CSC358 Week 10

Note: all lecture activities will be recorded and the recording will be made available on the CSC358 Quercus.

C Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Logistics

- Lectures, office hours, tutorials moved online
- Assignment deadlines are unaffected
- Please read the post on the discussion board on how to use Bb Collaborate.
- The exam will be online ... but we haven't yet gotten information about how. We'll keep you posted.

Tips for Online Learning (from Prof Petersen)

- Learning with online resources only is challenging
 - Requires significant self-discipline and independence
- Break down the tasks you need to complete (for all courses) and set daily milestones.
- Schedule dedicated study blocks.
 - Set up a quiet space, eliminate distractions, and treat those blocks like shifts at a job.
 - To stay focused, take scheduled breaks and also schedule exercise.
- Make sure you know when and how help is available.

Communication Protocol

- All students' audio is muted by default.
- You may ask questions using Chat Everyone
- If you'd like to ask a question by speaking, click on "raise your hand", the instruction may assign you at a presenter, then your audio will be heard by the class.
- The instructor may miss your raised hand from time to time when they stare at their presentation. Apologies ahead.

We are here

Link layer: Outline

- 6.1 introduction, services
- 6.2 error detection, correction

6.3 multiple access protocols

- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

6.5 link virtualization: MPLS

6.6 data center networking

Multiple access links, protocols

two types of "links":

point-to-point

- PPP for dial-up access
- point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - Ethernet
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: broadcast channel of rate R bps goal:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use

random access

- channel not divided, allow collisions
- "recover" from collisions

"taking turns"

 nodes take turns, but nodes with more to send can take longer turns

Channel Partitioning

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Random Access

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes
- two or more transmitting nodes \rightarrow "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit I frame)
- nodes start to transmit only at slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh
 frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - *if collision:* node retransmits frame in each subsequent slot with probability p until success

Slotted ALOHA

Pros:

- Cons:
- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

- collisions, wasting slots
- idle slots
- clock synchronization

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send) throughput / bandwidth

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- prob that given node has success in a slot:
 - p(I-p)^{N-I}
- prob that any node has a success:
 - Np(1-p)^{N-1}

- max efficiency: find p* that maximizes Np(1-p)^{N-1}
- p* = 1/N
- max efficiency = $(I I/N)^{N-1}$
- max efficiency as N goes to infinity:

max efficiency = 1/e = 0.37

at best: channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-I, t_0+I]$

Pure ALOHA efficiency

P(success by given node) = P(node transmits).

P(no other node transmits in $[t_0-1,t_0]$ · P(no other node transmits in $[t_0,t_0+1]$

$$= p \cdot (1-p)^{\mathbf{N}-\mathbf{I}} \cdot (1-p)^{\mathbf{N}-\mathbf{I}}$$
$$= p \cdot (1-p)^{\mathbf{2}(\mathbf{N}-\mathbf{I})}$$

... choosing optimum p and then letting $n \longrightarrow \infty$

$$= 1/(2e) = 0.18$$

even worse than slotted Aloha!

CSMA (carrier sense multiple access)

- **CSMA:** listen before transmit: if channel sensed idle: transmit entire frame
- if channel sensed busy, defer transmission

In human terms: don't interrupt others!

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

Ethernet CSMA/CD algorithm

- I. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame !

- If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after *m*th collision, NIC chooses *K* at random from {0,1,2, ..., 2^m-1}. NIC waits K⁵12 bit times, returns to Step 2
 - longer backoff interval with more collisions

CSMA/CD efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to I
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

Taking Turns

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, I/N bandwidth allocated even if only I active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead
- "taking turns" protocols

look for best of both worlds!

"Taking turns" MAC protocols

polling:

- master "invites" nodes to transmit in turn
- typically used with "dumb" nodes
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

"Taking turns" MAC protocols

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA (collision avoidance) used in 802.11
- taking turns
 - polling from central site, token passing
 - Bluetooth, FDDI, token ring

Link layer: Outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols

6.4 LANs

- addressing, ARP
- Ethernet
- switches
- VLANS

6.5 link virtualization: MPLS
6.6 data center networking

MAC addresses and ARP

32-bit IP address:

- network-layer address for interface
- used for layer 3 (network layer) forwarding
- MAC (or LAN or physical or Ethernet) address:
 - function: used 'locally" to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable

hexadecimal (base 16) notation (each "numeral" represents 4 bits)

MAC addresses and ARP

each adapter on LAN has unique LAN address

MAC addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- - can move LAN card from one LAN to another
- IP hierarchical address not portable
 - address depends on IP subnet to which node is attached

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

- IP/MAC address mappings for some LAN nodes:
 - < IP address; MAC address; TTL>
- TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol: same LAN

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - destination MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A' s MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

Link layer: Outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

6.5 link virtualization: MPLS
6.6 data center networking

Ethernet

"dominant" wired LAN technology:

- single chip, multiple speeds (e.g., Broadcom BCM5761)
- first widely used LAN technology
- simpler, cheap
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Robert Metcalfe

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a separate Ethernet protocol (nodes do not collide with each other)

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet frame structure (more)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
 - different physical layer media: fiber, cable

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

6.5 link virtualization: MPLS
6.6 data center networking