y ) =

(θ2 − θ1)2

12
.
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Proof

We will prove the result for E (Y ) and leave V (Y ) as an exercise.

E (Y ) =
∫ θ2

θ1
y
(

1
θ2−θ1

)
dy

=
(

1
θ2−θ1

) ∫ θ2

θ1
ydy

=
θ2

2−θ2
1

2(θ2−θ1)

= (θ2−θ1)(θ2+θ1)
2(θ2−θ1)

= θ2+θ1
2 .
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Exercise 4.41

A random variable Y has a uniform distribution over the interval
(θ1, θ2). Derive the variance of Y .
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Example

Delta Airlines quotes a flight time of 2 hours, 5 minutes for its
flights from Cincinnati to Tampa. Suppose we believe that actual
flight times are uniformly distributed between 2 hours and 2 hours,
20 minutes.
a. Show the graph of the probability density function for flight
time.
b. What is the probability that the flight will be no more than 5
minutes late?
c. What is the probability that the flight will be more than 10
minutes late?
d. What is the expected flight time?
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Solution a)

●

●

●

●

120 125 130 135 140

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Probability Density Function

x

f(x
)

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Solution b)
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Solution b)

X = flight time from Cincinnati to Tampa.

P(125 < X ≤ 130) =
∫ 130

125 f (x)dx

=
∫ 130

125
1

20dx = 5
20 = 1

4 = 0.25
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Solution c)
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Solution c)

X = flight time from Cincinnati to Tampa.

P(135 < X ≤ 140) =
∫ 140

135 f (x)dx

=
∫ 140

135
1

20dx = 5
20 = 1

4 = 0.25
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Solution d)

µ = E (Y ) =
θ1 + θ2

2

E (Y ) =
120 + 140

2
= 130 minutes.
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Definition 4.8

A random variable Y is said to have a normal probability
distribution if and only if, for σ > 0 and −∞ < µ <∞, the
density function of Y is

f (y) =
1√
2πσ

exp

[
−(y − µ)2

2σ2

]
, −∞ < y <∞.
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Normal Distributions

A Normal Distribution is described by a Normal density curve. Any
particular Normal distribution is completely specified by two
numbers, its mean µ and standard deviation σ.
The mean of a Normal distribution is at the center of the
symmetric Normal curve. The standard deviation is the distance
from the center to the change-of-curvature points on either side.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Standard Normal Distribution
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Two Different Standard Deviations
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Two Different Means
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Theorem 4.7

If Y is a Normally distributed random variable with parameters µ
and σ, then

E (Y ) = µ and V (Y ) = σ2.
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Result

If Z is a Normally distributed random variable with parameters
µ = 0 and σ = 1, then

E (Z ) = 0 and V (Z ) = 1.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Proof

By definition,

E (Z ) =

∫ ∞
−∞

zf (z)dz

=

∫ ∞
−∞

z

[
1√
2π

e−z
2/2

]
dz

=
1√
2π

∫ ∞
−∞

ze−z
2/2dz

=
1√
2π

[∫ 0

−∞
ze−z

2/2dz +

∫ ∞
0

ze−z
2/2dz

]
=

1√
2π

[∫ ∞
0

(−z)e−(−z)2/2dz +

∫ ∞
0

ze−z
2/2dz

]
=

1√
2π

[
−
∫ ∞

0
ze−z

2/2dz +

∫ ∞
0

ze−z
2/2dz

]
= 0
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Proof

We know that V (Z ) = E (Z 2)− [E (Z )]2 = E (Z 2).

