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My momma always said: ”Life was like a box of chocolates. You
never know what you’re gonna get.”

Forrest Gump.
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Definition 3.1

A random variable Y is said to be discrete if it can assume only a
finite or countably infinite number of distinct values.

Note. Recall that a set of elements is countably infinite if the
elements in the set can be put into one-to-one correspondence
with the positive integers.
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Definition 3.2

The probability that Y takes on the value y , P(Y = y), is defined
as the sum of probabilities of all sample point in S that are
assigned the value y . We will sometimes denote P(Y = y) by
p(y).
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Definition 3.3

The probability distribution for a discrete variable Y can be
represented by a formula, a table, or a graph that provides
p(y) = P(Y = y) for all y .
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Theorem 3.1

For any discrete probability distribution, the following must be true:
1. 0 ≤ p(y) ≤ 1 for all y .
2.
∑

y p(y) = 1, where the summation is over all values of y with
nonzero probability.
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Example

A couple plans to have three children. There are 8 possible
arrangements of girls and boys. For example, GGB means the first
two children are girls and the third child is a boy. All 8
arrangements are (approximately) equally likely.
a. Write down all 8 arrangements of the sexes of three children.
What is the probability of any one of these arrangements?
b. Let X be the number of girls the couple has. What is the
probability that X = 2?
c. Starting from your work in (a), find the distribution of X . That
is, what values can X take, and what are the probabilities for each
value?
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Solution

a. Sample space = S = {(G,G,G), (G,G,B), (G,B,G), (G,B,B),
(B,G,G), (B,G,B), (B,B,G), (B,B,B)}.
Probability of any of these arrangements = 1

8 .

b. P(X = 2) = P(G ,G ,B) + P(G ,B,G ) + P(B,G ,G ) = 3
8 .

c. P(X = 0) = 1
8 , P(X = 1) = 3

8 ,

P(X = 2) = 3
8 , P(X = 3) = 1

8
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Exercises 3.3

A group of four components is known to contain two defectives.
An inspector tests the components one at a time until the two
defectives are located. Once she locates the two defectives, she
stops testing, but the second defective is tested to ensure accuracy.
Let Y denote the number of the test on which the second
defective is found. Find the probability distribution for Y .
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Solution

Let Di = { the i-th component tested is defective } and
Ni = { the i-th is Nondefective}.
P(Y = 2) = P(D1 ∩ D2) = P(D2|D1)P(D1) = (1/3)(1/2) = 1/6.

P(Y = 3) = P(D1 ∩ N2 ∩ D3) + P(N1 ∩ D2 ∩ D3)
= P(D3|D1 ∩ N2)P(D1 ∩ N2) + P(D3|N1 ∩ D2)P(N1 ∩ D2)

= P(D3|D1 ∩N2)P(N2|D1)P(D1) +P(D3|N1 ∩D2)P(D2|N1)P(N1)
= (1/2)(2/3)(1/2) + (1/2)(2/3)(1/2) = (1/6) + (1/6) = 2/6.
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Solution

P(Y = 4) =
P(N1∩N2∩D3∩D4)+P(N1∩D2∩N3∩D4)+P(D1∩N2∩N3∩D4)
Let’s find P(N1 ∩ N2 ∩ D3 ∩ D4).
P(N1 ∩ N2 ∩ D3 ∩ D4) =
P(D4|N1 ∩ N2 ∩ D3)P(D3|N1 ∩ N2)P(N2|N1)P(N1).
From the last equation, we have that
P(N1 ∩ N2 ∩ D3 ∩ D4) = (1)(1)(1/3)(1/2) = 1/6
Doing something similar with P(N1 ∩ D2 ∩ N3 ∩ D4) and
P(D1 ∩ N2 ∩ N3 ∩ D4), we have that:

P(Y = 4) = 3/6.
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Exercise 3.9

In order to verify the accuracy of their financial accounts,
companies use auditors on a regular basis to verify accounting
entries. The company’s employees make erroneous entries 5% of
the time. Suppose that an auditor randomly checks three entries.
(Assume independence)
a. Find the probability distribution for Y , the number of errors
detected by the auditor.
b. Construct a graph for p(y).
c. Find the probability that the auditor will detect more than one
error.
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Solution

