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Reproducing Kernel Hilbert Spaces for Penalized Regression:
A Tutorial

Alvaro NOSEDAL-SANCHEZ, Curtis B. STORLIE, Thomas C.M. LEE, and Ronald CHRISTENSEN

Penalized regression procedures have become very popular
ways to estimate complicated functions. The smoothing spline,
for example, is the solution of a minimization problem in a
functional space. If such a minimization problem is posed on a
reproducing kernel Hilbert space (RKHS), the solution is guar-
anteed to exist, is unique, and has a very simple form. There are
excellent books and articles about RKHS and their applications
in statistics; however, this existing literature is very dense. This
article provides a friendly reference for a reader approaching
this subject for the first time. It begins with a simple problem, a
system of linear equations, and then gives an intuitive motivation
for reproducing kernels. Armed with the intuition gained from
our first examples, we take the reader from vector spaces to Ba-
nach spaces and to RKHS. Finally, we present some statistical
estimation problems that can be solved using the mathematical
machinery discussed. After reading this tutorial, the reader will
be ready to study more advanced texts and articles about the
subject, such as those by Wahba or Gu. Online supplements are
available for this article.

KEY WORDS: Projection principle; Regularization; Represen-
tation Theorem; Ridge Regression; Smoothing Splines.

1. INTRODUCTION

Penalized regression procedures have become a very pop-
ular approach to estimating complex functions (Wahba 1990;
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Eubank 1999; Hastie, Tibshirani, and Friedman 2001). They
are commonly used in areas such as functional data analysis
(Ramsay and Silverman 2005), computer model analysis (Stor-
lie et al. 2009), image processing (Berman 1994), and various
applications of spatial statistics (Bivand, Pebesma, and Gómez-
Rubio 2008), to name a few. Penalized regression procedures
use an estimator that is defined as the solution to a minimization
problem. In any minimization problem, there are the following
questions: Does the solution exist? If yes, is the solution unique?
How can we find it? If the problem is posed in the reproducing
kernel Hilbert space (RKHS) framework that we discuss below,
then the solution is guaranteed to exist, is unique, and takes a
particularly simple form.

Reproducing kernel Hilbert spaces (RKHS) and reproducing
kernels (RK) play a central role in penalized regression. The
purpose of this article is to provide a constructive tutorial for
statisticians interested in learning about RKHS methods in re-
gression before studying more advanced texts and articles about
the subject, such as Wahba (1990), Gu (2002), or Pearce and
Wand (2006). Pearce and Wand (2006) provided a review of
the connection between penalized splines and support vector
machines (SVMs) using the RKHS framework. This article is
intended to complement that review by providing the reader
with the necessary background about RKHS to fully understand
how RKHS results are used in penalized regression problems.
Much of the associated literature begins with picking an RK
and goes from there. Reproducing kernels may be the begin-
ning of an application but they are the end of a body of the-
ory. This article explicates that body of theory in an effort to
make its application to penalized regression (and hence SVMs)
more lucid. We describe how to construct a kernel with the
properties needed for a given application and how to use the
properties of that kernel for penalized regression. We provide
several examples to help motivate and solidify the concepts
as well as a transparent justification for the so-called “kernel
trick.”

In the first section of this tutorial, we present, and solve,
simple problems while gently introducing key concepts. The
remainder of the article is organized as follows. Section 2
takes the reader from a basic understanding of fields through
Banach spaces and Hilbert spaces. In Section 3, we provide
elementary theory of RKHS along with some examples. Section
4 discusses penalized regression with RKHS. Two specific
examples involving ridge regression and smoothing splines are
given, with code written in the R language (R Development
Core Team 2005) to solidify the concepts. Some methods for
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smoothing parameter selection are briefly mentioned. Section
5 contains some closing remarks.

1.1 Why We Care About RKHS

Before introducing new concepts, we present some simple
illustrations of the tools used to solve problems in the RKHS
framework. Consider solving the following system of linear
equations:

x1 + x3 = 0 (1)

x2 = 1. (2)

Clearly, the real-valued solutions to this system are the vec-
tors xt

∗ = (−α, 1, α) for α ∈ �. Suppose we want to find the
“smallest” solution. Under the usual squared norm ‖x‖2 =
x2

1 + x2
2 + x2

3 , the smallest solution is xt
s = (0, 1, 0).

Now consider a more general problem. For a given p × n ma-
trix R and n × 1 matrix η, solve

Rtx = η, (3)

where Rt is the transpose of R, x and the columns of R, say Rk ,
k = 1, 2, . . . , n, are all in �p, and η ∈ �n. We wish to find the
solution xs that minimizes the norm ‖x‖ = √

xtx. We solve the
problem using concepts that extend to RKHS.

A solution x∗ (not necessarily a minimum norm solution)
exists whenever η ∈ C(Rt ). Here, C(Rt ) denotes the column
space of Rt . Given one solution x∗, all solutions x must satisfy

Rtx = Rtx∗

or

Rt (x∗ − x) = 0.

The vector x∗ can be written uniquely as x∗ = x0 + x1, with
x0 ∈ C(R) and x1 ∈ C(R)⊥, where C(R)⊥ is the orthogonal
complement of C(R) (i.e., xt

0x1 = 0, with orthogonality defined
more formally in Definition 2.6). Clearly, x0 is a solution because
Rt (x∗ − x0) = Rtx1 = 0.

In fact, x0 is both the unique solution in C(R) and the
minimum norm solution. If x is any other solution in C(R),
then Rt (x − x0) = 0 so we have both (x − x0) ∈ C(R)⊥ and
(x − x0) ∈ C(R), two sets whose intersection is only the 0 vec-
tor. Thus, x − x0 = 0 and x = x0. In other words, every solution
x∗ has the same x0 vector. Finally, x0 is also the minimum norm
solution because the arbitrary solution x∗ has

xt
0x0 ≤ xt

0x0 + xt
1x1 = xt

∗x∗.

