CSC358 Week 5

© Adapted from slides by J.F. Kurose and K. W. Ross.
All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Logistics

= Assignment 2
* You're ready for all tasks after this lecture.

= A2 Extension:
* Now due on Tuesday, Feb 18 at 10:00 PM

Transport Layer 3-2

Recap: Reliable Data Transfer

" rdt3.0
* stop-and-wait
* checksum
* seq. # (one bit, 0 and 1)
* ACKs
* timeouts
* retransmissions
* data can be corrupted or lost

Transport Layer 3-3

Performance of rdt3.0

" rdt3.0 is correct, but performance stinks
" e.g.: | Gbps link, 30 ms RTT, 8000 bit packet:

L _ 8000bits 8 microsecs

Dyans = R = ; F bits/sec

" U (cnder: Utilization — fraction of time sender busy sending

v ___L/R 008
sender RTT+ /R " 30.008

" if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec
throughput over | Gbps link

" network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-4

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —
last packet bit transmitted, t =L/ Ry

— first packet bit arrives
RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet, t =RTT + L /R [
-

0.00027

Transport Layer 3-5

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
* range of sequence numbers must be increased
* buffering at sender and/or receiver

dafa packet— data packets—» "

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

= two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-6

Pipelining: increased

sender

first packet bit transmitted, t = 0
last bit transmitted, t=L/R

RTT

A |

ACK arrives, send next|
packet, t = RTT + L /R S5 =7

U

:.

v

sender

0024
30.008

utilization

receiver

first packet bit arrives
last packet bit arrives, send ACK

last bit of 3 packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

/

0.00081

Transport Layer 3-7

Pipelined protocols: overview

Go-back-N:

* sender can have up to
N unack’ed packets in
pipeline

" receiver only sends
cumulative ack

* doesn’ t ack packet if
there s a gap

= sender has timer for
oldest unacked packet

* when timer expires,
retransmit all unacked
packets

Selective Repeat:

= sender can have up to N
unack’ed packets in
pipeline

" rcvr sends individual ack
for each packet

= sender maintains timer
for each unacked packet

* when timer expires,
retransmit only that
unacked packet

Transport Layer 3-8

Go-Back-N: sender

= k-bit seq # in pkt header
= “window of up to N, consecutive unack’ ed pkts allowed

send_base nhexfsegnum dlready Lsable. rot
¢ l ack’ed yet sent
IR LT LR DREDN0000ND | sertoctea] rotesone
t _ window size —%
N

= ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”

* may receive duplicate ACKs (see receiver)
= timer for oldest in-flight pkt

= timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-9

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnuml)
if (base == nextsegnum)

