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My momma always said: ”Life was like a box of chocolates. You never
know what you’re gonna get.”

Forrest Gump.
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Regression Line

A regression line is a straight line that describes how a response variable y
changes as an explanatory variable x changes. We often use a regression
line to predict the value of y for a given value of x .
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Review of Straight Lines

Suppose that y is a response variable (plotted on the vertical axis) and x
is an explanatory variable (plotted on the horizontal axis). A straight line
relating y to x has an equation of the form

y = a + bx

In this equation, b is the slope, the amount by which y changes when x
increases by one unit. The number a is the intercept, the value of y when
x = 0.
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City mileage, highway mileage

We expect a car’s highway gas mileage (mpg) to be related to its city gas
mileage. Data for all 1040 vehicles in the government’s 2010 Fuel
Economy Guide give the regression line
highway mpg = 6.554 + (1.016 x city mpg)
for predicting highway mileage from city mileage.
a) What is the slope of this line? Say in words what the numerical value of
the slope tells you.
b) What is the intercept? Explain why the value of the intercept is not
statistically meaningful.
c) Find the predicted highway mileage for a car that gets 16 miles per
gallon in the city. Do the same for a car with a city mileage of 28 mpg.
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Solutions

a) The slope is 1.016. On average, highway mileage increases by 1.016
mpg for each additional 1 mpg change in city mileage.
b) The intercept is 6.554 mpg. This is the highway mileage for a
nonexistent car that gets 0 mpg in the city. Although this interpretation is
valid, such prediction would be invalid because it involves considerable
extrapolation.
c) For a car that gets 16 mpg in the city, we predict highway mileage to be:

6.554 + (1.016)(16) = 22.81 mpg.

For a car that gets 28 mpg in the city, we predict highway mileage to be:

6.554 + (1.016)(28) = 35.002 mpg.
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What’s the line?

You use the same bar of soap to shower each morning. The bar weighs 80
grams when it is new. Its weight goes down by 5 grams per day on the
average. What is the equation of the regression line for predicting weight
from days of use?
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Solution

The equation is:

weight = 80 − 5 × days

The intercept is 80 grams (the initial weight), and the slope is −5
grams/day.
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Least-Squares Regression Line

The least-squares regression line of y on x is the line that makes the sum
of the squares of the vertical distances of the data points from the line as
small as possible.
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Equation of the Least-Squares Regression Line

We have data on an explanatory variable x and a response variable y for n
individuals. From the data, calculate the means x̄ and ȳ and the standard
deviations Sx and Sy of the two variables, and their correlation r . The
least-squares regression line is the line

ŷ = a + bx

with slope

b = r
Sy
Sx

and intercept

a = ȳ − bx̄
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Coral reefs

We have previously discussed a study in which scientists examined data on
mean sea surface temperatures (in degrees Celsius) and mean coral growth
(in millimeters per year) over a several-year period at locations in the Red
Sea. Here are the data:

Sea Surface Temperature Growth

29.68 2.63
29.87 2.58
30.16 2.60
30.22 2.48
30.48 2.26
30.65 2.38
30.90 2.26
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a) Use your calculator to find the mean and standard deviation of both sea
surface temperature x and growth y and the correlation r between x and
y . Use these basic measures to find the equation of the least-squares line
for predicting y from x .
b) Enter the data into your software or calculator and use the regression
function to find the least-squares line. The result should agree with your
work in a) up to roundoff error.
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Solutions

a) x̄ = 30.28 Sx = 0.4296
ȳ = 2.4557 Sy = 0.1578
r = −0.8914.
Hence,

b = r
Sy
Sx

= (−0.8914)

(
0.1578

0.4296

)
= −0.3274

a = ȳ − bx̄ = 2.4557 − (−0.3274)(30.28) = 12.3693

b) Slope = - 0.3276 and intercept = 12.3758.
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Reading our data

# Step 1. Entering data;

# url of coral growth data;

coral_url=

"https://mcs.utm.utoronto.ca/~nosedal/data/coral.txt"