Let E denote an error on a single entry and let N denote no error.
There are 8 sample points: {(E,E,E), (E,E,N), (E,N,E), (E,N,N),
(N,E,E), (N,E,N), (N,N,E), (N,N,N)}.
We also have that P(E ) = 0.05 and P(N) = 0.95. Then
P(Y = 0) = (0.95)3 = 0.857375
P(Y = 1) = 3(0.05)(0.95)2 = 0.135375
P(Y = 2) = 3(0.05)2(0.95) = 0.007125
P(Y = 3) = (0.05)3 = 0.000125.
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Solution b)
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Solution c)

P(Y > 1) = P(Y = 2) + P(Y = 3)

= 0.007125 + 0.000125 = 0.00725.
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Definition 3.4

Let Y be a discrete random variable with the probability function
p(y). Then the expected value of Y , E (Y ), is defined to be

E (Y ) =
∑

all values of y

yp(y).
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Exercise 3.22*

A single fair die is tossed once. Let Y be the number facing up.
Find
a) the expected value of Y ,
b) the expected value of W = 3Y ,
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Solution a)

By definition,
E (Y ) =

∑6
y=1 yP(Y = y)

= 1
(
1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)
E (Y ) =

(
1
6

)
(1 + 2 + 3 + 4 + 5 + 6) = 21

6 = 3.5
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Solution b)

By definition,
E (W ) =

∑
all ws wP(W = w)

= 3
(
1
6

)
+ 6

(
1
6

)
+ 9

(
1
6

)
+ 12

(
1
6

)
+ 15

(
1
6

)
+ 18

(
1
6

)
= 3[1

(
1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)
]

E (W ) = 3[3.5] = 3E (Y )
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Example

The probability distribution for a random variable Y is given
below. Find the expected value of Y and W = Y 2.

y p(y)

-2 1/5
-1 1/5
0 1/5
1 1/5
2 1/5
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Solution

By definition
E (Y ) = (−2)p(−2) + (−1)p(−1) + (0)p(0) + (1)p(1) + 2p(2)

=
(
1
5

)
(−2− 1 + 0 + 1 + 2) = 0
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Solution

Note that the probability distribution of W is given by:

w p(w)

0 1/5
1 1/5 + 1/5 = 2/5
4 1/5 + 1/5 = 2/5
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Solution

By definition

E (W ) = (0)P(W = 0) + (1)P(W = 1) + (4)P(W = 4)

= 0 + 2/5 + 8/5 = 10/5 = 2

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Solution

Now, let us rewrite this in terms of Y
E (W ) = (0)[P(Y = 0)] + (1)[P(Y = −1) + P(Y = 1)]

+ (4)[P(Y = −2) + P(Y = 2)]

E (W ) = (0)P(Y = 0) + (1)P(Y = −1) + (1)P(Y = 1)
+ (4)P(Y = −2) + (4)P(Y = 2)

E (W ) = (0)P(Y = 0) + (−1)2P(Y = −1) + (1)2P(Y = 1)
+ (−2)2P(Y = −2) + (2)2P(Y = 2)

E (W ) =
∑2

y=−2 y
2P(Y = y)

E (Y 2) =
∑2

y=−2 y
2P(Y = y)
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Theorem 3.2

Let Y be a discrete random variable with probability function p(y)
and g(Y ) be a real-valued function of Y . Then the expected value
of g(Y ) is given by

E [g(Y )] =
∑
all y

g(y)p(y).
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Proof

We prove the result in the case where the random variable Y takes
on the finite number of values y1, y2, ..., yn. Because the function
g(y) may not be one-to-one, suppose that g(Y ) takes on values
g1, g2, ..., gm (where m ≤ n). It follows that g(Y ) is a random
variable such that for i = 1, 2, ...,m,

P[g(Y ) = gi ] =
∑

g(yj )=gi

p(yj) = p∗(gi ).
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Proof

Thus, by Definition 3.4,
E [g(Y )] =

∑m
i=1 gip

∗(gi )

=
∑m

i=1 gi

{∑
g(yj )=gi

p(yj)
}

=
∑m

i=1

∑
g(yj )=gi

gip(yj)

=
∑n

j=1 g(yj)p(yj).
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Definition 3.5

If Y is a random variable with mean E (Y ) = µ, the variance of a
random variable Y is defined to be the expected value of
(Y − µ)2. That is,

V (Y ) = E [(Y − µ)2].