We have established the existence of a unique, minimum norm
solution in C(R) that can be written as

xs ≡ x0 = Rξ =
n∑

k=1

ξkRk, (4)

for some ξk , k = 1, . . . , n. To find xs explicitly, write xs =
Rξ and the defining Equation (3) becomes

RtRξ = η, (5)

which is just a system of linear equations. Even if there exist
multiple solutions ξ, Rξ is unique.

Now we use this framework to find the “smallest” solution to
the system of Equations (1) and (2). In the general framework,
we have

xt = (x1, x2, x3),

ηt = (0, 1),

Rt
1 = (1, 0, 1),

Rt
2 = (0, 1, 0).

We know that the solution has the form (4) and we also know
that we have to solve a system of equations given by (5). In this
case, the system of equations is

2ξ1 + 0ξ2 = 0,

0ξ1 + 1ξ2 = 1.

The solution to the system is (ξ1, ξ2) = (0, 1), which implies
that our solution to the original problem is xs = 0R1 + 1R2 =
(0, 1, 0)t , as expected.

Virtually, the same methods can be used to solve a similar
problem in any inner-product space �. As discussed later, an
inner product 〈·, ·〉 assigns real numbers to pairs of “vectors.” For
given vectors Rk ∈ � and numbers ηk ∈ �, find x ∈ � such that

〈Rk, x〉 = ηk, k = 1, 2, . . . , n, (6)

for which the norm of ‖x‖ ≡ √〈x, x〉 is minimal. The solution
has the form

xs =
n∑

k=1

ξkRk, (7)

with ξk satisfying the linear equations

n∑
k=1

〈Ri , Rk〉ξi = ηi, i = 1, . . . , n.

For a formal proof, see Máté (1990, p. 70). In RKHS applica-
tions, vectors are typically functions. We now apply this result
to the interpolating spline problem.

1.2 Interpolating Splines

Suppose we want to find a function f (t) that interpolates be-
tween the points (tk, ηk), k = 0, 1, 2, . . . , n, where η0 ≡ 0 and
0 = t0 < t1 < · · · < tn = 1. We restrict attention to functions
f ∈ F where F={f : f is absolutely continuous on [0, 1],
f (0) = 0,

∫ 1
0 [f ′(t)]2dt < ∞ }. Throughout, f (m) denotes the

mth derivative of f , with f ′ ≡ f (1) and f ′′ ≡ f (2). The restric-
tion that η0 = f (0) = 0 is not really necessary, but simplifies
the presentation.

We want to find the smoothest function f (t) that satisfies
f (tk) = ηk , k = 1, . . . , n. Defining an inner product on F by

〈f, g〉 =
∫ 1

0
f ′(x)g′(x)dx

implies a norm over the space F that is small for “smooth” func-
tions. To address the interpolation problem, note that the func-
tions Rk(s) ≡ min(s, tk), k = 1, 2, . . . , n have Rk(0) = 0 and
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the property that 〈Rk, f 〉 = f (tk) because

〈f,Rk〉 =
∫ 1

0
f ′(s)R′

k(s)ds

=
∫ tk

0
f ′(s)1ds +

∫ 1

tk

f ′(s)0ds

=
∫ tk

0
f ′(s)ds = f (tk) − f (0) = f (tk).

Thus, an interpolator f satisfies a system of equations such as
(6), namely

f (tk) = 〈Rk, f 〉 = ηk, k = 1, . . . , n, (8)

and by (7), the smoothest function f (minimum norm) that sat-
isfies the requirements has the form

f̂ (t) =
n∑

k=1

ξkRk(t).

The ξj ’s are the solutions to the system of real linear equations
obtained by substituting f̂ into (8),

n∑
j=1

〈Rk,Rj 〉ξj = ηk, k = 1, 2, . . . , n.

Note that

〈Rk,Rj 〉 = Rj (tk) = Rk(tj ) = min(tk, tj )

and define the function

R(s, t) = min(s, t),

which turns out to be an RK.

1.2.1 Numerical Example

Given points f (ti) = ηi , say, f (0) = 0, f (0.1) = 0.1,

f (0.25) = 1, f (0.5) = 2, f (0.75) = 1.5, and f (1) = 1.75,
we find

arg minf ∈F ‖f ‖2 =
∫ 1

0
f ′(x)2dx.

The system of equations is

0.1ξ1 + 0.1ξ2 + 0.1ξ3 + 0.1ξ4 + 0.1ξ5 = 0.1

0.1ξ1 + 0.25ξ2 + 0.25ξ3 + 0.25ξ4 + 0.25ξ5 = 1

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.5ξ4 + 0.5ξ5 = 2

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.75ξ4 + 0.75ξ5 = 1.5

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.75ξ4 + ξ5 = 1.75.

The solution is ξ = (−5, 2, 6,−3, 1)t , which implies that our
function is

f̂ (t) = −5R1(t) + 2R2(t) + 6R3(t) − 3R4(t) + 1R5(t) (9)

= −5R(t, t1) + 2R(t, t2) + 6R(t, t3) − 3R(t, t4)

+ 1R(t, t5) (10)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

re
sp

on
se

Figure 1. Linear interpolating spline. The online version of this figure
is in color.

or, adding the slopes for t > ti and finding the intercepts,

f̂ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t 0 ≤ t ≤ 0.1

6t − 0.5 0.1 ≤ t ≤ 0.25

4t 0.25 ≤ t ≤ 0.5

−2t + 3 0.5 ≤ t ≤ 0.75

t + 0.75 0.75 ≤ t ≤ 1

.

This is the linear interpolating spline, as can be seen graphically
in Figure 1.