# importing data into R;

data = read.table(coral_url, header = TRUE);
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Least-squares Regression Line

response=data$Coral_growth;

explanatory=data$Avg_summer;

coral.reg=lm(response~explanatory);

Al Nosedal University of Toronto Linear Regression Summer 2019 15 / 118



Means

# Finding means;

mean(response);

## [1] 2.515714

mean(explanatory);

## [1] 30.28
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Standard deviations and r

# Finding standard deviations and r;

sd(response);

## [1] 0.15076

sd(explanatory);

## [1] 0.4296122

cor(explanatory, response);

## [1] -0.8635908
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R code

names(coral.reg);

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
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a and b

coral.reg$coef;

## (Intercept) explanatory

## 11.6921347 -0.3030522
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Do heavier people burn more energy?

We have data on the lean body mass and resting metabolic rate for 12
women who are subjects in a study of dieting. Lean body mass, given in
kilograms, is a person’s weight leaving out all fat. Metabolic rate, in
calories burned per 24 hours, is the rate at which the body consumes
energy.

Mass Rate Mass Rate

36.1 995 40.3 1189
54.6 1425 33.1 913
48.5 1396 42.4 1124
42.0 1418 34.5 1052
50.6 1502 51.1 1347
42.0 1256 41.2 1204
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a) Make a scatterplot that shows how metabolic rate depends on body
mass. There is a quite strong linear relationship, with correlation
r = 0.876.
b) Find the least-squares regression line for predicting metabolic rate from
body mass. Add this line to your scatterplot.
c) Explain in words what the slope of the regression line tells us.
d) Another woman has a lean body mass of 45 kilograms. What is her
predicted metabolic rate?
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Scatterplot
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Solutions

b) the regression equation is

ŷ = 201.2 + 24.026x

where y= metabolic rate and x= body mass.
c) The slope tells us that on the average, metabolic rate increases by
about 24 calories per day for each additional kilogram of body mass.
d) For x = 45 kg, the predicted metabolic rate is
ŷ = 1282.4 calories per day.
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R code

# Step 1. Entering data;

mass=c(36.1, 54.6, 48.5, 42.0, 50.6, 42.0,

40.3, 33.1, 42.4, 34.5, 51.1, 41.2);

rate=c(995, 1425, 1396, 1418, 1502, 1256,

1189, 913, 1124, 1052, 1347, 1204);
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R code

# Step 2. Making scatterplot;

plot(mass, rate ,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");
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Scatterplot
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Regression Equation (R Code)

# Step 3. Finding Regression Equation;

metabolic.reg=lm(rate~mass);
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a and b

metabolic.reg$coef;

## (Intercept) mass

## 201.16160 24.02607

Al Nosedal University of Toronto Linear Regression Summer 2019 28 / 118



Scatterplot with least-squares line

plot(mass,rate,

pch=19,col="blue", xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");

abline(metabolic.reg$coef, col="red");
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Scatterplot with least-squares line
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Prediction

new<-data.frame(mass=45);

predict(metabolic.reg,newdata=new);

## 1

## 1282.335

Al Nosedal University of Toronto Linear Regression Summer 2019 31 / 118



Facts about Least-Squares Regression

1. The distinction between explanatory and response variables is essential
in regression.
2. The least-squares regression line always passes through the point (x̄ , ȳ)
on the graph of y against x .
3. The square of the correlation, r2, is the fraction of the variation in the
values of y that is explained by the least-squares regression of y on x.
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What’s my grade?

In Professor Krugman’s economics course the correlation between the
student’s total scores prior to the final examination and their
final-examination scores is r = 0.5. The pre-exam totals for all students in
the course have mean 280 and standard deviation 40. The final-exam
scores have mean 75 and standard deviation 8. Professor Krugman has
lost Julie’s final exam but knows that her total before the exam was 300.
He decides to predict her final-exam score from her pre-exam total.
a) What is the slope of the least-squares regression line of final-exam
scores on pre-exam total scores in this course? What is the intercept?
b) Use the regression line to predict Julie’s final-exam score.
c) Julie doesn’t think this method accurately predicts how well she did on
the final exam. Use r2 to argue that her actual score could have been
much higher (or much lower) than the predicted value.
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Solutions

a) b = r
Sy
Sy

= (0.5) 8
40 = 0.1

a = ȳ − bx̄ = 75 − (0.1)(280) = 47.
Hence, the regression equation is ŷ = 47 + 0.1x .
b) Julie’s pre-final exam total was 300, so we would predict a final exam
score of