The standard deviation of Y is the positive square root of V (Y ).
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Theorem 3.3

Let Y be a discrete random variable with probability function p(y)
and c be a constant. Then E (c) = c .

Proof.
Easy! Let g(Y ) = c and apply Theorem 3.2.
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Theorem 3.4

Let Y be a discrete random variable with probability function p(y),
g(Y ) be a function of Y , and c be a constant. Then

E [cg(Y )] = cE [g(Y )].

Proof.
Easy! Apply Theorem 3.2.
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Theorem 3.5

Let Y be a discrete random variable with probability function p(y)
and g1(Y ), g2(Y ), . . . , gk(Y ) be k functions of Y . Then

E [g1(Y )+g2(Y )+...+gk(Y )] = E [g1(Y )]+E [g2(Y )]+...+E [gk(Y )].
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Proof

We will demonstrate the proof only for the case k = 2, but
analogous steps will hold for any k . By Theorem 3.2
E [g1(Y ) + g2(Y )] =

∑
y [g1(y) + g2(y)]p(y)

=
∑

y g1(y)p(y) +
∑

y g2(y)p(y)
= E [g1(y)] + E [g2(y)].
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Theorem 3.6

Let Y be a discrete random variable with probability function p(y)
and mean E (Y ) = µ; then

V (Y ) = σ2 = E [(Y − µ)2] = E (Y 2)− µ2.

or

V (Y ) = E (Y 2)− [E (Y )]2.
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Proof

V (Y ) = E [(Y − µ)2] = E [Y 2 − 2Yµ+ µ2]

V (Y ) = E (Y 2)− E (2Yµ) + E (µ2) (by Theorem 3.5)

V (Y ) = E (Y 2)− 2µE (Y ) + µ2 (Noting that µ is a constant)

V (Y ) = E (Y 2)− 2µ2 + µ2

V (Y ) = E (Y 2)− µ2 = E (Y 2)− [E (Y )]2
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Example

The probability distribution for a random variable Y is given
below. Find V (Y ).

y p(y)

-2 1/5
-1 1/5
0 1/5
1 1/5
2 1/5
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Solution

From what we did above, we know that E (Y ) = 0 and E (Y 2) = 2.
Now, recalling that V (Y ) = E (Y 2)− [E (Y )]2, we have that:

V (Y ) = 2− 02 = 2.
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Graph
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Example

The probability distribution for a random variable W is given
below. Find V (W ).

w p(w)

-3 1/7
-2 1/7
-1 1/7
0 1/7
1 1/7
2 1/7
3 1/7
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Solution

By definition,

E (W ) = (−3)

(
1

7

)
+ ...+ 0

(
1

7

)
+ ...+ 3

(
1

7

)
= 0.

By Theorem 3.2,

E (W 2) = (−3)2
(

1

7

)
+ ...+ 02

(
1

7

)
+ ...+ 32

(
1

7

)

E (W 2) =
1

7
(9 + 4 + 1 + 0 + 1 + 4 + 9) =

28

7
= 4.

V (W ) = 4− (0)2 = 4.
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Graph
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Variance and Standard Deviation

Consider two users. One receives either 8 or 12 e-mail messages
per day, with a 50-50% chance of each. The other receives either 0
or 20 e-mails, also with a 50-50% chance. Find the mean,
variance, and standard deviation of these two distributions.
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Solution

Y = number of emails received by user one.
E (Y ) = 8

(
1
2

)
+ 12

(
1
2

)
= 20

2 = 10.
E (Y 2) = 82

(
1
2

)
+ 122

(
1
2

)
= 64+144

2 = 208
2 = 104.

V (Y ) = E (Y 2)− [E (Y )]2 = 104− 100 = 4.
σY =

√
V (Y ) =

√
4 = 2.
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Solution

X = number of emails received by user two.
E (X ) = 0

(
1
2

)
+ 20

(
1
2

)
= 20

2 = 10.
E (X 2) = 02

(
1
2

)
+ 202

(
1
2

)
= 400

2 = 200.
V (X ) = E (X 2)− [E (X )]2 = 200− 100 = 100.
σX =

√
V (X ) =

√
100 = 10.
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Exercise 3.27

A potential customer for an $85,000 fire insurance policy possesses
a home in an area that, according to experience, may sustain a
total loss in a given year with probability of 0.001 and a 50% loss
with probability 0.01. Ignoring all other partial losses, what
premium should the insurance company charge for a yearly policy
in order to break even on all $85,000 policies in this area?
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Solution

Let Y = Payout of an individual policy. First, we will find the
probability distribution of Y .
P(Y = 85, 000) = 0.001
P(Y = 42, 500) = 0.01
P(Y = 0) = 1− (0.001 + 0.01) = 0.989
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Solution (cont.)