For this illustration, we restricted f so that f (0) = 0. This
was only for convenience of presentation. It can be shown that
the form of the solution remains the same with any shift to
the function, so in general, the solution takes the form f̂ (t) =
ξ0 + ∑n

j=1 ξjRj (t), where ξ0 = η0.
The key points are (a) the elements Ri that allow us to express

a function evaluated at a point as an inner-product constraint,
and (b) the restriction to functions in F. F is a very special
function space, an RKHS, and Ri is determined by an RK R.

Ultimately, our goal is to address more complicated regression
problems like the linear smoothing spline problem.

1.2.2 Linear Smoothing Spline Problem

Consider simple regression data (xi, yi) with 0 ≤ xi ≤ 1, i =
1, . . . , n, and finding the function that minimizes

1

n

n∑
i=1

{yi − f (xi)}2 + λ

∫ 1

0
f ′(x)2dx. (11)

If f (x) is restricted to be in some class of functions F, mini-
mizing only the first term gives least-squares estimation within
F. If F contains functions with f (xi) = yi for all i, such func-
tions minimize the first term but are typically very “unsmooth,”
that is, have a large second term. The second “penalty” term
is minimized by having a horizontal line, but that rarely has a
small first term. As we will see in Section 4, for suitable F, the
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minimizer takes the form

f̂ (x) = ξ0 +
n∑

i=1

ξiRi(x),

where the Ri’s are known functions and the ξi’s are coefficients
found by solving a system of linear equations. This produces a
linear smoothing spline.

If our goal is only to derive the solution to the linear smoothing
spline problem with one predictor variable, RKHS theory is
overkill. The value of RKHS theory lies in its generality. The
linear spline penalty can be replaced by any other penalty with an
associated inner product, and the xi’s can be vectors in �p . Using
RKHS results, we can solve the general problem of finding
the minimizer of 1

n

∑n
i=1 (yi − f (xi))2 + λJ (f ) for a general

functional J that corresponds to a squared norm in a subspace.
See Wahba (1990) or Gu (2002) for a full treatment of this
approach. We now present an introduction to this theory.

2. VECTOR, BANACH, AND HILBERT SPACES

This section presents background material required for the
formal development of the RKHS framework.

2.1 Vector Spaces

A vector space is a set that contains elements called “vectors”
and supports two kinds of operations: addition of vectors and
multiplication by scalars. The scalars are drawn from some
field (the real numbers in the rest of this article) and the vector
space is said to be a vector space over that field. Formally, a
set V is a vector space over a field F if there exists a structure
{V, F,+,×, 0v} consisting of V , F, a vector addition operation
+, a scalar multiplication ×, and an identity element 0v ∈ V .
This structure must obey the following axioms for any u, v, w ∈
V and a, b∈ F :

• Associative law: (u + v) + w = u + (v + w).
• Commutative law: u + v = v + u.
• Inverse law: ∃s ∈ V s.t. u + s = 0v . (Write −u ≡ s.)
• Identity laws:

◦ 0v + u = u.
◦ 1 × u = u.

• Distributive laws:
◦ a × (b × u) = (a × b) × u.
◦ (a + b) × u = a × u + b × u.
◦ a × (u + v) = a × u + a × v.

We will write 0 for 0v ∈ V and u + (−v) as u − v. Any subset
of a vector space that is closed under vector addition and scalar
multiplication is called a subspace.

The simplest example of a vector space is just � itself, which
is a vector space over �. Vector addition and scalar multipli-
cation are just addition and multiplication on �. For more on
vector spaces and the other topics to follow in this section, see
Naylor and Sell (1982), Young (1988), Máté (1990), and Rustagi
(1994).

2.2 Banach Spaces

A Banach space has a level of additional structure over that
required to be a vector space. It is a vector space that also has
a distance measure called a “norm” and is “complete” under
that norm. Defining a Banach space sets the stage for defining a
Hilbert space, which involves an additional bit of structure (an
“inner product”) beyond that required to be a Banach space.

Definition 2.1. A norm of a vector space V , denoted by || · ||,
is a nonnegative real-valued function satisfying the following
properties for all u, v ∈ V and all a ∈ �:

(1) Nonnegative: ||u|| ≥ 0
(2) Strictly positive: ||u|| = 0 implies u = 0
(3) Homogeneous: ||au|| = |a| ||u||
(4) Triangle inequality: ||u + v|| ≤ ||u|| + ||v||

Definition 2.2. A vector space is called a normed vector space
when a norm is defined on the space.

Definition 2.3. A sequence {vn} in a normed vector space V
is said to converge to v0 ∈ V if

lim
n→∞ ||vn − v0|| = 0.

Definition 2.4. A sequence {vn} ⊂ V is called a Cauchy se-
quence if for any given ε > 0, there exists an integer N such
that

||vm − vn|| < ε, whenever m, n ≥ N.

Convergence of sequences in normed vector spaces follows the
same general idea as sequences of real numbers except that the
distance between two elements of the space is measured by the
norm of the difference between the two elements.

Definition 2.5 (Banach space). A normed vector space V is
called complete if every Cauchy sequence in V converges to
an element of V . A complete normed vector space is called a
Banach space.

Example 2.1. � with the absolute value norm ‖x‖ ≡ |x| is
a complete, normed vector space over �, and is thus a Banach
space.

Example 2.2. Let x = (x1, . . . , xn)t be a point in �n. The
lp norm on �n is defined by

||x||p =
[

n∑
i=1

|xi |p
]1/p

for 1 ≤ p < ∞.

One can verify properties (1)–(4) at the beginning of this section
for each p, validating that ||x||p is a norm on �n. Under the
lp norm, �n is complete and thus a Banach space.

2.3 Hilbert Spaces

A Hilbert space is a Banach space in which the norm is defined
by an inner product (also called dot product), which we define
next. We typically denote Hilbert spaces by H. For elements
u, v ∈ H , write the inner product of u and v either as 〈u, v〉H or,
when it is clear by context that the inner product is taking place
in H, as 〈u, v〉. If H is a vector space over F, the result of the
inner product is an element in F. We have F = �, so the result
of an inner product will be a real number. The inner-product
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operation must satisfy four properties for all u, v, w ∈ H and
all a ∈ F .