ŷ = 47 + (0.1)(300) = 77.

c) Julie is right ... with a correlation of r = 0.5, r2 = 0.25, so the
regression line accounts for only 25% of the variability in student final
exam scores. That is, the regression line doesn’t predict final exam scores
very well. Julie’s score could, indeed, be much higher or lower than the
predicted 77.
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Residuals

A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is, a residual is
the prediction error that remains after we have chosen the regression line:
residual = observed y - predicted y
residual = y − ŷ .
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Residual Plots

A residual plot is a scatterplot of the regression residuals against the
explanatory variable. Residual plots help us assess how well a regression
line fits the data.
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Residuals by hand

You have already found the equation of the least-squares line for predicting
coral growth y from mean sea surface temperature x .
a) Use the equation to obtain the 7 residuals step-by-step. That is, find
the prediction ŷ for each observation and then find the residual y − ŷ .
b) Check that (up to roundoff error) the residuals add to 0.
c) The residuals are the part of the response y left over after the
straight-line tie between y and x is removed. Show that the correlation
between the residuals and x is 0 (up to roundoff error). That this
correlation is always 0 is another special property of least-squares
regression.
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coral.coeff=coral.reg$coeff;

coral.coeff;

## (Intercept) explanatory

## 11.6921347 -0.3030522

coral.residuals=coral.reg$residuals;

coral.residuals[1];

## 1

## -0.0675456

coral.residuals[2];

## 2

## -0.05996569
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Solutions (residuals by hand)

a) The residuals are computed in the table below using
ŷ = −0.3030522x + 11.6921347.

xi yi ŷi yi − ŷi
29.68 2.63 2.6975456 -0.0675456
29.87 2.58 2.6399657 -0.0599657
30.16 2.60 2.5520805 0.1279195
30.22 2.48 2.5338974 0.0661026
30.48 2.26 2.4551038 0.0248962
30.65 2.38 2.403585 -0.023585
30.90 2.26 2.3278219 -0.0678219

b)
∑

(yi − ŷi ) = 5.5511151 × 10−17 (they sum to zero, except for
rounding error.
c) From software, the correlation between xi and yi − ŷi is −0.0000854,
which is zero except for rounding.
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Do heavier people burn more energy?

Return to the example about lean body mass and metabolic rate. We will
use these data to illustrate influence.
a) Make a scatterplot of the data that is suitable for predicting metabolic
rate from body mass, with two new points added. Point A: mass 42
kilograms, metabolic rate 1500 calories. Point B: mass 70 kilograms,
metabolic rate 1400 calories. In which direction is each of these points an
outlier?
b) Add three least-squares regression lines to your plot: for the original 12
women, for the original women plus Point A, and for the original women
plus Point B. Which new point is more influential for the regression line?
Explain in simple language why each new point moves the line in the way
your graph shows.
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Reading our data

# Step 1. Entering data;

# url of metabolic rate data;

meta_url=

"https://mcs.utm.utoronto.ca/~nosedal/data/metabolic.txt"

# importing data into R;

data = read.table(meta_url, header = TRUE);

Al Nosedal University of Toronto Linear Regression Summer 2019 41 / 118



Scatterplot

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");
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Scatterplot
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Least-Squares Regression Line

# Step 3. Finding L-S Regression Line;

mod=lm(data$Rate~data$Mass);
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Scatterplot + L-S Regression Line

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");

abline(mod$coeff,col="red",lty=2);

# abline tells R to add a line to your

# scatterplot;

# lty= 2 is used to draw a dashed-line;
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Scatterplot + L-S Regression Line
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Scatterplot + A +B

