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Question 1: Concept Review

(a) What are the pros and cons between Go-Back-N and Selective Repeat?
(b) What’s the purpose of “delayed ACK” and “triple duplicate ACK”?
(c) Why is a 2-way handshake not enough for establishing a TCP connection

but a 3-way handshake is?
(d) What’s the difference between flow control and congestion control?

For the answers, review the lectures, books, go to office hours, and use the
discussion board!
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Question 2: Estimating RTT and the Exponential Moving Average

Recall the TCP’s formula for estimating RTT:

EstimatedRTT = (1− α) · EstimatedRTT+ α · SampleRTT

In this question, suppose that α = 0.1. Let S1 be the most recent sample RTT,
let S2 be the next most recent sample RTT, and so on.

(a) Suppose that there have been four packets acknowledged with the RTTs
being S1, S2, S3, and S4. Express EstimatedRTT in terms of these four
sample RTTs.

(b) Generalize your formula for n sample RTTs.
(c) Let n approach infinity. Comment on why this averaging procedure is

called an exponential moving average.
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Question 2: Estimating RTT and the Exponential Moving Average (a)

Let us denote EstimatedRTT(n) for the estimate aǒter nth sample.

EstimatedRTT(4) = α · SampleRTT1 + (1− α) · [α · SampleRTT2+
(1− α) · [α · SampleRTT3 + (1− α) · SampleRTT4]]

= α · SampleRTT1 + (1− α) · α · SampleRTT2+
(1− α)2 · α · SampleRTT3 + (1− α)3 · SampleRTT4
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Question 2: Estimating RTT and the Exponential Moving Average (a)

Let us denote EstimatedRTT(n) for the estimate aǒter nth sample.

EstimatedRTT(4) = α · SampleRTT1 + (1− α) · [α · SampleRTT2+
(1− α) · [α · SampleRTT3 + (1− α) · SampleRTT4]]

= α · SampleRTT1 + (1− α) · α · SampleRTT2+
(1− α)2 · α · SampleRTT3 + (1− α)3 · SampleRTT4
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Question 2: Estimating RTT and the Exponential Moving Average (b)

In order to get generalized formula, we can take our answer from part (a)
and examine the pattern.

EstimatedRTT(n) = α ·
n−1∑
j=1

(1− α)j−1 · SampleRTTj + (1− α)n−1 · SampleRTTn
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Question 2: Estimating RTT and the Exponential Moving Average (b)
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Question 2: Estimating RTT and the Exponential Moving Average (c)

Definition of exponential moving average: giving higher weight to more
recent events

As n −→ ∞, our generalized formula from part (b) becomes:

EstimatedRTT(∞) =
α

1− α
·

∞∑
j=1

(1− α)j · SampleRTTj

=
1
9 ·

∞∑
j=1

0.9j · SampleRTTj

Recall that SampleRTT1 is the most recent RTT.

We observe that the weight given to past samples decays exponentially!
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Question 3: Fairness of Additive Increase Additive Decrease

Refer to the lecturer slide that illustrates the convergence to fairness of the
AIMD algorithm (Page 66 of Week 5). Now suppose that instead of
multiplicative decrease, TCP does additive decrease, i.e., it decreases the
window size by a constant amount each time. Would the resulting AIAD
algorithm still converge to fairness? Justify your answer using a diagram
similar to the one in the lecture slide. More specifically, consider the
following two cases:

(a) The two connections decrease by the same constant each time, i.e., they
linearly decrease with the same slope.

(b) They two connections decrease by different constants each time, e.g.,
one connection’s constant is twice of the other connection’s constant.
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Question 3: Fairness of Additive Increase Additive Decrease

Let us first consider the case where two connections both linearly increase
and decrease with the same slope.

Let’s say connection 1 had more time to linearly increase its bandwidth,
compared to connection 2 initially. When bandwidth becomes full, both
connection 1 and 2 will linearly decrease its bandwidth until total bandwidth
is free enough for them to linearly increase again.

What would this look like? Would it be possible for connection 1 and 2 to
reach an equal bandwidth?