(1) Associative: 〈au, v〉 = a〈u, v〉.
(2) Commutative: 〈u, v〉 = 〈v, u〉.
(3) Distributive: 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉.
(4) Positive definite: 〈u, u〉 ≥ 0, with equality holding only if

u = 0.

Definition 2.6. A vector space with an inner product defined
on it is called an inner-product space. The norm of an element
u in an inner-product space is taken as ||u|| = 〈u, u〉1/2. Two
vectors are said to be orthogonal if their inner product is 0, and
two sets of vectors are said to be orthogonal if every vector
in one is orthogonal to every vector in the other. The set of
all vectors orthogonal to a subspace is called the orthogonal
complement of the subspace. A complete inner-product space
is called a Hilbert space.

Example 2.3. �n with inner product defined by

〈u, v〉 ≡ utv =
n∑

i=1

uivi

is a Hilbert space. For any positive definite matrix A, 〈u, v〉 ≡
utAv also defines a valid inner product.

Example 2.4. Let L2(a, b) be the vector space of all real-
valued functions defined on the interval (a, b) that are square
integrable and define the inner product

〈f, g〉 ≡
∫ b

a

f (x)g(x)dx.

The inner-product space L2(a, b) is well known to be complete
(see de Barra 1981); thus, L2(a, b) is a Hilbert space.

3. REPRODUCING KERNEL HILBERT
SPACES (RKHS)

Hilbert spaces that display certain properties on certain linear
operators are called reproducing kernel Hilbert spaces (RKHS).

Definition 3.1. A function T mapping a vector space X into
another vector space Y is called a linear operator if T (λ1x1 +
λ2x2) = λ1T (x1) + λ2T (x2) for any x1, x2 ∈ X and any λ1, λ2 ∈
�.

Any m × n matrix A maps vectors in �n into vectors in �m via
Ax = y and is linear.

Definition 3.2. The operator T : X → Y mapping a Banach
space into a Banach space is continuous at x0 ∈ X if and only
if for every ε > 0, there exists δ = δ(ε) > 0 such that for every
x with ||x − x0|| < δ, we have ||T x − T x0|| < ε.

Linear operators are continuous everywhere if they are con-
tinuous at 0.

Definition 3.3. A real-valued function defined on a vector
space is called a functional.

A 1 × n matrix defines a linear functional on �n.
Example 3.1. Let S be the set of bounded real-valued continu-

ous functions {f (x)} defined on the real line. Then, S is a vector
space with the usual + and × operations for functions. Some
functionals on S are φ(f ) = ∫ b

a
f (x)dx and φa(f ) = f ′(a) for

some fixed a and b. A functional of particular importance is the
evaluation functional.

Definition 3.4. Let V be a vector space of functions defined
from E into �. For any t ∈ E, denote by et the evaluation
functional at the point t; that is, for g ∈ V , the mapping is
et (g) = g(t).

For V = �p, vectors can be viewed as functions from the set
E = {1, 2, . . . , p} into �. An evaluation functional is ei(x) =
xi . Clearly, evaluation functionals are linear operators.

In a Hilbert space (or any normed vector space) of functions,
the notion of pointwise convergence is related to the continuity
of the evaluation functionals. The following are equivalent for
a normed vector space H of real-valued functions:

(i) The evaluation functionals are continuous for all t ∈ E.
(ii) If fn, f ∈ H , and ||fn − f || →0, then fn(t) → f (t) for

every t ∈ E.
(iii) For every t ∈ E, there exists Kt > 0 such that |f (t)| ≤

Kt ||f || for all f ∈ H .

Here, (ii) is the definition of (i). See Máté (1990, p. 123) for
a proof of (iii).

To define an RK, we need the famous Riesz representation
theorem.

Theorem 3.1. Let H be a Hilbert space and let φ be a con-
tinuous linear functional on H. Then, there is one and only one
vector g ∈ H such that

φ(f ) = 〈f, g〉, for all f ∈ H.

The vector g is sometimes called the representation of φ.
However, φ and g are different objects: φ is a linear functional
on H and g is a vector in H. For a proof of this theorem, see
Naylor and Sell (1982) or Máté (1990, p. 84).

Recall, for H = �p, an evaluation functional is ei(x) = xi .
The representation of this linear functional is the indicator vector
ei that is 0 everywhere except has a 1 in the ith place. Then,

xi = ei(x) = xtei .

In fact, the entire representation theorem is well known in �p be-
cause for φ(x) to be a linear functional, there must exist a vector
φ such that

φ(x) = φtx.

An element of a set of functions, say f , is sometimes de-
noted f (·) to be explicit that the elements are functions, whereas
f (t) is the value of f (·) evaluated at t ∈ E. Applying the Riesz
representation theorem to a Hilbert space H of real-valued func-
tions in which evaluation functionals are continuous, for every
t ∈ E, there is a unique symmetric function R : E × E → �,
with R(·, t) ∈ H the representation of et , so that

f (t) = et (f ) = 〈f (·), R(·, t)〉H , f ∈ H.

The function R is called a reproducing kernel (RK) and f (t) =
〈f (·), R(·, t)〉 is called the reproducing property of R. In partic-
ular, by the reproducing property

R(s, t) = 〈R(·, t), R(·, s)〉.
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In Section 1.2, we found the RK for the linear interpolating
spline problem, R(s, t) = min(s, t). For any fixed t, R(·, t) is
a part of the space F defined there, since R(0, t) = 0 and∫ 1

0 [∂R(s, t)/∂s]2ds < ∞. Also, R has the reproducing property
since

〈f,R(·, t)〉 =
∫ 1

0
[f ′(s)∂R(s, t)/∂s]ds

=
∫ t

0
f ′(s)1ds +

∫ 1

t

f ′(s)0ds

= f (t) − f (0) = f (t).