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)",

xlim=c(30,70),ylim=c(850,1600 ));

points(42,1500,pch="A",col="red");

#point A;

points(70,1400,pch="B",col="green");

#point B;
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Least-Squares Regression Lines

# Step 3. Finding L-S Regression Line;

mod=lm(data$Rate~data$Mass);

# original;

modA=lm(c(data$Rate,1500)~c(data$Mass,42));

# point A;

modB=lm(c(data$Rate,1400)~c(data$Mass,70));

# point B;
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Scatterplot + A +B + L-S Regression Lines

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)",

xlim=c(30,70),ylim=c(850,1600 ));

points(42,1500,pch="A",col="red");

points(70,1400,pch="B",col="green");

abline(mod$coeff,col="blue",lty=2);

abline(modA$coeff,col="red",lty=2);

abline(modB$coeff,col="green",lty=2);
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Adding a legend

legend("bottomright",

c("original","original + A","original + B"),

col=c("blue","red","green"),

lty=c(2,2,2),bty="n");
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Solutions

a) Point A lies above the other points; that is, the metabolic rate is higher
than we expect for the given body mass. Point B lies to the right of the
other points; that is, it is an outlier in the x (mass) direction, and the
metabolic rate is lower than we would expect.
b) In the plot, the dashed blue line is the regression line for the original
data. The dashed red line slightly above that includes Point A; it has a
very similar slope to the original line, but a slightly higher intercept,
because Point A pulls the line up. The third line includes Point B, the
more influential point; because Point B is an outlier in the x direction, it
”pulls” the line down so that it is less steep.
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Influential observations

An observation is influential for a statistical calculation if removing it
would markedly change the result of the calculation.
The result of a statistical calculation may be of little practical use if it
depends strongly on a few influential observations.
Points that are outliers in either the x or the y direction of a scatterplot
are often influential for the correlation. Points that are outliers in the x
direction are often influential for the least-squares regression line.
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Example

The number of people living on American farms declined steadily during
last century. Here are data on the farm population (millions of persons)
from 1935 to 1980:

Year Population

1935 32.11
1940 30.5
1945 24.4
1950 23.0
1955 19.1
1960 15.6
1965 12.4
1970 9.7
1975 8.9
1980 7.2
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Example

a) Make a scatterplot of these data and find the least-squares regression
line of farm population on year.
b) According to the regression line, how much did the farm population
decline each year on the average during this period? What percent of the
observed variation in farm population is accounted for by linear change
over time?
c) Use the regression equation (trendline) to predict the number of people
living on farms in 1990. Is this result reasonable? Why?
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R Code

# Step 1. Entering Data;

year=seq(1935,1980,by=5);

population=c(32.11,30.5,24.4,23.0,19.1,

15.6,12.4,9.7,8.9,7.2);

# seq creates a sequence of numbers;

# which starts at 1935 and ends at 1980;

# we want a distance of 5 between numbers;
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R Code, L-S Line

least.squares=lm(population~year);

least.squares

##

## Call:

## lm(formula = population ~ year)

##

## Coefficients:

## (Intercept) year

## 1167.1418 -0.5869
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R Code, L-S Line

cor(year,population);

## [1] -0.9884489

Al Nosedal University of Toronto Linear Regression Summer 2019 60 / 118



Scatterplot

plot(year,population,pch=19);

abline(least.squares$coeff,col="red");

# pch=19 tells R to draw solid circles;

# abline tells R to add trendline;

Al Nosedal University of Toronto Linear Regression Summer 2019 61 / 118



Scatterplot
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Solution

a) The scatterplot shows a strong negative association with a straight-line
pattern. The regression line (trendline) is ŷ = 1167.14 − 0.587x .
b) This is the slope - about 0.587 million (587, 000) per year during this
period. Because r ≈ −0.9884, the regression line explains r2 ≈ 97.7% of
the variation in population.
c) Substituting, x = 1990 gives ŷ = 1167.14 − 0.587(1990) = −0.99, an
impossible result because a population must be greater than or equal to 0.
The rate of decrease in the farm population dropped in the 1980s. Beware
of extrapolation.
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The endangered manatee

