
CSC358 Week 3

Adapted from slides by J.F. Kurose and K. W. Ross.
All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Logistics

§ Assignment 1
• no need to worry about favicon

Application Layer 2-2

Application Layer

Application Layer 2-3

Application Layer 2-4

Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 Electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

Application Layer 2-5

Electronic mail
Three major components:
§ user agents
§ mail servers
§ simple mail transfer

protocol: SMTP

User Agent
§ a.k.a. “mail reader”
§ composing, editing, reading

mail messages
§ e.g., Outlook, Thunderbird,

iPhone mail client
§ outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-6

Electronic mail: mail servers

mail servers:
§ mailbox contains incoming

messages for user
§ message queue of outgoing

(to be sent) mail messages
§ SMTP protocol between

mail servers to send email
messages
• client: sending mail

server
• “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-7

Electronic Mail: SMTP [RFC 5321]

§ uses TCP to reliably transfer email message from
client to server, port 25

§ direct transfer: sending server to receiving
server

§ three phases of transfer
• handshaking (greeting)
• transfer of messages
• closure

§ command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

§ messages must be in 7-bit ASCII (legacy)

Application Layer 2-8

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 2-9

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

DEMO

SMTP reply commands

https://www.greenend.org.uk/rjk/tech/smtpreplies.html

Application Layer 2-10

SMTP: final words

§ SMTP uses persistent
connections

§ SMTP requires message
(header & body) to be in
7-bit ASCII

§ SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:
§ HTTP: pull
§ SMTP: push

§ both have ASCII
command/response
interaction, status codes

§ HTTP: each object
encapsulated in its own
response message

§ SMTP: multiple objects
sent in one message

Application Layer 2-11

Mail access protocols

§ SMTP: delivery/storage to receiver’s server
§ mail access protocol: retrieval from server

• POP: Post Office Protocol [RFC 1939]: authorization,
download

• IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored messages on
server

• HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Application Layer 2-12

Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

Application Layer 2-13

DNS: domain name system

people: many identifiers:
• SIN, name, passport #

Internet hosts, routers:
• IP address (32 bit) -

used for addressing
datagrams

• “name”, e.g.,
www.utoronto.ca -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
§ distributed database

implemented in hierarchy of
many name servers

§ application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
• note: core Internet function,

implemented as application-
layer protocol

• complexity at network’s
“edge”

Application Layer 2-14

DNS: services, structure
why not centralize DNS?
§ single point of failure
§ traffic volume
§ distant centralized database
§ maintenance

DNS services
§ hostname to IP address

translation
§ host aliasing

• canonical, alias names

§ mail server aliasing
§ load distribution

• replicated Web
servers: many IP
addresses correspond
to one name

A: doesn‘t scale!

Application Layer 2-15

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; approximately:
§ client queries root server to find com DNS server
§ client queries .com DNS server to get amazon.com DNS server
§ client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Application Layer 2-16

DNS: root name servers

§ contacted by local name server that can not resolve name
§ root name server returns a list of IP addresses of the TLD

server responsible for the requested domain.

13 logical root name
“servers” worldwide
•each “server” replicated
many times (~400 physical
servers)

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-17

TLD, authoritative servers
top-level domain (TLD) servers:

• responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

• Verisign maintains servers for .com TLD
• Educause for .edu TLD
• .ca TLD maintained by Canadian Internet Registration

Authority (CIRA).

authoritative DNS servers:
• organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

• can be maintained by organization or service provider

Application Layer 2-18

Local DNS name server

§ does not strictly belong to hierarchy
§ each ISP (residential ISP, company, university) has one

• also called “default name server”

§ when host makes DNS query, query is sent to its local
DNS server
• has local cache of recent name-to-address translation pairs

(but may be out of date!)
• acts as proxy, forwards query into hierarchy

Application Layer 2-19

requesting host
cs.utoronto.ca

math.uwaterloo.ca

root DNS server

local DNS server
dns.utoronto.ca

1

2
3

4

5

6

authoritative DNS server
dns.uwaterloo.ca

78

TLD DNS server

DNS name
resolution example
§ host at cs.utoronto.ca wants IP

address for math.uwaterloo.ca

iterative query:
§ contacted server replies with

name of server to contact
§ “I don’t know this name, but

ask this server”

recursive query:
§ puts burden of name

resolution on contacted
name server

§ “I will tell you the answer. I’ll
do whatever it takes.”