By definition,

E (Y ) = 85, 000P(Y = 85, 000)+42, 500P(Y = 42, 500)+0P(Y = 0)

E (Y ) = 85, 000(0.001)+42, 500(0.01)+0(0.989) = 85+425 = 510.
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Exercise 3.31

Suppose that Y is a discrete random variable with mean µ and
variance σ2 and let W = 2Y .
i) Find E (W ).
ii) Find V (W ).
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Solution

i) E (W ) = E (2Y ) = 2E (Y ) = 2µ (By Theorem 3.4)
ii) V (W ) = E{(W − µW )2} (by definition)

= E{[2Y − 2µ]2} (from part i) )
= E{22[Y − µ]2}
= 22E{[Y − µ]2} (by Theorem 3.4)
= 4V (Y ) = 4σ2 (by definition of V (Y ) ).
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Exercise 3.33

Let Y be a discrete random variable with mean µ and variance σ2.
If a and b are constants, prove that
a. E (aY + b) = aE (Y ) + b.
b. V (aY + b) = a2V (Y ) = a2σ2.
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Solution

a) E (aY + b) = E [aY ] + E [b] (by Theorem 3.5)
= aE [Y ] + b (by Theorem 3.4 and Theorem 3.3)

b) V (aY + b) = E{[aY + b − (aE (Y ) + b)]2} (by definition of
variance and from part a) )

= E{[aY − aE (Y )]2}
= E{a2[Y − E (Y )]2}
= a2E{[Y − E (Y )]2} (by Theorem 3.4)
= a2V (Y ) (by definition of V (Y )).
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Definition 3.6

A binomial experiment possesses the following properties:

The experiment consists of a fixed number, n, of identical
trials.

Each trial results in one of two outcomes: success, S, or
failure, F.

The probability of success on a single trial is equal to some
value p and remains the same from trial to trial. The
probability of a failure is equal to q = (1− p).

The trials are independent.

The random variable of interest is Y , the number of successes
observed during the n trials.
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Definition 3.7

A random variable Y is said to have a binomial distribution
based on n trials with success probability p if and only if

p(y) =
n!

y !(n − y)!
py (1− p)n−y , y = 0, 1, 2, ..., n and 0 ≤ p ≤ 1.

or

p(y) =

(
n

y

)
py (1− p)n−y , y = 0, 1, 2, ..., n and 0 ≤ p ≤ 1.
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Binomial Theorem

(a + b)2 = a2 + 2ab + b2

or

(a + b)2 =

(
2

2

)
a2b0 +

(
2

1

)
a1b1 +

(
2

0

)
a0b2
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Binomial Theorem (again)

(a + b)3 = a3 + 3a2b + 3ab2 + b3

or

(a + b)3 =

(
3

3

)
a3b0 +

(
3

2

)
a2b1 +

(
3

1

)
a1b2 +

(
3

0

)
a0b3

or

(a + b)3 =
3∑

y=0

(
3

y

)
ayb3−y
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Binomial Theorem (again...)

(a + b)n =
n∑

y=0

(
n

y

)
aybn−y
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Theorem 3.7

Let Y be a binomial random variable based on n trials and success
probability p. Then

µ = E (Y ) = np and σ2 = V (Y ) = npq.

Proof.
Check page 107 of our textbook (there you will find something
similar to what we did in class).
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Exercise 3.45

A fire-detection device utilizes three temperature-sensitive cells
acting independently of each other in such a manner that any one
or more may activate the alarm. Each cell possesses a probability
of p = 0.8 of activating the alarm when the temperature reaches
100 degrees Celsius or more. Let Y equal the number of cells
activating the alarm when the temperature reaches 100 degrees.
a. Find the probability distribution for Y .
b. Find the probability that the alarm will function when the
temperature reaches 100 degrees.
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Solution

a) Let Y = number of cells activating the alarm. Y has a
Binomial distribution with parameters n = 3 and p = 0.8
b) P[alarm will function] = P[Y ≥ 1]