E (Z 2) =

∫ ∞
−∞

z2f (z)dz

=

∫ ∞
−∞

z2

[
1√
2π

e−z
2/2

]
dz

=
1√
2π

limN→∞

∫ N

−N
z2e−z

2/2dz

=
1√
2π

limN→∞

∫ N

−N
z
[
ze−z

2/2
]
dz
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Proof

Integrating by parts, we get

E (Z 2) =
1√
2π

limN→∞

{
−ze−z2/2|N−N +

∫ N

−N
e−z

2/2dz

}
=

1√
2π

∫ ∞
−∞

e−z
2/2dz = 1.
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Standard Normal Distribution

The standard Normal distribution is the Normal distribution
N(0, 1) with mean 0 and standard deviation 1.
If a variable Y has any Normal distribution N(µ,σ) with mean µ
and standard deviation σ, then the standardized variable

Z =
Y − µ
σ

has the standard Normal distribution.
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Using the Normal table

Use table 4 to find the proportion of observations from a standard
Normal distribution that satisfies each of the following statements.
In each case, sketch a standard Normal curve and shade the area
under the curve that is the answer to the question.
a) Z < −1.42
b) Z > −1.42
c) Z < 2.35
d) −1.42 < Z < 2.35
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Solution a) 0.0778
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Solution b) 0.9222
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Solution c) 0.9906
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Solution d) 0.9906 - 0.0778 = 0.9128
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Monsoon rains

The summer monsoon rains in India follow approximately a Normal
distribution with mean 852 mm of rainfall and standard deviation
82 mm.
a) In the drought year 1987, 697 mm of rain fell. In what percent
of all years will India have 697 mm or less of monsoon rain?
b) ”Normal rainfall” means within 20% of the long-term average,
or between 683 and 1022 mm. In what percent of all years is the
rainfall ”normal”?
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Solution a)

1. State the problem. Let X be the monsoon rainfall in a given
year. The variable X has the N(852, 82) distribution. We want the
proportion of years with X ≤ 697.
2. Standardize. Subtract the mean, then divide by the standard
deviation, to turn X into a standard Normal Z .
Hence X ≤ 697 corresponds to Z ≤ 697−852

82 = −1.89.
3. Use the table. From Table 4, we see that the proportion of
observations less than −1.89 is 0.0294. Thus, the answer is 2.94%.
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Solution b)

1. State the problem. Let X be the monsoon rainfall in a given
year. The variable X has the N(852, 82) distribution. We want the
proportion of years with 683 < X < 1022.
2. Standardize. Subtract the mean, then divide by the standard
deviation, to turn X into a standard Normal Z .
683 < X < 1022 corresponds to 683−852

82 < Z < 1022−852
82 , or

−2.06 < Z < 2.07.
3. Use the table. Hence, using Table 4, the area is
0.9808− 0.0197 = 96.11%.
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The Medical College Admission Test

Almost all medical schools in the United States require students to
take the Medical College Admission Test (MCAT). The exam is
composed of three multiple-choice sections (Physical Sciences,
Verbal Reasoning, and Biological Sciences). The score on each
section is converted to a 15-point scale so that the total score has
a maximum value of 45. The total scores follow a Normal
distribution, and in 2010 the mean was 25.0 with a standard
deviation of 6.4. There is little change in the distribution of scores
from year to year.
a) What proportion of students taking the MCAT had a score over
30?
b) What proportion had scores between 20 and 25?
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Solution a)

1. State the problem. Let X be the MCAT score of a randomly
selected student. The variable X has the N(25, 6.4) distribution.
We want the proportion of students with X > 30.
2. Standardize. Subtract the mean, then divide by the standard
deviation, to turn X into a standard Normal Z .
Hence X > 30 corresponds to Z > 30−25

6.4 = 0.78.
3. Use the table. From Table 4, we see that the proportion of
observations greater than 0.78 is 0.2177. Hence, the answer is
21.77%.
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Solution b)

1. State the problem. Let X be the MCAT score of a randomly
selected student. The variable X has the N(25, 6.4) distribution.
We want the proportion of students with 20 ≤ X ≤ 25.
2. Standardize. Subtract the mean, then divide by the standard
deviation, to turn X into a standard Normal Z .
20 ≤ X ≤ 25 corresponds to 20−25

6.4 ≤ Z ≤ 25−25
6.4 , or

−0.78 ≤ Z ≤ 0.
3. Use the table. Using Table 4, the area is 0.5− 0.2177 = 0.2833,
or 28.33%.
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Using a table to find Normal proportions

Step 1. State the problem in terms of the observed variable X .
Draw a picture that shows the proportion you want in terms of
cumulative proportions.
Step 2. Standardize X to restate the problem in terms of a
standard Normal variable Z .
Step 3. Use Table 4 and the fact that the total are under the curve
is 1 to find the required area under the standard Normal curve.
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Example