start_timer
nextsegnum-++
~~~~~ }
A (initial) -, else
b=l refuse data(data)
nextsegnum=1 -, < D
anmimEn e . < timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(revpkt) G‘ udt_send(sndpkt[base+1])
&& corrupt(rcvpkt)
udt_send(sndpkt[nextsegnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum) # all in-flight segments are ACK’ed
stop_timer
else

start_timer
- Transport Layer 3-10



GBN: receiver extended FSM

otherwise
udt_send(sndpkt) rdt_rev(revpkt)
TS~ < D && notcurrupt(rcvpkt)
A S ~o - && hasseqgnum(rcvpkt,expectedseqgnum)
= -
expectedseqnum=1 Qextract(rcvpkt,data)
sndpkt = deliver_data(data)
make_pkt(0,ACK,chksum) sndpkt = make_pkt(expectedsegnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

* may generate duplicate ACKs
* need only remember expectedsegnum
" out-of-order pkt:

* discard (don’ t buffer): no receiver buffering!
* re-ACK pkt with highest in-order seq #

Transport Layer 3-11



GBN in action

sender window (N=4) sender recelver

5678 send pkt0

EBE): 567 8 send pktl \ _

5678 send pktz-\ receive pkt0, send ack0

5678 send pkt3 X Joss receive pktl, send ackl
(wait) receive pkt3, discard,

oflEE¥¥ 678 rcv ack0, send pkt4 (re)send ackl

01EE¥E¥ 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ack1l
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

Pkt 2 timeout _

Rl 2 3 4 5 FA: send pkt2
0 1EEEK 7 8 send pkt3 \

0 1EENE 7 8 send pkt4 rcv pkt2, deliver, send ack2
0 1P 7 8 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5
Correction: to be consistent with the FSM on Page 10, the /
first packet on this page should have been 1 instead of 0.

Transport Layer 3-12



Selective repeat

" receiver individually acknowledges all correctly
received pkts

* buffers pkts, as needed, for eventual in-order delivery
to upper layer

= sender only resends pkts for which ACK not
received
* sender timer for each unACKed pkt
" sender window

* N consecutive seq # s
* limits seq #s of sent, unACKed pkts

Transport Layer 3-13



Selective repeat: sender, receiver windows

send_base  nhexfsegnum dready sable. hot
i' ¢ ack’ed yet sent
0TI | i [ oo
L window size —2%
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but I (ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂllﬂlllllllllIﬂﬂﬂ et

t _ vindow size—4
N

Y Y Y v

rcv_base
(b) receiver view of sequence numbers

Transport Layer 3-14



Selective repeat

— sender
data from above:

" if next available seq # in
window, send pkt

timeout(n):
" resend pkt n, restart timer
ACK(n) IN [sendbase,sendbase+N]:

" mark pkt n as received

" if n smallest unACKed pkt,

advance window base to
next unACKed seq #

— receiver

Pl(t nin [rcvbase, rcvbase+N-1]
= send ACK(n)
= out-of-order: buffer

" in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t nin [rcvbase-N,rcvbase-1]
= ACK(n)

otherwise:

" ignore

Transport Layer 3-15




Selective repeat in action

sender window (N=4) sender receliver

5678 send pktO

5678 Send pktl \ receive pktO Send aCkO

EPE): 5678 send pkt2- . !

5678 send pkt3  T~X/oss receive pktl, send ackl
(wait)

receive pkt3, buffer,

ofEEEE:678 rcv ack0, send pkt4 send ack3

01EE¥E¥ 78 rcv ackl, send pkt5 receive pkt4, buffer

send ack4
_record ack3 artived receive pkt5, buffer,
Pkt 2 timeout _ send ack>
K12 3 4 5 Fh: send pkt2
0 1‘ 78 record ack4 arrived rov pkt2; deliver pkt2
NN 2 345 SRS : / ’
0 1EERE 7 8 record ack5 arrived / pkt3, pkt4, pkt5; send ack2

Q. what happens when ack2 arrives?

Transport Layer 3-16



Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

e flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-17



TCP: Overview Rrrcs: 793,1122,1323, 2018, 2581

" point-to-point: " full duplex data:

* one sender, one receiver e bi-directional data flow
= reliable, in-order byte In same connection

stream: * MSS: maximum segment
“ size
* no message . .
boundaries” " conhection-oriented:

= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

» flow controlled:

* sender will not
overwhelm receiver

* TCP congestion and
flow control set window
size

Transport Layer 3-18



TCP segment structure

32 bits

A

v

source port # dest port #

sequence number

various flags —
—_acknowledgement number

head ﬁBT\tJ
len |used

A‘P‘RS F| receive window

checksum/ Urg data pointer

optighs (variable length)

/ application

Internet / data
(variable length)

checksum
(as in UDP)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Transport Layer 3-19



TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers: source port # dest port #
) « ’ sequence number
o byte stream number of acknowledgement number
. rwnd
the ﬁrSt byte N checksum urg pointer
segment s data _window sie
acknowledgements: "l""" """
* seq # of the next byte
. sender sequence number space
expected from other side
. sent sent not- usable not
* cumulative ACK ACKed yet ACKed butnot usable
(“in- yet sent
flight”)

incoming segment to sender

source port # dest port #
sequence number

lll acknowledgement number

A rwnd

checksum urg pointer

Transport Layer 3-20



TCP seq. numbers, ACKs

Seq=42, ACK=79, data = ‘C
d\; host ACKs
/ receipt of
‘C’, echoes

Seq=79, ACK=43, data = ‘C’ i
host ACKs back ‘C

receipt
of echoed ——__
'C Seq=43,ACK=80___

simple telnet scenario (bidirectional communication)

Transport Layer 3-21



TCP round trip time, timeout