The bandwidth of connections will end up just oscillating back and fourth
between each other. Hence, it will never converge to fairness! (cannot
guarantee equal bandwidth share)
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Question 3: Fairness of Additive Increase Additive Decrease

Now, let us consider the case where one connection doubles its decrease
rate relative to the other connection.

Think of a similar scenario as previous case, but instead, connection 1
decreases faster than connection 2.

This time, what would happen every time total bandwidth is full?

Since connection 1 drops twice as much bandwidth as connection 2 when
full, connection 2 will start “hogging” more bandwidth overtime.

Meaning, this method will converge to allocating entire bandwidth to
connection 2!
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Question 4: Average Throughput of TCP

Recall the macroscopic description of TCP throughput. In the period of time
from when the connection’s rate varies from W · MSS

2·RTT to W · MSSRTT , only one
packet is lost (right before the decrease).

(a) Show that the loss rate (fraction of packets lost) is equal to

L = 1
(3/8) ·W2 + (3/4) ·W

(b) Use the result above to show that if a connection has loss rate L, then
its average throughput is approximately given by

Average throughput ≈ 1.22 ·MSS
RTT ·

√
L

You may assume that W is very large so that W2 >> W.
(c) Assuming, realistically, an MSS of 1500 bytes and a RTT of 100

milliseconds, in order to achieve a throughput of 10 Mbps, what’s the
requirement on the loss rate L? How about achieving a 10 Gbps
throughput? Discuss the potential issues of the current version of TCP.
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Question 4: Average Throughput of TCP (a)

Recall: Loss rate (L) is the ratio of the number of packets lost over the
number of packets sent.

Since we are said to be losing one packet every cycle, by definition of loss
rate, the numerator makes sense. Now let’s consider the number of packets
sent in a cycle (denominator):

W
2 + (

W
2 + 1) + ...+W =

W/2∑
n=0

(
W
2 + n)

= (
W
2 + 1) · W2 +

W/2∑
n=0

n

= (
W
2 + 1) · W2 +

W/2 · (W/2+ 1)
2

=
W2

4 +
W
2 +

W2

8 +
W
4

=
3
8 ·W2 +

3
4 ·W
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Question 4: Average Throughput of TCP (a)
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Question 4: Average Throughput of TCP (a)
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Question 4: Average Throughput of TCP (b)

Since W is large, we can say that 3
8 ·W

2 >> 3
4 ·W. In other words,

3
4 ·W starts

to mean a lot less as W increases.

This means that L ≈ 8
3 ·W

2 =⇒ W ≈
√

8
3·L . So, just with some substitution,

we have:

average throughput = 3
4 ·

√
8
3 · L · MSSRTT

=
3
4 ·

√
8
3 · MSS

RTT ·
√
L

=
1.22 ·MSS
RTT ·

√
L

Where did 3
4 come from?
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Question 4: Average Throughput of TCP (c)

We are now given MSS = 1500bytes and RTT = 100ms. Let us first consider
the throughput of 10 Mbps. Since we are given everything except L, we can
simply substitute the variables and solve for L:

throughput = 1.22 ·MSS
RTT ·

√
L

√
L = 1.22 ·MSS

RTT · throughput
√
L = 1.22 · 12000bits

0.1s · 10000000bps (Be careful with the units!)

L ≈ 2 · 10−4

Hence, to achieve 10 Mbps, the loss rate must be at most 2 · 10−4
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Question 4: Average Throughput of TCP (c)

Now let’s consider the case where throughput is 10 Gbps instead. We can
follow the same step except with 10 Gbps instead of 10 Mbps as the
throughput.

Following the same logic, we get L = 2 · 10−10 as our upper bound for loss
rate to achieve 10 Gbps!

Is this loss rate realistic? What does this say about TCP?

16



Question 4: Average Throughput of TCP (c)

Now let’s consider the case where throughput is 10 Gbps instead. We can
follow the same step except with 10 Gbps instead of 10 Mbps as the
throughput.

Following the same logic, we get L = 2 · 10−10 as our upper bound for loss
rate to achieve 10 Gbps!

Is this loss rate realistic? What does this say about TCP?

16



17