= P[Y ≥ 1]
= 1− P[Y = 0]
= 1− 0.008 = 0.992
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Exercise 3.39

A complex electronic system is built with a certain number of
backup components in its subsystems. One subsystem has four
identical components, each with a probability of 0.2 of failing in
less than 1000 hours. The subsystem will operate in any two of the
four components are operating. Assume that the components
operate independently. Find the probability that
a. exactly two of the four components last longer than 1000 hours.
b. the subsystem operates longer than 1000 hours.
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Solution

Let Y be the number of components failing in less than 1000
hours. Y has a Binomial distribution with parameters n = 4 and
p = 0.2.
a) P(Y = 2) =

(4
2

)
(0.2)2(0.8)2

= 6(4/100)(64/100) = 1536/10000 = 0.1536
b) The system will operate if 0, 1, or 2 components fail in less
than 1000 hours.
P(system operates) = P(Y = 0) + P(Y = 1) + P(Y = 2)

= 0.4096 + 0.4096 + 0.1536 = 0.9728
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Definition 3.8

A random variable Y is said to have a geometric probability
distribution if and only if

p(y) = qy−1p, y = 1, 2, 3, ..., 0 ≤ p ≤ 1.
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Theorem 3.8

If Y is a random variable with a geometric distribution,

µ = E (Y ) =
1

p
σ2 = V (Y ) =

1− p

p2
.

Proof.
Check page 117 of our textbook (there you will find something
similar to what we did in class).
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Exercise 3.81

How many times would you expect to toss a balanced coin in order
to obtain the first head?
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Solution

Let Y= number of the toss on which the first head is observed. Y
has a Geometric distribution with parameter p = P(heads) = 1/2.
Then,

E (Y ) =
1

p
=

1

1/2
= 2.

So, two times is our answer.
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Exercise 3.79

In responding to a survey question on a sensitive topic (such as
”Have you ever tried marijuana?”), many people prefer not to
respond in the affirmative. Suppose that 80% of the population
have not tried marijuana and all of those individuals will truthfully
answer no to your question. the remaining 20% of the population
have tried marijuana and 70% of those individuals will lie. Derive
the probability distribution of Y , the number of people you would
need to question in order to obtain a single affirmative response.
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Solution

Let Y = number of people questioned until a ”yes” answer is
given. Let Mc be the event {randomly chosen individual has not
tried marijuana } and A be the event { randomly chosen individual
answer ”yes” (Affirmative) to question }.
Then, Y has a Geometric distribution with parameter p. Let’s find
p
p = P(A) = P(A ∩M) + P(A ∩Mc) =
P(A|M)P(M) + P(A|Mc)P(Mc)

= (0.3)(0.2) + (0)(0.8)+ = 0.06.
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Solution

Thus,

P(Y = y) = (0.94)y−1(0.06), y = 1, 2, 3, ...
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Example

Observation of a waiting line at a medical clinic indicates the
probability that a new arrival will be an emergency case is p = 1/6.
Assume that conditions of arriving patients represent independent
events, and let the random variable Y denote the number of
arrivals until the fourth emergency case. Find the probability
distribution of Y .
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Solution

Let Ai = the ith arrival is not an emergency. Define Y as the
number of arrivals until our fourth emergency case. From its
definition, Y could take on values {4, 5, 6, . . . }.
P(Y = 4) = P(Ac

1 ∩ Ac
2 ∩ Ac

3 ∩ Ac
4)

= P(Ac
1)P(Ac

2)P(Ac
3)P(Ac

4) (independence)

=
(
1
6

)4
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Solution

P(Y = 5) = P(A1 ∩ Ac
2 ∩ Ac

3 ∩ Ac
4 ∩ Ac

5)
+P(Ac

1 ∩ A2 ∩ Ac
3 ∩ Ac

4 ∩ Ac
5)

+P(Ac
1 ∩ Ac

2 ∩ A3 ∩ Ac
4 ∩ Ac

5)
+P(Ac

1 ∩ Ac
2 ∩ Ac

3 ∩ A4 ∩ Ac
5)

P(Y = 5) = 4
(
5
6

) (
1
6

)4
or P(Y = 5) =

(4
3

) (
5
6

)(5−4) (1
6

)4
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Solution

If k represents an integer such that k ≥ 4, proceeding in a similar
way we have

P(Y = k) =
(k−1

3

) (
5
6

)(k−4) (1
6

)4
(This is the probability distribution of Y ).
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Definition 3.9