Recursive

Iterative

Application Layer 2-20

45

6

3

requesting host
cs.utoronto.ca

math.uwaterloo.ca

root DNS server

local DNS server
dns.utoronto.ca

1

2
7

authoritative DNS server
dns.uwaterloo.ca

8

DNS name
resolution example
(all-recursive queries)

TLD DNS
serverNot recommended in

practice.

The risks of recursive
DNS queries:
https://ca.godaddy.com/help/what
-risks-are-associated-with-
recursive-dns-queries-1184

https://ca.godaddy.com/help/what-risks-are-associated-with-recursive-dns-queries-1184

Application Layer 2-21

DNS: caching, updating records

§ once (any) name server learns mapping, it caches
mapping
• cache entries timeout (disappear) after some time (TTL)

• typical TTL: two days

• TLD servers typically cached in local name servers
• thus root name servers not often visited

§ cached entries may be out-of-date (best effort
name-to-address translation!)
• if name host changes IP address, may not be known

Internet-wide until all TTLs expire

Application Layer 2-22

DNS records

DNS: distributed database storing resource records (RR)

type=NS
• name is domain (e.g.,

foo.com)
• value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some
“canonical” (the real) name

§ www.ibm.com is really
servereast.backup2.ibm.com

§ value is canonical name

type=MX
§ value is name of mail server

associated with name

Application Layer 2-23

DNS protocol, messages

§ query and reply messages, both with same message
format

message header
§ identification: 16 bit # for

query, reply to query uses
same #

§ flags:
§ query or reply
§ recursion desired
§ recursion available
§ reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-24

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

DEMO

§ Using “dig” (domain information groper) to
make DNS queries.
• Intro: https://www.madboa.com/geek/dig/

§ On Windows, try “nslookup”

Application Layer 2-25

https://www.madboa.com/geek/dig/

Application Layer 2-26

Inserting records into DNS

§ example: new startup “Network Utopia”
§ register name networkuptopia.com at DNS registrar

(e.g., Network Solutions, Godaddy, etc, see https://www.internic.net)

• provide names, IP addresses of authoritative name server
(primary and secondary)

• registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

§ create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

§ DEMO: whois

Application Layer 2-27

Outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

Application Layer 2-28

Pure P2P architecture
§ no always-on server
§ arbitrary end systems

directly communicate
§ peers are intermittently

connected and change
IP addresses

examples:
• file distribution

(BitTorrent)
• Streaming (SopCast)
• VoIP (Skype)

Application Layer 2-29

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-30

File distribution time: client-server

§ server upload: must
sequentially send (upload) N
file copies:
• time to send one copy: F/us

• time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF / us,, F / dmin}

§ client download: each client
must download file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network
di

ui

F

Application Layer 2-31

File distribution time: P2P

§ server upload: must upload at
least one copy
• time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

DP2P >= max{F/us,, F/dmin,, NF/(us + Sui)}

§ client download: each client
must download file copy
• min client download time: F/dmin

§ client upload: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Sui

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer 2-32

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: theoretical scalability

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

BitTorrent

Application Layer 2-33

Application Layer 2-34

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

§ file divided into 256Kb chunks
§ peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer 2-35

§ peer joining torrent:
• has no chunks, but will

accumulate them over time
from other peers

• registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

§ while downloading, peer uploads chunks to other peers
§ peer may change peers with whom it exchanges chunks
§ churn: peers may come and go
§ once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

Application Layer 2-36

BitTorrent: requesting, sending file chunks

requesting chunks:
§ at any given time, different

peers have different subsets
of file chunks

§ periodically, Alice asks each
peer for list of chunks that
they have

§ Alice requests missing
chunks from peers …
§ rarest first

sending chunks: tit-for-tat
§ Alice sends chunks to those

four peers currently sending her
chunks at highest rate
• other peers are choked by Alice

(do not receive chunks from her)
• re-evaluate top 4 every10 secs

§ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

Application Layer 2-37

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-38

Outline: Application Layer

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming

and content
distribution
networks (CDNs)

Video Streaming

Application Layer 2-39

Application Layer 2-40

Video Streaming and CDNs: context

• Netflix, YouTube: 37%, 16% of downstream
residential ISP traffic

• ~1B YouTube users, ~75M Netflix users

§ challenge: scale - how to reach ~1B
users?
• single mega-video server won’t work (why?)