A person must score in the upper 2% of the population on an IQ
test to qualify for membership in MENSA, the international
high-IQ society. If IQ scores are Normally distributed with a mean
of 100 and a standard deviation of 15, what score must a person
have to qualify for MENSA?
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Solution

1. State the problem. Let X = IQ score of a randomly selected
person. We want to find the IQ score x∗ with area 0.02 to its right
under the Normal curve with mean µ = 100 and standard deviation
σ = 15. Because our table gives the areas to the right of z-values,
always state the problem in terms of the area to the right of x∗.
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Solution

2. Use the table. Look in the body of our table for the entry closest
to 0.02. It is 0.0202. This is the entry corresponding to z∗ = 2.05.
So z∗ = 2.05 is the standardized value with area 0.02 to its right.
3. Unstandardize to transform the solution from Z back to the
original X scale. We know that the standardized value of the
unknown x∗ is z∗ = 2.05. So x∗ itself satisfies:
x∗−100

15 = 2.05. Solving this equation for x gives:
x∗ = 100 + (2.05)(15) = 130.75. We see that a person must score
at least 130.75 to place in the highest 2%.
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Recall that the Poisson distribution is used to compute the
probability of specific numbers of ”events” during a particular
period of time or space. In many applications, the time period or
span of space is the random variable. Don’t forget that a Poisson
distribution has a single parameter λ, where λ may be interpreted
as the mean number of events per unit ”time”. Consider now the
random variable described by the time required for the first event
to occur. Using the Poisson distribution, we find the probability of
no events occurring in the span up to time t is given by

e−λt(λt)0

0!
= e−λt .

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Note that probability of at least one event occurring in the span
up to time t is 1− e−λt .
We can now make use of the above and let X be the time to the
first Poisson event. The probability that the length of time until
the first event will be less than or equal to x is the same as the
probability that at least one Poisson event will occur in x . This
probability is given by 1− e−λx . As a result,

P(X ≤ x) = 1− e−λx .
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Thus the cumulative distribution function for X is given by

F (x) = P(X ≤ x) = 1− e−λx , x > 0.

We may differentiate the cumulative distribution function above to
obtain the density function

f (x) = λe−λx .

which is the density function of the exponential distribution with
λ = 1

β .
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Definition 4.11

A random variable Y is said to have an exponential distribution
with parameter β > 0 if and only if the density function of Y is

f (y) =

{ 1
β e
−y/β, 0 ≤ y <∞,

0, elsewhere.
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Theorem 4.10

If Y is an exponential random variable with parameter β, then

µ = E (Y ) = β and σ2 = V (Y ) = β2.
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Exercise 4.89

If Y has an exponential distribution and P(Y > 2) = 0.0821, what
is
a. β = E (Y ).
b. P(Y ≤ 1.7) ?
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Solution a)

P(Y > 2) = 0.0821∫∞
2

1
β e
−y/βdy = e−2/β

e−2/β = 0.0821 (solving for β)
β = −2

ln(0.0821) ≈ 0.8

E (Y ) = 0.8
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Solution b)

P(Y ≤ 1.7) =
∫ 1.7

0
1

0.8e
−y/0.8dy = 1− e−1.7/0.8 = 0.8805
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Exercise 4.91

The operator of a pumping station has observed that demand for
water during early afternoon hours has an approximately
exponential distribution with mean 100 cfs (cubic feet per second).
a. Find the probability that the demand will exceed 200 cfs during
the early afternoon on a randomly selected day.
b. What water-pumping capacity should the station maintain
during early afternoon so that the probability that demand will
exceed capacity on a randomly selected day is only 0.01?
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Solution

a. P(Y > 200) = 1− P(Y ≤ 200)
= 1− [1− e−200/100] = e−2 ≈ 0.1353.

b. P(Y ≤ c∗) = 0.99
1− e−c∗/100 = 0.99
Solving for c∗ gives us
c∗ = −100ln(0.01) = 460.517 cfs.
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Definition 4.9

A random variable Y is said to have a Gamma distribution with
parameters α > 0 and β > 0 if and only if the density function of
Y is

f (y) =

{
yα−1

βαΓ(α)e
−y/β, 0 ≤ y <∞,

0, elsewhere.

where Γ(α) =
∫∞

0 yα−1e−ydy .