A random variable Y is said to have a negative binomial
probability distribution if and only if

p(y) =

(
y − 1

r − 1

)
(1− p)y−rpr , y = r , r + 1, r + 2, ..., 0 ≤ p ≤ 1.
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Theorem 3.9

If Y is a random variable with a negative binomial distribution,

µ = E (Y ) =
r

p
σ2 = V (Y ) =

r(1− p)

p2
.
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Exercise 3.91

The employees of a firm that manufactures insulation are being
tested for indications of asbestos in their lungs. The firm is
requested to send three employees who have positive indications of
asbestos on to a medical centre for further testing. If 40% of the
employees have positive indications of asbestos in their lungs and
each test costs $20, find the expected value and variance of the
total cost of conducting the tests necessary to locate the three
positives.
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Solution

Y = number of tests necessary to locate our first three positives.
p = Probability of positive indications of asbestos = 0.40.
From the conditions described above, Y has a Negative Binomial
distribution with parameters p = 0.40 and r = 3.

E (Y ) = r
p = 3

0.4 = 30
4 = 7.5

V (Y ) = r(1−p)
p2

= 3(0.6)
(0.4)2

= 11.25
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Solution

Let T = Total cost. Clearly, T = 20Y .

E (T ) = E (20Y ) = 20E (Y ) = 20(7.5) = 150 dollars.
V (T ) = V (20Y ) = 202V (Y ) = 400(11.25) = 4500 dollars2.
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Example

Two additional jurors are needed to complete a jury for a criminal
trial. There are six prospective jurors, two women and four men.
Two jurors are randomly selected from the six available. Let Y
represent the number of women in this group of two additional
jurors.
a) Find the probability distribution of Y .
b) E (Y ).
c) V (Y ).
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Solution

Let Y represent the number of female jurors in a sample of size 2.
From Exercise 2.29 (check our notes from chapter 2), we have that:
P(Y = 0) = 6

15
P(Y = 1) = 8

15
P(Y = 2) = 1

15
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Solution

P(Y = 0) =
(20)(42)

(62)
= 6

15

P(Y = 1) =
(21)(41)

(62)
= 8

15

P(Y = 2) =
(22)(40)

(62)
= 1

15
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Definition 3.10

A random variable Y is said to have a hypergeometric
probability distribution if and only if

p(y) =

(r
y

)(N−r
n−y
)(N

n

) ,

where y is an integer 0, 1, 2, ..., n, subject to the restrictions
y ≤ r and n − y ≤ N − r .
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Theorem 3.10

If Y is a random variable with a hypergeometric distribution,

µ = E (Y ) =
nr

N
and σ2 = V (Y ) = n

( r

N

)(N − r

N

)(
N − n

N − 1

)
.
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Exercise 3.103

A warehouse contains ten printing machines, four of which are
defective. A company selects five of the machines at random,
thinking all are in working condition. What is the probability that
all five of the machines are nondefective?
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Solution

N = 10.
r = 6 (nondefective machines).
N − r = 4 (defective machines).
n = 5 (sample size).

P(Y = 5) =

(6
5

)(4
0

)(10
5

) =
(6)(1)

252
=

1

42
.
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Relationship to the Binomial Distribution

There is an interesting relationship between the hypergeometric
and the binomial distribution. As one might expect, if n is small
compared to N, the nature of the N items changes very little in
each draw. In fact, as a rule of thumb the approximation is good
when n

N ≤ 0.05.
Thus the quantity r

N plays the role of the binomial parameter p.
As a result, the binomial distribution may be viewed as a large
population edition of the hypergeometric distributions. The mean
and variance then come from the formulas

µ = np =
nr

N
, σ2 = npq = n

r

N

(
1− r

N

)
.