Many other, more detailed, examples involving RKHS and their
RK’s follow, but first, the formal definition of an RKHS is
presented next.

Definition 3.5. A Hilbert space H of functions defined on E
is called a reproducing kernel Hilbert space if all evaluation
functionals are continuous.

We now present several RKHS examples that we will then
use to solve some familiar penalized regression problems in
Section 4.

3.1 Examples of RKHS

Example 3.2. Consider the space of all constant functionals
over x = (x1, x2, . . . , xp)t ∈ �p,

H = {fθ : fθ (x) = θ, θ ∈ �},
with 〈fθ , fλ〉 = θλ. (For simplicity, think of p = 1.) Since �p is
a Hilbert space, so is H. H has continuous evaluation functionals,
so it is an RKHS and has a unique RK. To find the RK, observe
that R(·, x) ∈ H , so it is a constant for any x. Write R(x) ≡
R(·, x). By the representation theorem and the defined inner
product

θ = fθ (x) = 〈fθ (·), R(·, x)〉 = θR(x)

for any x and θ . This implies that R(x) ≡ 1 so that R(·, x) =
R(x) ≡ 1 and R(·, ·) ≡ 1.

Example 3.3. Consider all linear functionals over x ∈
�p passing through the origin

H = {fθ : fθ (x) = θtx, θ ∈ �p}.
Define 〈fθ , fλ〉 = θtλ = θ1λ1 + θ2λ2 + · · · + θpλp. The ker-
nel R must satisfy

fθ (x) = 〈fθ (·), R(·, x)〉
for all θ and any x. Since R(·, x) ∈ H , R(v, x) = utv for some
u that depends on x, that is, R(·, x) = fu(x)(·), so R(v, x) =
u(x)tv. By our definition of H, we have

θtx = fθ (x) = 〈fθ (·), R(·, x)〉 = 〈fθ (·), fu(x)(·)〉 = θtu(x),

so we need u(x) such that for any θ and x, we have

θtx = θtu(x).

It follows that u(x) = x. For example, taking θ to be the indicator
vector ei implies that ui(x) = xi for every i = 1, . . . , p. We now
have R(·, x) = f x(·) so that

R(x̃, x) = xt x̃ = x1x̃1 + x2x̃2 + · · · + xpx̃p.

Before moving on to the next example, we present one more
concept that is useful in RKHS approaches to regression prob-
lems.

3.1.1 The Projection Principle for an RKHS

Consider the connection between the RK R of the RKHS H
and the RK R0 for a subspace H0 ⊂ H . Let H⊥

0 be the orthogonal
complement of H0. Then, any vector f ∈ H can be written
uniquely as f = f0 + f1, with f0 ∈ H0 and f1 ∈ H⊥

0 . More
particularly, R(·, t) = R0(·, t) + R1(·, t), with R0(·, t) ∈ H0 and
R1(·, t) ∈ H⊥

0 if and only if R0 is the RK of H0 and R1 is the
RK of H⊥

0 . For a proof, see Gu (2002).
Example 3.4. Now consider all affine (i.e., linear plus a con-

stant) functionals in �p,

H = {fθ : fθ (x) = θ0 + θ1x1 + · · · + θpxp, θ ∈ �p+1},

with 〈fθ , fλ〉 = θ0λ0 + θ1λ1 + · · · + θpλp. The subspace H0 =
{fθ ∈ H : θ0 ∈ �, 0 = θ1 = · · · = θp} has the orthogonal com-
plement H⊥

0 = {fθ ∈ H : 0 = θ0}. For practical purposes, H0 is
the space of constant functionals from Example 3.2 and H⊥

0 is
the space of linear functionals from Example 3.3. Note that the
inner product on H when applied to vectors in H0 and H⊥

0 , re-
spectively, reduces to the inner products used in Examples 3.2
and 3.3.

Write H as H = H0 ⊕ H⊥
0 , where ⊕ denotes the direct sum

of two vector spaces. For two subspaces A and B contained
in a vector space C, the direct sum is the space D = {a + b :
a ∈ A, b ∈ B}. Any elements d1, d2 ∈ D can be written as a1 +
b1 and a2 + b2, respectively, for some a1, a2 ∈ A and b1, b2 ∈
B. When the two subspaces are orthogonal, as in our example,
those decompositions are unique and the inner product between
d1 and d2 is 〈d1, d2〉 = 〈a1, a2〉 + 〈b1, b2〉. For more information
about direct sum decomposition see, for example, Berlinet and
Thomas-Agnan (2004) or Gu (2002).

We have already derived the RK’s for H0 and H⊥
0 (call them

R0 and R1, respectively) in Examples 3.2 and 3.3. Applying the
projection principle, the RK for H is the sum of R0 and R1, that
is,

R(x̃, x) = 1 + xt x̃.

Example 3.5. Denote by V the collection of functions f with
f ′′ ∈ L2[0, 1] and consider the subspace

W 0
2 = {f (x) ∈ V : f, f ′ absolutely continuous and

f (0) = f ′(0) = 0}.

Define an inner product on W 0
2 as

〈f, g〉 =
∫ 1

0
f ′′(t)g′′(t)dt. (12)

Below, we demonstrate that for f ∈ W 0
2 and any s, f (s) can be

written as

f (s) =
∫ 1

0
(s − u)+f ′′(u)du, (13)
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where (a)+ is a for a > 0 and 0 for a ≤ 0. Given any arbitrary
and fixed s ∈ [0, 1],∫ 1

0
(s − u)+f ′′(u)du =

∫ s

0
(s − u)f ′′(u)du .

Integrating by parts∫ s

0
(s − u)f ′′(u)du = (s − s)f ′(s) − (s − 0)f ′(0)

+
∫ s

0
f ′(u)du =

∫ s

0
f ′(u)du

and applying the fundamental theorem of calculus to the last
term, ∫ s

0
(s − u)f ′′(u)du = f (s) − f (0) = f (s) .