Q: how to set TCP Q: how to estimate RTT?

timeout value? * SampleRTT: measured
time from segment

" longer than RTT transmission until ACK
* but RTT varies receipt
* need to estimate * ignore retransmissions
® too short: Premature = SampleRTT will vary, want

timeout, unnecessary estimated RTT "smoother

retransmissions * average several recent
, measurements, not just
" too long: slow reaction current SampleRTT

to segment loss

Transport Layer 3-22



TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

350 +

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr ,

,(.D\ 300 1
©
C
: \ I
% 250 K ] ° N T/I
E
=
& sampleRTT
EstimatedRTT

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-23



TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”

* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-24



Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

e reliable data transfer
* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-25



TCP reliable data transfer

= TCP creates rdt service
on top of IP" s unreliable

service
* pipelined segments A .
e cumulative acks let” s initially consider
+ single retransmission simplified TCP sender:
timer * ignore duplicate acks
B retransmissions ¢ ignore flow COntrOI,
triggered by: congestion control

* timeout events
* duplicate acks

Transport Layer 3-26



TCP sender events:

data rcvd from app:

" create segment with
seq #

" seq # is byte-stream
number of first data
byte in segment

" start timer if not
already running

* think of timer as for
oldest unacked
segment

* expiration interval:
TimeOutInterval

timeout;

" retransmit segment
that caused timeout

" restart timer
ack revd:

= if ack acknowledges
previously unacked
segments

* update what is known
to be ACKed

* start timer if there are
still unacked segments

Transport Layer 3-27



TCP: retransmission scenarios

Host A
B/

b \\\l/‘

—— timeout —*

\
Seq=92, 8 bytes of data

x/

Seq=92, 8 bytes of data

ACK=100

/

lost ACK scenario

H

—
ACK=100

Host A Host B
w w
S

SendBase=92

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

—— timeout ——

ACK=100
ACK=120
Seq=92, 8
SendBase=100 bytes of data—_|
SendBase=120
ACK=120

\

SendBase=120

premature timeout

Transport Layer 3-28



TCP: retransmission scenarios

Host A Host B
\ul

<

gl <
\
Seq=92, 8 bytes of data

T~ \

Seq=100, 20 bytes%fdz

ACK=100
X<
ACK=120
\
Seq=120, 15 bytes of data

\

———— timeout —*

cumulative ACK

Transport Layer 3-29



TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-30



TCP fast retransmit

" time-out period often

relatively long: - TCP fast retransmit —
* long delay before if sender receives 3
resending lost packet ACKs for same data
" detect lost segments (“triple duplicate ACKs"),
via duplicate ACKs. resend unacked
* sender often sends segment with smallest
many segments back- seq #
jco-back . " |ikely that unacked
* if segment is lost, there segment lost, so don’ t
will likely be many wait for timeout
duplicate ACKs.

Transport Layer 3-31



TCP fast retransmit
Host A Host B
N \

timeout

A 4

— Seq=92, 8 bytes of data

Seq= 100%%
\X

L-ACK=100

““ACK=100
&~

~Seq=100, 20 bytes of data

v

fast retransmit after sender
receipt of triple duplicate ACK

Transport Layer 3-32



Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-33



TCP flow control

application may
remove data from
TCP socket buffers ....

... Slower than TCP
receiver is delivering
(sender is sending)

— flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting

too much, too fast

application
process

Oo— e

TCP socket

receiver buffers
|

TCP
code

IP

code D

| : v
|
from sender |

receiver protocol stack

Transport Layer 3-34



TCP flow control

. 11 . 7
" receiver advertises free

buffer space by including to application process
rwnd value in TCP header F'Iﬂ
of receiver-to-sender T
segments Rchufier | buffered data
e RevBuffer size set via T

socket options (typical default rwnd
is 4096 bytes) e

° many operating systems
autoadjust RcvBuffer
" sender Iimits amount of

unacked ( in-flight”) data to
receiver s rwnd value

" guarantees receive buffer
will not overflow

I

TCP segment payloads

recelver-side buffering

Transport Layer 3-35



Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
* reliable data transfer
* flow control

e connection
management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-36



Connection Management

before exchanging data, sender/receiver “handshake”:

" agree to establish connection (each knowing the other willing
to establish connection)

" agree on connection parameters

—!
application application
connection state: ESTAB connection state: ESTAB
connection variables: connection Variables:
seq # client-to-server seq # client-to-server
server-to-client server-to-client
rcvBuffer size rcvBuffer size
at server,client at server,client
g network network
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-37



Agreeing to establish a connection

2-way handshake:

i
 Let’s talk -
ok — | ESTAB
ESTAB &
- -
s |2
choose x \req_conn(L(L
— ESTAB

acc_conn(x)
ESTAB &—

Q: will 2-way handshake

always work in
network!?

Transport Layer 3-38



Agreeing to establish a connection

2-way handshake failure scenarios:

. /

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(>_<L