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

f(
y)

alpha=1, beta=1
alpha=2, beta=1
alpha=4, beta=1

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Gamma Function

The quantity Γ(α) is known as the gamma function. Direct
integration will verify that Γ(1) = 1. Integration by parts will verify
that Γ(α) = (α− 1)Γ(α− 1) for any α > 1 and that
Γ(n) = (n − 1)!, provided that n is an integer.
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Gamma Function

The gamma function is defined by

Γ(α) =

∫ ∞
0

yα−1e−ydy

for α > 0.

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Gamma Function

Integrating by parts with u = yα−1 and dv = e−ydy , we obtain

Γ(α) = −e−yyα−1|∞0 +

∫ ∞
0

e−y (α− 1)yα−2dy

= (α− 1)

∫ ∞
0

yα−2e−ydy

for α > 1, which yields the recursion formula

Γ(α) = (α− 1)Γ(α− 1).
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Theorem 4.8

If Y has a Gamma distribution with parameters α and β, then

µ = E (Y ) = αβ and σ2 = V (Y ) = αβ2.
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Proof

E (Y ) =
∫∞

0 y yα−1

βαΓ(α)e
−y/βdy

=
∫∞

0
y (α+1)−1

βαΓ(α) e
−y/βdy

= βα+1Γ(α+1)
βαΓ(α)

∫∞
0

y (α+1)−1

β(α+1)Γ(α+1)
e−y/βdy

Note that the last integral equals one (we are integrating the pdf
of a Gamma random variable with parameters α + 1 and β, over
its entire domain).

= βα+1Γ(α+1)
βαΓ(α)

Since Γ(α + 1) = αΓ(α), we finally have that

E (Y ) = βαΓ(α)
Γ(α) = αβ.

Finding V (Y ) is left as an exercise.
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Definition 4.10

Let ν be a positive integer. A random variable Y is said to have a
chi-square distribution with ν degrees of freedom if and only if Y
is a Gamma-distributed random variable with parameters α = ν

2
and β = 2.
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Exercise 4.96

Suppose that a random variable Y has a probability density
function given by

f (y) =

{
ky3e−y/2, 0 < y <∞,
0, elsewhere.
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Exercise 4.96 (cont.)

a. Find the value of k that makes f (y) a density function.
b. Does Y have a χ2 distribution? If so, how many degrees of
freedom?
c. What are the mean and standard deviation of Y ?
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Solution a)

If we compare f (y) to the pdf of a Gamma random variable, it is
clear that Y has a Gamma distribution with parameters α = 4 and
β = 2. Therefore,
k = 1

βαΓ(α) = 1
24Γ(4)

= 1
(16)(3!) = 1

96 .
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Solution b)

Using the definition of a chi-square random variable and part a)
α = ν

2 = 4 and β = 2. Therefore, ν = 8 and Y has a chi-square
distribution with 8 degrees of freedom.
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Solution c)

From our Table (or from Theorem 4.8),

E (Y ) = αβ = (4)(2) = 8.

V (Y ) = αβ2 = (4)(2)2 = 16.

σ =
√

V (Y ) =
√

16 = 4.
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Definition 4.12

A random variable Y is said to have a beta probability
distribution with parameters α > 0 and β > 0 if and only if the
density function of Y is

f (y) =

{
Γ(α+β)

Γ(α)Γ(β)y
α−1(1− y)β−1, 0 ≤ y ≤ 1,

0, elsewhere.
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Theorem 4.11

If Y is a beta-distributed random variable with parameters α > 0
and β > 0, then

µ = E (Y ) =
α

α + β
and σ2 = V (Y ) =

αβ

(α + β)2(α + β + 1)
.
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Proof

E (Y ) =
∫ 1

0 y Γ(α+β)
Γ(α)Γ(β)y

α−1(1− y)β−1dy

= Γ(α+β)
Γ(α)Γ(β)

∫ 1
0 y (α+1)−1(1− y)β−1dy

= Γ(α+β)Γ(α+1)Γ(β)
Γ(α)Γ(β)Γ(α+β+1)

∫ 1
0

Γ(α+β+1)
Γ(α+1)Γ(β)y

(α+1)−1(1− y)β−1dy

Note that the last integral equals 1 (we are integrating the pdf of a
Beta random variable with parameters α + 1 and β over its entire
domain).