The table shown below gives 33 years of data on boats registered in
Florida and manatees killed by boats. If we made a scatterplot for this
data set, it would show a strong positive linear relationship. The
correlation is r = 0.951.
a) Find the equation of the least-squares line for predicting manatees killed
from thousands of boats registered. Because the linear pattern is so
strong, we expect predictions from this line to be quite accurate - but only
if conditions in Florida remain similar to those of the past 33 years.
b) In 2009, experts predicted that the number of boats registered in
Florida would be 975,000 in 2010. How many manatees do you predict
would be killed by boats if there are 975,000 boats registered? Explain
why we can trust this prediction.
c) Predict manatee deaths if there were no boats registered in Florida.
Explain why the predicted count of deaths is impossible.
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Table

Year Boats Manatees Year Boats Manatees

1977 447 13 1988 675 43
1978 460 21 1989 711 50
1979 481 24 1990 719 47
1980 498 16 1991 681 53
1981 513 24 1992 679 38
1982 512 20 1993 678 35
1983 526 15 1994 696 49
1984 559 34 1995 713 42
1985 585 33 1996 732 60
1986 614 33 1997 755 54
1987 645 39 1998 809 66
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Table (cont.)

Year Boats Manatees

1999 830 82
2000 880 78
2001 944 81
2002 962 95
2003 978 73
2004 983 69
2005 1010 79
2006 1024 92
2007 1027 73
2008 1010 90
2009 982 97
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Solutions

a) The regression line is ŷ = −43.172 + 0.129x .
b) If 975, 000 boats are registered, then by our scale, x = 975, and
ŷ = −43.172 + (0.129)(975) = 82.6 manatees killed. The prediction
seems reasonable, as long as conditions remain the same, because ”975” is
within the space of observed values of x on which the regression line was
based. That is, this is not extrapolation.
c) If x = 0 (corresponding to no registered boats), then we would
”predict” −43.172 manatees to be killed by boats. This is absurd, because
it is clearly impossible for fewer than 0 manatees to be killed. Note that
x = 0 is well outside the range of observed values of x on which the
regression line was based.
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Extrapolation

Extrapolation is the use of a regression line for prediction far outside the
range of values of the explanatory variable x that you used to obtain the
line. Such predictions are often not accurate.
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Association does not imply causation

An association between an explanatory variable x and a response variable
y , even if it is very strong, is not by itself good evidence that changes in x
actually cause changes in y .
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Example

Measure the number of television sets per person x and the average life
expectancy y for the world’s nations. There is a high positive correlation:
nations with many TV sets have higher life expectancies.
The basic meaning of causation is that by changing x we can bring about
a change in y . Could we lengthen the lives of people in Rwanda by
shipping them TV sets? No. Rich nations have more TV sets than poor
nations. Rich nations also have longer life expectancies because they offer
better nutrition, clean water, and better health care. There is no
cause-and-effect tie between TV sets and length of life.
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Is math the key to success in college?

A College Board study of 15,941 high school graduates found a strong
correlation between how much math minority students took in high school
and their later success in college. New articles quoted the head of the
College Board as saying that ”Math is the gatekeeper for success in
college.” Maybe so, but we should also think about lurking variables.
What might lead minority students to take more or fewer high school math
courses? Would these same factors influence success in college?
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Solution

A student’s intelligence may be a lurking variable: stronger students (who
are more likely to succeed when they get to college) are more likely to
choose to take these math courses, while weaker students may avoid them.
Other possible answers may be variations on this idea; for example, if we
believe that success in college depends on a student’s self-confidence, and
perhaps confident students are more likely to choose math courses.
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Lurking Variable

A lurking variable is a variable that is not among the explanatory or
response variables in a study and yet may influence the interpretation of
relationships among those variables.
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Another example