A ESTAB

acc_conn(x)

req_conn(x)

\

_ connection  _
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

2

g

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

_cIient
terminates

\req_conn(>_<L

acc_conn(x)

N\

~ ~ x completes

connection

\
req_conn(x)

data(x+1)

~data(x+ 1L~

__* ESTAB

accept
data(x+1)

server
forgets x

ESTAB

accept
data(x+1)

Trans

port Layer 3-39



TCP 3-way handshake

server state
LISTEN

client state -

LISTEN e
choose init seq num, x

send TCP SYN msg |~

SYNSENT SYNbit=1, Seq=x

choose init seq num, y
TCP SYNACK v
send TCP SYNAC SYN RCVD

/ msg, acking SYN
SYNbit=1, Seg=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x) /
\

indicates server is live;
ESTAB send ACK for SYNACK;

this segment may contain | ACKbit=1, ACKnum=y+1

lient-to- .
client-to-server data ~_ received ACK(y)
indicates client is live

v

ESTAB

Transport Layer 3-40



TCP: closing a connection

= client, server each close their side of connection
* send TCP segment with FIN bit = |

= respond to received FIN with ACK

* on receiving FIN, ACK can be combined with own FIN

* simultaneous FIN exchanges can be handled

Transport Layer 3-41



TCP: closing a connection

client state L/ ﬁ
ESTAB e
clientSocket.close () \FINb.t 1
FIN WAIT 1 can no longer it=1, seq=x
send but can q\
receive data e
ACKbit=1; ACKnum=x+1
FIN WAIT 2 wait for server —"
T - close
FINbit=1 —
Iit=1, seq=y
TIMED_WAIT — —
I v~
ACKbit=1; ACKnum=y+1
timed wait ~——
for 2*max
segment lifetime
CLOSED J,

server state
ESTAB
CLOSE_WAIT
can still
send data
LAST ACK
can no longer
send data
CLOSED

Transport Layer 3-42



Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

e flow control

* connection management
3.6 principles of

congestion control

3.7 TCP congestion control

Transport Layer 3-43



Principles of congestion control

congestion:

= informally: “too many sources sending too much
data too fast for network to handle”

= different from flow control!

" manifestations:
* lost packets (buffer overflow at routers)
* long delays (queueing in router buffers)

" a top-10 problem!

Transport Layer 3-44



Causes/costs of congestion

original data: }"in

two senders, two
receivers

one router, infinite buffers
output link capacity: R
no retransmission

R/24 - e

Host A

}Lout

Ain  R/2

" maximum per-connection

throughput: R/2

throughput: 7\'out

e

A

A

unlimited shared

output link buffers ﬁ

delay

Ain  R/2

+ large delays as arrival rate, A;,
approaches capacity

Transport Layer 3-45



Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion
control

Transport Layer 3-46



TCP congestion control: additive increase
multiplicative decrease

" approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by 1 MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

(O]
N
(7}
=
AIMD saw tooth S J
behavior: probing =
for bandwidth S
o
(®))
C
S
(&}
>
time
cwnd: congestion window, number of unACKed bytes allowed at sender. Transport Layer 3-47

MSS: maximum segment size



TCP Congestion Control: details

sender sequence number space

— cwnd —i TCP sending rate:
""" " roughly: send cwnd
bytes, wait RTT for
ast bgtej e L byte ACKS, then send
e . -
yetACked o more bytes
(“in-
flight”) .. cwnd
= sender limits transmission: rate bytes/sec
LastByteSent- < min(cwnd, rwnd)
LastByteAcked

* cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-48



TCP Slow Start

= when connection begins,

Increase rate
exponentially until first
loss event:

* initially cwnd = | MSS

* double cwnd every RTT

* done by incrementing
cwnd for every ACK
received

" summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-49



TCP: detecting, reacting to loss

" |oss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

" loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

= TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

Transport Layer 3-50



TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to TCP Reno
linear?

A: when cwnd gets
to |/2 of its value
before timeout.

— —
N B
I I

ssthresh

Congestion window
(in segments)

TCP Tahoe

O N A OO 00 O
| I I | |

Fr -t & 17 @17 17 1T 1"
5 6 7 8 9 1011 12 13 14 15

Transmission round

Implementation:
" variable ssthresh

= on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

o
N
w
SN

Transport Layer 3-51



TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

" W: window Size (measured in bytes) Where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
* avg. thruput is 3/4W per RTT

avg TCP thruput = % %‘I’ bytes/sec

W_/I/\/I/W
W/2 S

Transport Layer 3-52



TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

g Nomacc

w bottleneck
router

TCP conne(;ﬁgyn 2 capacity R

Transport Layer 3-53



Why is TCP fair?

two competing sessions:
" additive increase gives slope of 1, as throughout increases
* multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-54



Transport Layer: Summary

= principles behind transport
layer services:
* multiplexing,
demultiplexing

next:

O Ieaving the network
“edge” (application,

* reliable data transfer transport layers)
* flow control " into the network
* congestion control “core”
® instantiation, = two network layer
implementation in the chapters:
Internet * data plane
« UDP * control plane

. TCP

Transport Layer 3-55