Since the RK of the space W 0
2 must satisfy f (s) =

〈f (·), R(·, s)〉 from (12) and (13), we observe that R(·, s) is
a function such that

d2R(u, s)

du2
= (s − u)+.

We also know that R(·, s) ∈ W 0
2 , so using R(s, t) = 〈R(·, t),

R(·, s)〉

R(s, t) =
∫ 1

0
(t − u)+(s − u)+du = max(s, t) min2(s, t)

2

− min3(s, t)

6
.

For more examples of RKHS with various inner products, see
Berlinet and Thomas-Agnan (2004).

4. PENALIZED REGRESSION WITH RKHS

As mentioned in the Introduction, nonparametric regression
is a powerful approach for solving many current problems. The
nonparametric regression model is given by

yi = f (xi) + εi, i = 1, 2, . . . , n,

where f is an unknown regression function and the εi are in-
dependent error terms. We start this section with two common
examples of penalized regression: ridge regression and smooth-
ing splines.

Ridge regression: In the classical linear regression setting
yi = xt

iβ + εi , the ridge regression estimator β̂R proposed by
Hoerl and Kennard (1970) minimizes

1

n

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j , (14)

where xij is the ith observation of the jth component. The re-
sulting estimate is biased but can reduce the variance relative to
least-squares estimates. The tuning parameter λ ≥ 0 is a con-
stant that controls the tradeoff between bias and variance in
β̂R , and is often selected by some form of cross-validation; see
Section 4.4.

Smoothing splines: Smoothing splines are among the most
popular methods for the estimation of f , due to their good em-
pirical performance and sound theoretical support. It is often

assumed, without loss of generality, that the domain of f is
[0, 1]. With f (m) the mth derivative of f , a smoothing spline
estimate f̂ is the unique minimizer of

1

n

n∑
i=1

{yi − f (xi)}2 + λ

∫
[f (m)(x)]2dx. (15)

The minimization of (15) is implicitly over functions with
square integrable mth derivatives. The first term of (15) en-
courages the fitted f to be close to the data, while the second
term penalizes the roughness of f . The smoothing parameter λ,
usually prespecified, controls the tradeoff between the two con-
flicting goals. The special case of m = 1 reduces to the linear
smoothing spline problem from (11). In practice, it is common
to choose m = 2, in which case the minimizer fλ of (15) is
called a cubic smoothing spline. As λ → ∞, f̂λ approaches
the least-squares simple linear regression line, while as λ → 0,
f̂λ approaches the minimum curvature interpolant.

4.1 Solving the General Penalized Regression Problem

We now review a general framework to minimize (14), (15),
and many other similar criteria (cf. O’Sullivan, Yandell, and
Raynor 1986; Lin and Zhang 2006; Storlie, Bondell, and Reich
2010; Storlie et al. 2010; Gu and Qiu 1993). The data model is

yi = f (xi) + εi, i = 1, 2, . . . , n, (16)

where the εi are error terms and f ∈ V , a given vector space of
functions on a set E.

An estimate of f is obtained by minimizing

1

n

n∑
i=1

{yi − f (xi)}2 + λJ (f ), (17)

over f ∈ V , where J is a penalty functional that must satisfy sev-
eral restrictions and that helps to define the vector space V . We
require (a) that J (f ) ≥ 0 for any f in some vector space Ṽ ; (b)
that the null set N = {f ∈ Ṽ : J (f ) = 0} be a subspace, that is,
that it be closed under vector addition and scalar multiplication;
(c) that for fN ∈ N and f ∈ Ṽ , we have J (fN + f ) = J (f );
and (d) that there exists an RKHS H contained in Ṽ for which
the inner product satisfies 〈f, f 〉 = J (f ). This condition forces
the intersection of N and H to contain only the zero vector.

Define a finite-dimensional subspace of N, say N0, with a
basis of known functions, say {φ1, . . . , φM}, and M ≤ n. In
applications, N is often finite-dimensional, and we can simply
take N0 = N . In the minimization problem, we restrict attention
to f ∈ V , where

V ≡ N0 ⊕ H.

For Example 3.5, Ṽ consists of functions in L2[0, 1] with
finite values of

J (f ) ≡
∫ 1

0

[
f ′′(t)

]2
dt.

J (f ) satisfies our four conditions with H = W 0
2 . The linear

functions f (x) = a + bx are in N, so we can take φ1(x) ≡ 1 and
φ2(x) = x. Note that Equation (12) defines an inner product on
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W 0
2 but does not define an inner product on all of Ṽ because

nonzero functions could have a zero inner product with them-
selves, hence the nontrivial nature of N.

The key result [Wahba’s representation theorem, also known
as the “dual form” or “kernel trick” (Pearce and Wand 2006)]
is that the minimizer of (17) is a linear combination of known
functions involving the RK on H. This fact will allow us to find
the coefficients of the linear combination by solving a quadratic
minimization problem similar to those in standard linear models.

Representation theorem: The minimizer f̂λ of Equation (17)
has the form

f̂λ(x) =
M∑

j=1

djφj (x) +
n∑

i=1

ciR(xi , x), (18)

where R(s, t) is the RK for H. An informal proof is given next,
see Wahba (1990) or Gu (2002) for a formal proof.

Since we are working in V , clearly, a minimizer f̂ must have
f̂ = f̂0 + f̂1, with f̂0 ∈ N0 and f̂1 ∈ H . We want to show that
f̂1(·) = ∑n

i=1 ciR(xi , ·). To simplify notation, write

f̂R(·) ≡
n∑

i=1

ciR(xi , ·). (19)

Decompose H as H = H0 ⊕ H⊥
0 , where H0 =

span{R(xi , ·), i = 1, . . . , n} so that

f̂1(·) = f̂R(·) + η(·),
with η(·) ∈ H⊥

0 . By orthogonality and the reproducing property
of the RK,

0 = 〈R(xi , ·), η(·)〉 = η(xi).