Comparing these formulas with those of Theorem 3.10, we see that
the mean is the same whereas the variance differs by a correction
factor of (N−n)

(N−1) , which is negligible when n is small relative to N.
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Properties of Poisson Process

Experiments yielding numerical values of a random variable X , the
number of outcomes occurring during a given time interval or in a
specified region, are called Poisson experiments. The given time
interval may be of any length, such as a minute, a day, a week, a
month, or even a year. Hence a Poisson experiment can generate
observations for the random variable X representing the number of
telephone calls per hour received by an office, the number of days
school is closed due to snow during the winter, or the number of
postponed games due to rain during a baseball season. The
specified region could be a line segment, an area, a volume, or
perhaps a piece of material. In such instances X might represent
the number of field mice per acre, the number of bacteria in a
given culture, or the number of typing errors per page.
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Properties of Poisson Process

A Poisson experiment is derived from the Poisson process and
possesses the following properties:
1. The number of outcomes occurring in one time interval or
specified region is independent of the number that occurs in any
other disjoint time interval or region of space.
2. The probability that a single outcome will occur during a very
short time interval or in a small region is proportional to the length
of the time interval or the size of the region and does not depend
on the number of outcomes occurring outside this time interval or
region.
3. The probability that more than one outcome will occur in such
a short time interval or fall in such a small region is negligible.
The number X of outcomes occurring during a Poisson experiment
is called a Poisson random variable, and its probability
distribution is called the Poisson distribution.
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Definition 3.11

A random variable Y is said to have a Poisson probability
distribution if and only if

p(y) =
λy

y !
e−λ, y = 0, 1, 2, ..., λ > 0.
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The Poisson Distribution as a limiting form of the Binomial

Although the Poisson usually finds applications in space and time
problems, it can be viewed as a limiting form of the Binomial
distribution. In the case of the Binomial, if n is quite large and p is
small, the conditions begin to simulate the continuous space or
time region implications of the Poisson process. The independence
among Bernoulli trials in the Binomial case is consistent with
property 2 of the Poisson process. Allowing the parameter p to be
close to zero relates to property 3. Indeed, we shall now derive the
Poisson distribution as a limiting form of the Binomial distribution
when n→∞, p → 0, and np remains constant. Hence, if n is
large and p is close to 0, the Poisson distribution can be used, with
µ = np, to approximate Binomial probabilities.
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Derivation of Poisson distribution

Let Y be a Binomial distribution with parameters n and p. We are
letting λ = np and taking the limit of the Binomial probability
p(y) as n→∞.
P(Y = y) =

(n
y

)
py (1− p)n−y

= (n)(n−1)(n−2)...[n−(y−1)](n−y)!
y !(n−y)!

λy

ny

(
1− λ

n

)n (
1− λ

n

)−y
= (n)(n−1)(n−2)...[n−(y−1)]

(n)(n)(n)...(n)
λy

y !

(
1− λ

n

)n (
1− λ

n

)−y
= (1)

(
1− 1

n

) (
1− 2

n

)
....
(

1− (y−1)
n

)
λy

y !

(
1− λ

n

)n (
1− λ

n

)−y
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Derivation of Poisson distribution

Recalling that limn→∞
(
1− λ

n

)n
= e−λ. We have that

lim
n→∞

P(Y = y) =
λy

y !
e−λ

y = 0, 1, 2, 3, ...
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Maclaurin Series

A Maclaurin series is a Taylor series expansion of a function about
0,

f (x) = f (0) + f
′
(0)x +

f
′′

(0)

2!
x2 +

f 3(0)

3!
x3 + ...+

f n(0)

n!
xn + ...

(Maclaurin series are named after the Scottish mathematician
Colin Maclaurin.)
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Example

−1 0 1 2 3 4

0
10

20
30

40
50

x

 

exp(x)
Maclaurin Series(1)
Maclaurin(5)
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Theorem 3.11

If Y is a random variable possessing a Poisson distribution with
parameter λ, then

µ = E (Y ) = λ and σ2 = V (Y ) = λ.
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Exercise 3.127

The number of typing errors made by a typist has a Poisson
distribution with an average of four errors per page. If more than
four errors appear on a given page, the typist must retype the
whole page. What is the probability that a randomly selected page
does not need to be retyped?
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Solution

Y = number of typing errors made by a typist.
λ = 4

P(Y ≤ 4) = 44

4! e
−4 + 43

3! e
−4 + 42

2! e
−4 + 41

1! e
−4 + 40

0! e
−4

P(Y ≤ 4) = 0.6288
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Exercise 3.135

A salesperson has found that the probability of a sale on a single
contact is approximately 0.03. If the salesperson contacts 100
prospects, what is the approximate probability of making at least
one sale?
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Solution

X = number of sales made by salesperson out of 100 prospects.
X has a Binomial distribution with parameters n = 100 and
p = 0.03.
P(X ≥ 1) = 1− P(X < 1) = 1− P(X = 0) = 1− 0.04755 =
0.95245.
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Solution (approximation)

n = 100 and p = 0.03.