§ challenge: heterogeneity
§ different users have different capabilities (e.g.,

wired versus mobile; bandwidth rich versus
bandwidth poor)

§ solution: distributed, application-level
infrastructure

§ video traffic: major consumer of Internet bandwidth

Streaming stored video:

simple scenario:

video server
(stored video)

client

Internet

Application Layer 2-41

Streaming multimedia: DASH
v DASH: Dynamic, Adaptive Streaming over HTTP
v server:

§ divides video file into multiple chunks
§ each chunk stored, encoded at different rates
§ manifest file: provides URLs for different chunks

v client:
§ periodically measures server-to-client bandwidth
§ consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current
bandwidth

• can choose different coding rates at different points in time
(depending on available bandwidth at time)

Application Layer 2-42

Streaming multimedia: DASH

v DASH: Dynamic, Adaptive Streaming over HTTP
v “intelligence” at client: client determines

§ when to request chunk (so that buffer starvation, or
overflow does not occur)

§ what encoding rate to request (higher quality when
more bandwidth available)

§ where to request chunk (can request from URL server
that is “close” to client or has high available
bandwidth)

v YouTube and Netflix support DASH.
v Also see: HLS implemented by Apple.

§ https://en.wikipedia.org/wiki/HTTP_Live_Streaming

Application Layer 2-43

https://en.wikipedia.org/wiki/HTTP_Live_Streaming

Content Distribution Network
(CDN)

Application Layer 2-44

Content distribution networks
v challenge: how to stream content (selected from

millions of videos) to hundreds of thousands of
simultaneous users?

v option 1: single, large “mega-server”
§ single point of failure
§ point of network congestion
§ long path to distant clients
§ multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Application Layer 2-45

Content distribution networks
v challenge: how to stream content (selected from

millions of videos) to hundreds of thousands of
simultaneous users?

v option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN).
§ Philosophy #1: Enter deep: push CDN servers deep into

many access networks
• close to users, low delay, high throughput, high maintenance cost.

§ Philosophy #2: Bring home: smaller number (10’s) of larger
clusters in IXPs near (but not within) access networks

• lower maintenance cost at the expense of delay and throughput

§ Google use both, in addition to the mega data centres.

Application Layer 2-46

Transport Layer 3-47

• The video comes from Bring-Home caches

• The surrounding HTML is from Enter-Deep caches

• The dynamic content (e.g., ads) are from Data Centres.

Content Distribution Networks (CDNs)

…

…

……

…

…

§ subscriber requests content from CDN

§ CDN: stores copies of content at CDN nodes
• e.g. Netflix stores copies of Mad Men

where’s Madmen?
manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path congested

Application Layer 2-48

Case study: Netflix

1

1. Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2
2. Bob browses
Netflix video 3

3. Manifest file
returned for
requested video

4. DASH
streaming

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

Application Layer 2-49

Case study: Netflix

v Open Connect:
§ https://openconnect.netflix.com/en/

v https://media.netflix.com/en/company-blog/how-
netflix-works-with-isps-around-the-globe-to-
deliver-a-great-viewing-experience

Introduction 2-50

https://openconnect.netflix.com/en/
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience

Application Layer: Summary

Application Layer 2-51

v typical request/response
message exchange:
§ client requests info or

service
§ server responds with

data, status code
v message formats:

§ headers: fields giving
info about data

§ data: info(payload)
being communicated

Application Layer 2-52

important themes:
§ centralized vs. decentralized
§ stateless vs. stateful
§ “complexity at network edge”

Application Layer: Summary
most importantly: learned about protocols!