= Γ(α+β)Γ(α+1)Γ(β)
Γ(α)Γ(β)Γ(α+β+1)

Since Γ(α + β + 1) = (α + β)Γ(α + β) and Γ(α + 1) = αΓ(α)

E (Y ) = Γ(α+β)αΓ(α)Γ(β)
Γ(α)Γ(β)(α+β)Γ(α+β) = α

α+β .

Finding V (Y ) is left as an exercise.
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Exercise 4.123

The relative humidity Y , when measured at a location, has a
probability density function given by

f (y) =

{
ky3(1− y)2, 0 ≤ y ≤ 1,
0, elsewhere.
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Exercise 4.123

a. Find the value of k that makes f (y) a density function.
b. Find E (Y ).
c. Find V (Y ).
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Solution a)

If we compare f (y) to the pdf of a Beta random variable, it is clear
that Y has a Beta distribution with parameters α = 4 and β = 3,
then
k = Γ(α+β)

Γ(α)Γ(β) = Γ(7)
Γ(4)Γ(3) = 6!

3!2! = 60.
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Solution b) and c)

b. E (Y ) = α
α+β = 4

7 .

c. V (Y ) = αβ
(α+β)2(α+β+1)

= 12
(49)(8) = 3

98 .
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Exercise 4.127

Verify that if Y has a beta distribution with α = β = 1, then Y has
a uniform distribution over (0, 1). That is, the uniform distribution
over the interval (0, 1) is a special case of a beta distribution.

Solution.
Easy! Right?
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Exercise 4.131

Errors in measuring the time of arrival of a wave front from an
acoustic source sometimes have an approximate beta distribution.
Suppose that these errors, measured in microseconds, have
approximately a beta distribution with α = 1 and β = 2.
a. What is the probability that the measurement error in a
randomly selected instance is less that 0.5 µs?
b. Give the mean and standard deviation of the measurement
errors.
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Solution

Let Y = error in measuring the time of arrival of a wave front
from an acoustic source. Since Y has a Beta distribution with
parameters α = 1 and β = 2, f (y) is given by

f (y) =
Γ(3)

Γ(1)Γ(2)
y1−1(1− y)2−1 = 2(1− y), 0 ≤ y ≤ 1.
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Solution a)

P(Y < 0.5) =
∫ 0.5

0 2(1− y)dy = 2
∫ 0.5

0 dy − 2
∫ 0.5

0 ydy

= 2(0.5)− 2 y2

2 |
0.5
0

= 1− (0.5)2 = 1− 1
4 = 3

4 .
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Solution b)

Using our Table (or Theorem 4.11),

E (Y ) =
α

α + β
=

1

3

V (Y ) =
αβ

(α + β)2(α + β + 1)
=

(1)(2)

(3)2(3 + 1)
=

1

18

σ =
√
V (Y ) =

1√
18
.
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Definition 4.14

If Y is a continuous random variable, then the
moment-generating function of Y is given by

MY (t) = E (etY ).

The moment-generating function is said to exist if there exists a
constant b > 0 such that MY (t) is finite for |t| ≤ b.
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Theorem 4.12

Let Y be a random variable with density function f (y) and g(Y )
be a function of Y . Then the moment-generating function for
g(Y ) is

E [etg(Y )] =

∫ ∞
−∞

etg(y)f (y)dy .
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Example

Let g(Y ) = Y − µ, where Y is a Normally distributed random
variable with mean µ and variance σ2.
a. Find the moment-generating function for g(Y ).
b. Differentiate the moment-generating function found in part a)
to find E [g(Y )] and V [g(Y )].
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Solution a)

Let W = Y − µ.
MW (t) = E [etW ]

= E [e(Y−µ)t ]
= E [eYte−µt ]
= e−µtE [eYt ]
= e−µtMY (t)

From our Table, MY (t) = eµt+(t2σ2)/2.