We now establish the representation theorem. Using our as-
sumptions about J,

1

n

n∑
i=1

{yi − f̂ (xi)}2 + λJ (f̂ )

= 1

n

n∑
i=1

{yi − f̂0(xi) − f̂1(xi)}2 + λJ (f̂0 + f̂1)

= 1

n

n∑
i=1

{yi − f̂0(xi) − f̂1(xi)}2 + λJ (f̂1)

= 1

n

n∑
i=1

{yi − f̂0(xi) − f̂R(xi) − η(xi)}2 + λJ (f̂R + η).

Because η(xi) = 0 and using orthogonality within H,

1

n

n∑
i=1

{yi − f̂ (xi)}2 + λJ (f̂ )

= 1

n

n∑
i=1

{yi − f̂0(xi) − f̂R(xi)}2 + λ
[
J (f̂R) + J (η)

]

≥ 1

n

n∑
i=1

{yi − f̂0(xi) − f̂R(xi)}2 + λJ (f̂R).

Clearly, any η �= 0 makes the inequality strict, so minimizers
have η = 0, f̂ = f̂0 + f̂R , and the last inequality an equality.

A remarkable feature of the result in (18) is that the form
of the minimizer is represented by a finite-dimensional basis,
regardless of the dimension of H. For example, H could be all
functions with second derivative in L2, such as in the cubic
smoothing spline problem. This H would require an infinite
expansion of basis functions to represent all functions in the
space, yet the solution of the minimization can be represented
by a finite basis! So once we know that the minimizer takes the
form (18), we can find the coefficients of the linear combination
by solving a quadratic minimization problem similar to those
in standard linear models. This occurs because we can write
J (f̂ ) = J (f̂R) as a quadratic form in c = (c1, . . . , cn)t . Define
� as the n × n matrix where the i, j entry is �ij = R(xi , xj ).
The matrix � is commonly referred to as the Gram matrix
(Wahba 1990; Gu 2002). Now, using the reproducing property
of R, write

J (f̂R) =
〈

n∑
i=1

ciR(xi , ·),
n∑

j=1

cjR(xj , ·)
〉

=
n∑

i=1

n∑
j=1

cicjR(xi , xj ) = ct�c.

Define the observation vector y = [y1, . . . , yn]t , and let T be
the n × M matrix with the ij th entry defined by Tij = {φj (xi)}.
The minimization of (17) then takes the form

min
c,d

1

n
||y − (Td + �c)||2 + λct�c. (20)

To solve (20), we define the following matrices:

Qn×(n+M) = [
Tn×M �n×n

]
,

γ(n+M)×1 =
[

dM×1

cn×1

]
,

and

S(n+M)×(n+M) =
[

0M×M 0M×n

0n×1 �n×n

]
.

Now, Equation (20) becomes

min
γ

1

n
||y − Qγ||2 + λγtSγ. (21)

The minimization in (21) is the same as a generalized ridge
regression. Taking derivatives with respect to γ, we have

(QtQ + λS)γ̂ = Qty,

which requires solving a system of n + M equations to find γ̂.
For analytical purposes, we can write γ̂ as

γ̂ = (QtQ + λS)−Qty. (22)

As long as T is of full-column rank, f̂λ is unique. If the xi are not
unique, then γ̂ is not unique as defined, but f̂λ is still unique.
One could simply use only the unique xi in the definition of
fR in (19) to ensure that γ̂ is unique in that case as well.
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Alternatively, γ̂ can be obtained as the generalized least-
squares estimate from fitting the linear model[

y
0

]
=

[
T �

0n×M In×n

] [
d
c

]
+ e,

cov(e) ∝
[

In×n 0n×n

0n×n (1/λ)�−1
n×n

]
.

For clarity, we have restricted our attention to minimizing
(17), which incorporates squared error loss between the obser-
vations and the unknown function evaluations. The representa-
tion theorem holds for more general loss functions (e.g., those
from logistic or Poisson regression); see Gu (2002).

4.2 General Solution Applied to Cubic Smoothing Spline

Consider again the regression problem yi = f (xi) + εi, i =
1, 2, . . . , n, where xi ∈ [0, 1] and εi ∼ N (0, σ 2). We focus on
the cubic smoothing spline solution to this problem. That is, we
find a function that minimizes

n∑
i=1

{yi − f (xi)}2 + λ

∫
f ′′(x)2dx.

As discussed in Section 4.1, N is the space of linear functions
from Example 3.4 with p = 1 [see also Equation (24)] and a
basis of φ1(x) = 1, φ2(x) = x. In this case, N happens to be an
RKHS, but in general, it is not even necessary to define an inner
product on N. H = W 0

2 comes from Example 3.5. We know that
the RK for H is

R(s, t) =
∫ 1

0
(t − u)+(s − u)+du

= max(s, t) min2(s, t)

2
− min3(s, t)

6
,

so the solution has the form

f̂ (x) = d̂0(1) + d̂1xi +
n∑

i=i

ĉiR(xi, x).

From (22), we have

(QtQ + λS)−1Qty =
[

d̂
ĉ

]
. (23)

The online supplementary material provides code written in the
R language (R Development Core Team 2005) and plots for fit-
ting the cubic smoothing spline solution in (23) to some motor-
cycle accident data. The demonstration also includes searching
for the best value of the tuning parameter λ, which is briefly
discussed in Section 4.4.

As an aside, it is well known that the basis functions
R(xi, x) (that form the columns of Q when evaluated at the
data points) form a natural cubic spline with knots at the dis-
tinct values of xi ; see Wahba (1990) for a justification, which
just involves some algebra. The max(xi, x) and min(xi, x) in
R(xi, x) combine in a way to produce knots at the xi , while the
degree of the polynomial spline would clearly be three, since it
is the highest power present in R(s, t). This is the reason that the
minimization problem in this section has been given the name
“cubic” smoothing “spline.”