There is some evidence that drinking moderate amounts of wine helps
prevent heart attacks. A table shown below gives data on yearly wine
consumption (liters of alcohol from drinking wine, per person) and yearly
deaths from heart disease (deaths per 100,000 people) in 19 developed
nations∗.
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Another example

a) Make a scatterplot that shows how national wine consumption helps
explain heart disease death rates.
b) Describe the form of the relationship. Is there a linear pattern? How
strong is the relationship?
c) Is the direction of the association positive or negative? Explain in
simple language what this says about wine and heart disease. Do you
think these data give good evidence that drinking wine causes a reduction
in heart disease deaths? Why?
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Table

Country Alcohol Heart Country Alcohol Heart
from disease from disease
wine deaths wine deaths

Australia 2.5 211 Netherlands 1.8 167
Austria 3.9 167 New Zealand 1.8 266
Belgium 2.9 131 Norway 0.8 227
Canada 2.4 191 Spain 6.5 86

Denmark 2.9 220 Sweden 1.6 207
Finland 0.8 297 Switzerland 5.8 115
France 9.1 71 United Kingdom 1.3 285
Iceland 0.8 211 United States 1.2 199
Ireland 0.7 300 West Germany 2.7 172

Italy 7.9 107
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Solution (Bar chart)

# Step 1. Entering data;

consumption=c(2.5, 3.9, 2.9, 2.4, 2.9, 0.8, 9.1,

0.8, 0.7, 7.9, 1.8, 1.9, 0.8, 6.5, 1.6, 5.8, 1.3, 1.2, 2.7);

death.rates=c(211, 167, 131, 191, 220, 297, 71,

211, 300, 107,167, 266, 227, 86, 207, 115, 285, 199, 172);
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Scatterplot (R code)

plot(consumption,death.rates);
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Scatterplot (R code)
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Another example (cont.)

Our table gives data on wine consumption and heart disease death rates in
19 countries. A scatterplot shows a moderately strong relationship.
a) The correlation for these variables is r = −0.843. What does a negative
correlation say about wine consumption and heart disease deaths?
b) The least-squares regression line for predicting heart disease death rate
from wine consumption is

ŷ = 260.56 − 22.969x

Verify this using R. Then use this equation to predict the heart disease
death rate in another country where adults average 4 liters of alcohol from
wine each year.
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a) Finding correlation

cor(consumption,death.rates);

## [1] -0.8428127
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Least-squares Regression Line

explanatory<-consumption;

response<-death.rates;

wine.reg<-lm(response~explanatory);
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R code

names(wine.reg);

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
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a and b

wine.reg$coef;

## (Intercept) explanatory

## 260.56338 -22.96877
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Prediction

wine.reg$coef[1]+wine.reg$coef[2]*4;

## (Intercept)

## 168.6883
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Prediction (again...)

new=data.frame(explanatory=4);

predict(wine.reg,newdata=new);

## 1

## 168.6883
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c) The association is negative: Countries with high wine consumption have
fewer heart disease deaths, while low wine consumption tends to go with
more deaths from heart disease. This does not prove causation; there may
be some other reason for the link.
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Our main example

One effect of global warming is to increase the flow of water into the
Arctic Ocean from rivers. Such an increase might have major effects on
the world’s climate. Six rivers (Yenisey, Lena, Ob, Pechora, Kolyma, and
Severnaya Dvina) drain two-thirds of the Arctic in Europe and Asia.
Several of these are among the largest rivers on earth. File arctic-rivers.dat
contains the total discharge from these rivers each year from 1936 to 1999.
Discharge is measured in cubic kilometers of water.
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Reading our data

# url of arctic rivers data;

riv_url=

"https://mcs.utm.utoronto.ca/~nosedal/data/arctic-rivers.txt"

# importing data into R;

arctic_rivers = read.table(riv_url, header = TRUE);
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge);
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Scatterplot (R code)
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge,

pch=19,col="blue");
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Scatterplot (R code)
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge,

pch=19,col="blue", xlab="Year",

ylab="Discharge");
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Scatterplot (R code)
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The scatterplot shows a weak positive, linear relationship.
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Our main example

r=cor(arctic_rivers$Year,arctic_rivers$Discharge);

r;