Finally, MW (t) = e(t2σ2)/2.
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Solution b)

From part a), it is clear that MW (t) corresponds to the MGF of a
Normal random variable with mean 0 and variance σ2. Therefore,
W has a Normal distribution with mean 0 and variance σ2. Verify
this by doing the following:
E (W ) = M

′
W (0) and

V (W ) = E (W 2)− [E (W )]2 = M
′′
W (0)− [M

′
W (0)]2.

(recall that you are taking derivatives with respect to t).
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Exercise 4.139

Let Y be a Normally distributed random variable with mean µ and
variance σ2. Derive the moment-generating function of
X = −3Y + 4. What is the distribution of X? Why?
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Markov’s Inequality

If X is a random variable that takes only nonnegative values, then
for any value a > 0,

P[X ≥ a] ≤ E (X )

a
.
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Proof

We give a proof for the case where X is continuous with density f :

E [X ] =

∫ ∞
0

xf (x)dx

=

∫ a

0
xf (x)dx +

∫ ∞
a

xf (x)dx

≥
∫ ∞
a

xf (x)dx

≥
∫ ∞
a

af (x)dx

= a

∫ ∞
a

f (x)dx

= aP[X ≥ a].
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Tchebysheff’s Theorem

Let Y be a random variable with finite mean µ and variance σ2.
Then, for any k > 0,

P(|Y − µ| < kσ) ≥ 1− 1

k2
or P(|Y − µ| ≥ kσ) ≤ 1

k2
.
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Proof

Since X = (Y − µ)2 is a nonnegative random variable, we can
apply Markov’s inequality (with a = k2σ2) to obtain

P{(Y − µ)2 ≥ k2σ2} ≤ E [(Y − µ)2]

k2σ2

But since (Y − µ)2 ≥ k2σ2 if and only if |Y − µ| ≥ kσ, the
preceding is equivalent to

P{|Y − µ| ≥ kσ} ≤ E [(Y − µ)2]

k2σ2
=

1

k2
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The 68-95-99.7 rule

In the Normal distribution with mean µ and standard deviation σ:
Approximately 68% of the observations fall within σ of the mean µ.
Approximately 95% of the observations fall within 2σ of µ.
Approximately 99.7% of the observations fall within 3σ of µ.
Note. The 68-95-99.7 rule is also know as the empirical rule.
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Example N(µ = 0, σ = 1)
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Example N(µ = 0, σ = 1)
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Exercise 4.150

1) Find P(|X − µ| ≤ 2σ) for an exponential random variable with
mean β.
2) Compare the result in 1) to the empirical rule result.
3) Compare the result in 1) to Tchebysheff’s result.
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Solution 1)

First, let us find the CDF of X . By definition, if k > 0
F (k) = P(X ≤ k) =

∫ k
0

1
β e
−x/βdx = −

∫ k
0 −

1
β e
−x/βdx

F (k) = −
[
e−k/β − e0

]
= 1− e−k/β.

We want to find the following probability
P(|X − µ| ≤ 2σ) = P(−2σ ≤ X − µ ≤ 2σ)

= P(µ− 2σ ≤ X ≤ µ+ 2σ).
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Solution 1) (cont.)

Since µ = β and σ2 = β2, we have that
P(|X − µ| ≤ 2σ) = P(µ− 2σ ≤ X ≤ µ+ 2σ)

= P(β − 2β ≤ X ≤ β + 2β).
= P(−β ≤ X ≤ 3β)
= P(0 ≤ X ≤ 3β)
= F (3β) = 1− e−3β/β

= 1− e−3 = 0.950213.
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Solution 2)

µ − 2σ µ + 2σ0.95
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Solution 3)

P(|X − µ| < 2σ) ≥ 1− 1
22

P(|X − µ| < 2σ) ≥ 1− 1
4

P(|X − µ| < 2σ) ≥ 1− 1
4 = 0.75
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