4.3 General Solution Applied to Ridge Regression

We now solve the linear ridge regression problem of minimiz-
ing (14) with the RKHS approach detailed earlier. Although the
RKHS framework is not necessary to solve the ridge regression
problem, it serves as a good illustration of the RKHS machinery.

To put the ridge regression problem in the framework of (17),
consider

Ṽ =
{
f (x) = β0 +

p∑
j=1

βjxj

}
, (24)

with the penalty function

J (f ) =
p∑

j=1

β2
j .

Note that by letting Ṽ = V0 ⊕ H , where V0 is the RKHS from
Example 3.2 and H is from Example 3.3, we have J (f ) =
〈f, f 〉H . The dimension of V0 = N = N0 is M = 1 and φ1(x) =
1.

From (18), the solution takes the form

f̂λ(x) = d̂1 +
n∑

i=1

ĉiR(xi , x), (25)

with

(QtQ + λS)−1Qty =
[

d̂1

ĉ

]
, (26)

as given by (22). In this case, it is more familiar to write the
solution in what Pearce and Wand (2006) referred to as the
“primal” form,

f̂λ(x) = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂pxp.

This can be done by recalling from Example 3.3 that

R(xi , x) = xi1x1 + xi2x2 + · · · + xipxp.

Substituting into (25) gives

f̂ (x) = d̂1 +
n∑

i=1

ĉixi1x1 +
n∑

i=1

ĉixi2x2 + · · · +
n∑

i=1

ĉixipxp,

which implies that

β̂0 = d̂1 and β̂j =
n∑

i=1

ĉixij (27)

for j = 1, 2, . . . , p. In the online supplementary material, we
demonstrate this solution on Longley’s (1967) employment data
using the statistical software R. The RKHS solution applied to
ridge regression is mostly for illustrative (not practical) pur-
poses, as it requires an (n + 1) × (n + 1) matrix solve. This is,
of course, less efficient than the standard approach unless p > n.

Both of the previous examples illustrate a typical case in
which Ṽ is constructed as the direct sum of a vector space
V0 and an RKHS H whose intersection is the zero vector,

Ṽ = V0 ⊕ H.

Because the intersection is zero, any f ∈ Ṽ can be written
uniquely as f = f0 + f1, with f0 ∈ V0 and f1 ∈ H . The im-
portance of this is that if the penalty functional J happens to
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satisfy

J (f ) = 〈f1, f1〉H ,

then all of our assumptions about J hold immediately with N =
V0 and the solution in (22) can be applied.

As a further aside, when V0 is itself an RKHS, then Ṽ is an
RKHS under the inner product

〈f, g〉Ṽ ≡ 〈f0, g0〉V0 + 〈f1, g1〉H ,

with the RK RṼ = RV0 + RH . Note that V0 and H are orthogonal
under this inner product. This orthogonal decomposition of Ṽ is
also closely related to additive models (Wood 2006) and more
generally to smoothing spline ANOVA (analysis of variance)
models (Gu 2002), which also include tensor product splines as
a special case. Thin-plate splines (Wahba 1990) also fall nicely
into the general RKHS framework.

4.4 Choosing the Degree of Smoothness

With the penalized regression procedures described earlier,
the choice of the smoothing parameter λ is an important is-
sue. There are many methods available for this task, for exam-
ple, visual inspection of the fit, m-fold cross-validation (Kohavi
1995), Akaike information criterion (AIC)/unbiased risk esti-
mation, generalized maximum likelihood (Wahba 1990), and
generalized cross-validation (GCV) (Craven and Wahba 1979).
For those examples given in the online supplementary material,
we use the GCV approach, which works as follows for any gen-
eralized ridge regression solution, such as in (26). Suppose that
an estimate admits the following closed-form expression:

β̂ = (QtQ + λS)−1Qty.

The GCV choice of λ for this generalized ridge estimate is the
minimizer of

V (λ) = 1

n
||(I − A(λ)y||2

/ [
1

n
trace{I − A(λ)}

]2

,

where

A(λ) = Q(QtQ + λS)−1Qt .

The goal of GCV is to find the optimal λ so that the resulting
β̂ has the smallest mean squared error. For more details about
GCV and other methods of finding λ, see Golub, Heath, and
Wahba (1979), Allen (1974), Wecker and Ansley (1983), and
Wahba (1990).

5. CONCLUDING REMARKS

We have given several examples illustrating the utility of
the RKHS approach to solve penalized regression problems.
We reviewed the building blocks (spaces) necessary to de-
fine an RKHS and presented several key results about these
spaces. Finally, we used the results to illustrate application to
cubic smoothing spline problems and ridge regression, provid-
ing transparent R code to enhance understanding.

The reader is now encouraged to explore some more advanced
articles and texts that they now have the tools to access and un-
lock the full potential of RKHS methods. Wahba (1990) and Gu

(2002) discussed smoothing spline ANOVA, which is a flexible
modeling framework ranging from additive modeling on one ex-
treme to full tensor product splines on the other. Gu (2002) also
covered generalized models in the smoothing spline ANOVA
framework. Pearce and Wand (2006) explored the intimate con-
nection between RKHS in penalized regression and the much
used SVM. Lin and Zhang (2006) and Storlie et al. (2010) used
the RKHS framework to develop a smoothing spline version of
the popular Lasso (Tibshirani 1996) and adaptive Lasso (Zou
2006), respectively. The RKHS framework can also be used to do
spatially adaptive smoothing (Storlie, Bondell, and Reich 2010).
The flexibility and elegance of RKHS methods are remarkable.

SUPPLEMENTAL MATERIALS

Examples using R code to illustrate application of RKHS to
cubic smoothing spline and ridge regression.

[Received August 2011. Revised March 2012.]
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