## [1] 0.3343926
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The scatterplot shows a weak positive, linear relationship, which is
confirmed by r (0.3343926).
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R code

explanatory=arctic_rivers$Year;

response=arctic_rivers$Discharge

rivers.reg=lm(response~explanatory);
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R code

names(rivers.reg);

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
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a and b

rivers.reg$coef;

## (Intercept) explanatory

## -2056.769460 1.966163
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Scatterplot with least-squares line

plot(explanatory,response,

pch=19,col="blue", xlab="Year",

ylab="Discharge");

abline(rivers.reg$coef, col="red");
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Scatterplot with least-squares line
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Residuals

A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is,

residual = observed y − predicted y = y − ŷ .
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Scatterplot with residual line segments

plot(explanatory,response,

pch=19,col="blue", xlab="Year",

ylab="Discharge");

abline(rivers.reg$coef, col="red");

segments(explanatory, fitted(rivers.reg),

explanatory,response, lty=2, col="black");
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Scatterplot with residual line segments
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Residual Plots

A residual plot is a scatterplot of the regression residuals against the
explanatory variable. Residual plots help us assess the fit of a regression
line.
A residual plot magnifies the deviations of the points from the line and
makes it easier to see unusual observations and patterns.
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Residual plot

plot(explanatory,resid(rivers.reg),

pch=19,col="blue", xlab="Year",

ylab="Residual");

abline(h=0, col="red",lty=2);
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Residual plot
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Example: Counting carnivores

Ecologist look at data to learn about nature’s patterns. One pattern they
have found relates the size of a carnivore (body mass in kilograms) to how
many of those carnivores there are in an area. The right measure of ”how
many” is to count carnivores per 10,000 kilograms of their prey in the
area. Below we show a table that gives data for 25 carnivore species. To
see the pattern, plot carnivore abundance against body mass. Biologist
often find that patterns involving sizes and counts are simpler when we
plot the logarithms of the data.
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Table: Size and abundance of carnivores

Carnivore Body Abundance
species mass (kg)

Least weasel 0.14 1656.49
Ermine 0.16 406.66

Small Indian mongoose 0.55 514.84
Pine marten 1.3 31.84

Kit fox 2.02 15.96
Channel Island fox 2.16 145.94

Arctic fox 3.19 21.63
Red fox 4.6 32.21
Bobcat 10 9.75

Canadian lynx 11.2 4.79
European badger 13 7.35

Coyote 13 11.65
Ethiopian wolf 14.5 2.7
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Table: Size and abundance of carnivores

Carnivore Body Abundance
species mass (kg)

Eurasian lynx 20 0.46
Wild dog 25 1.61

Dhole 25 0.81
Snow leopard 40 1.89

Wolf 46 0.62
Leopard 46.5 6.17
Cheetah 50 2.29

Puma 51.9 0.94
Bobcat 10 9.75

Spotted hyena 58.6 0.68
Lion 142 3.4
Tiger 181 0.33

Polar bear 310 0.6
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Reading our data

# Step 1. Entering data;

# url of carnivores;

carnivores_url=

"https://mcs.utm.utoronto.ca/~nosedal/data/carnivores.txt"

# importing data into R;

carnivores = read.table(carnivores_url, header = TRUE);
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Abundance vs Body Mass

# Step 2. Making scatterplot;

plot(carnivores$B.mass,carnivores$Abundance,pch=19,

col="blue",xlab="Carnivore body mass(kgs)",ylab="Abundance",

main=" ");

# main adds title to graph;
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Abundance vs Body Mass
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log(Abundance) vs log(Body Mass)

# Step 2. Making time plot;

plot(log10(carnivores$B.mass),log10(carnivores$Abundance),

pch=19, col="blue",xlab="log(Body mass)",

ylab="log(Abundance)", main=" ");

# main adds title to graph;
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log(Abundance) vs log(Body Mass)
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This scatterplot shows a moderately strong negative association.
Bigger carnivores are less abundant. The form of the association is linear.
It is striking that animals from many different parts of the world should fit
so simple a pattern. We could use the straight-line pattern to predict the
abundance of another carnivore species from its body mass (Homework?).
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