λ = np = (100)(0.03) = 3

Let Y = number of sales.

P(Y ≥ 1) = 1− P(Y < 1)
= 1− P(Y = 0)

= 1− 30

0! e
−3 = 0.9502

Al Nosedal. University of Toronto. STA 256: Statistics and Probability I



Definition 3.12

The kth moment of a random variable Y taken about the origin
is defined to be E(Yk) and is denoted by µ

′
k .
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Definition 3.13

The kth moment of a random variable Y taken about its mean,
or the kth central moment of Y , is defined to be E[(Y − µ)k] and
is denoted by µk .
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Definition 3.14

The moment-generating function MY (t) for a random variable
Y is defined to be MY (t) = E (etY ). We say that a
moment-generating function for Y exists if there exists a positive
constant b such that MY (t) is finite for |t| ≤ b.
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Theorem 3.12

If MY (t) exists, then for any positive integer k,

dkMY (t)

dtk
]t=0 = M

′
Y (0) = µ

′
k .

In other words, if you find the kth derivative of MY (t) with respect
to t and set t = 0, the result will be µ

′
k .
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Note

etY = 1 + tY + t2Y 2

2! + t3Y 3

3! + ...

E [etY ] = E [1 + tY + t2Y 2

2! + t3Y 3

3! + ...]

E [etY ] = E [1] + tE (Y ) + t2

2!E (Y 2) + t3

3!E (Y 3) + ...
d
dtE [etY ] = E (Y ) + 2t

2!E (Y 2) + 3t2

3! E (Y 3) + ...

Therefore, M
′
(0) = E (Y ).
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Exercise 3.145

If Y has a Binomial distribution with n trials and probability of
success p, show that the moment-generating function for Y is

MY (t) = (pet + q)n, where q = 1− p.
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Proof

MY (t) = E [etY ] =
∑n

y=0 e
ty
(n
y

)
py (1− p)n−y

=
∑n

y=0

(n
y

)
(pet)y (1− p)n−y

Note that the last equation can be rewritten as:
MY (t) = [pet + (1− p)]n.
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Exercise 3.147

If Y has a geometric distribution with probability of success p,
show that the moment-generating function for Y is

MY (t) =
pet

1− qet
, where q = 1− p.
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Proof

Before we prove this result, we will find a formula that will be
useful to us.
S = 1 + r + r2 + ...+ rn−1

Now, we multiply the last equation by r .
rS = r + r2 + r3 + ...+ rn

Then, we compute the difference between these two equations.
S − rS = 1− rn

Solving for S , we have
S = 1−rn

1−r
Assuming that |r | < 1 and letting n go to infinity

lim
n→∞

S =
∞∑
n=0

rn =
1

1− r
.
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Proof

MY (t) = E [etY ] =
∑∞

y=1 e
ty (1− p)y−1p

=
∑∞

y=1 e
tyete−t(1− p)y−1p

= pet
∑∞

y=1 e
t(y−1)(1− p)y−1

= pet
∑∞

y=1[(1− p)et ]y−1

(let n = y − 1)
= pet

∑∞
n=0[(1− p)et ]n

= pet
∑∞

n=0[qet ]n

Using our result from the previous slide,
MY (t) = pet

1−qet .
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Exercise 3.155

Let MY (t) = 1
6e

t + 2
6e

2t + 3
6e

3t . Find the following:
a. The distribution of Y .
b. E (Y ).
c. V (Y ).
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HW?

Suppose that Y is a Binomial random variable based on n trials
with success probability p and let W = n − Y .
a. Find the moment-generating function of W , MW (t).
b. Based on your answer to part a), what is the distribution of W ?
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A few comments about MGFs

The moment-generating function possesses two important
applications. First, if we can find E (etY ), we can find any of the
moments for Y .

The second application of a moment-generating function is to
prove that a random variable possesses a particular probability
distribution p(y). If MY (t) exists for a probability distribution
p(y), it is unique. Also, if the moment-generating functions, for
two random variables Y and Z are equal, then Y and Z must have
the same probability distribution. It follows that, if we can
recognize the moment-generating function of a random variable Y
to be one associated with a specific distribution, then Y must have
that distribution.
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