
CSC358 Week 5

Adapted from slides by J.F. Kurose and K. W. Ross.
All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Logistics

§ Assignment 2
• You’re ready for all tasks after this lecture.

§ A2 extension:
• now due Tuesday, Feb 18 at 10:00 PM

Transport Layer 3-2

Recap: Reliable Data Transfer

§ rdt3.0
• stop-and-wait
• checksum
• seq. # (one bit, 0 and 1)
• ACKs
• timeouts
• retransmissions
• data can be corrupted or lost

Transport Layer 3-3

Transport Layer 3-4

Performance of rdt3.0

§ rdt3.0 is correct, but performance stinks
§ e.g.: 1 Gbps link, 30 ms RTT, 8000 bit packet:

§ U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

§ if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec
throughput over 1 Gbps link

§ network protocol limits use of physical resources!

Dtrans = L
R

8000 bits
109 bits/sec= = 8 microsecs

Transport Layer 3-5

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

Transport Layer 3-6

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
• range of sequence numbers must be increased
• buffering at sender and/or receiver

§ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-7

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=

Transport Layer 3-8

Pipelined protocols: overview

Go-back-N:
§ sender can have up to

N unacked packets in
pipeline

§ receiver only sends
cumulative ack
• doesn’t ack packet if

there’s a gap
§ sender has timer for

oldest unacked packet
• when timer expires,

retransmit all unacked
packets

Selective Repeat:
§ sender can have up to N

unack’ed packets in
pipeline

§ rcvr sends individual ack
for each packet

§ sender maintains timer
for each unacked packet
• when timer expires,

retransmit only that
unacked packet

Transport Layer 3-9

Go-Back-N: sender
§ k-bit seq # in pkt header
§ “window” of up to N, consecutive unack’ed pkts allowed

§ ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
• may receive duplicate ACKs (see receiver)

§ timer for oldest in-flight pkt
§ timeout(n): retransmit packet n and all higher seq # pkts in

window

Transport Layer 3-10

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum) # all in-flight segments are ACK’ed

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

L (initial)

Transport Layer 3-11

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

• may generate duplicate ACKs
• need only remember expectedseqnum

§ out-of-order pkt:
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
otherwise

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(0,ACK,chksum)

L

GBN: receiver extended FSM

Transport Layer 3-12

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Correction: to be consistent with the FSM on Page 10, the
first packet on this page should have been 1 instead of 0.

Transport Layer 3-13

Selective repeat

§ receiver individually acknowledges all correctly
received pkts
• buffers pkts, as needed, for eventual in-order delivery

to upper layer
§ sender only resends pkts for which ACK not

received
• sender timer for each unACKed pkt

§ sender window
• N consecutive seq #’s
• limits seq #s of sent, unACKed pkts

Transport Layer 3-14

Selective repeat: sender, receiver windows

Transport Layer 3-15

Selective repeat

data from above:
§ if next available seq # in

window, send pkt
timeout(n):
§ resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

§ mark pkt n as received
§ if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

§ ACK(n)
otherwise:
§ ignore

receiver

Transport Layer 3-16

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q: what happens when ack2 arrives?

Transport Layer 3-17

Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-18

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

§ full duplex data:
• bi-directional data flow

in same connection
• MSS: maximum segment

size
§ connection-oriented:
• handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

§ flow controlled:
• sender will not

overwhelm receiver

§ point-to-point:
• one sender, one receiver

§ reliable, in-order byte
stream:
• no “message

boundaries”
§ pipelined:
• TCP congestion and

flow control set window
size

Transport Layer 3-19

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window
Urg data pointerchecksum

FSRPAUhead
len

not
used

options (variable length)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

various flags

Transport Layer 3-20

TCP seq. numbers, ACKs
sequence numbers:

• byte stream “number” of
the first byte in
segment’s data

acknowledgements:
• seq # of the next byte
expected from other side

• cumulative ACK

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Transport Layer 3-21

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario (bidirectional communication)

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-22

TCP round trip time, timeout

Q: how to set TCP
timeout value?

§ longer than RTT
• but RTT varies
• need to estimate

§ too short: premature
timeout, unnecessary
retransmissions

§ too long: slow reaction
to segment loss

Q: how to estimate RTT?
§ SampleRTT: measured

time from segment
transmission until ACK
receipt
• ignore retransmissions

§ SampleRTT will vary, want
estimated RTT “smoother”
• average several recent

measurements, not just
current SampleRTT

Transport Layer 3-23

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
§ exponential weighted moving average
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

TCP round trip time, timeout

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Transport Layer 3-24

§ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

§ estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-b)*DevRTT +

b*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-25

Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-26

TCP reliable data transfer

§ TCP creates rdt service
on top of IP’s unreliable
service
• pipelined segments
• cumulative acks
• single retransmission

timer
§ retransmissions

triggered by:
• timeout events
• duplicate acks

let’s initially consider
simplified TCP sender:
• ignore duplicate acks
• ignore flow control,

congestion control

Transport Layer 3-27

TCP sender events:
data rcvd from app:
§ create segment with

seq #
§ seq # is byte-stream

number of first data
byte in segment

§ start timer if not
already running
• think of timer as for

oldest unacked
segment

• expiration interval:
TimeOutInterval

timeout:
§ retransmit segment

that caused timeout
§ restart timer
ack rcvd:
§ if ack acknowledges

previously unacked
segments
• update what is known

to be ACKed
• start timer if there are

still unacked segments

Transport Layer 3-28

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-29

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-30

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-31

TCP fast retransmit

§ time-out period often
relatively long:
• long delay before

resending lost packet
§ detect lost segments

via duplicate ACKs.
• sender often sends

many segments back-
to-back

• if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
§ likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

Transport Layer 3-32

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-33

Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-34

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-35

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
§ receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
• RcvBuffer size set via

socket options (typical default
is 4096 bytes)

• many operating systems
autoadjust RcvBuffer

§ sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

§ guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-36

Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of congestion

control
3.7 TCP congestion control

Transport Layer 3-37

Connection Management
before exchanging data, sender/receiver “handshake”:
§ agree to establish connection (each knowing the other willing

to establish connection)
§ agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port
number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer 3-38

Q: will 2-way handshake
always work in
network?

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 3-39

Agreeing to establish a connection

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB
acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer 3-40

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 3-41

TCP: closing a connection

§ client, server each close their side of connection
• send TCP segment with FIN bit = 1

§ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

§ simultaneous FIN exchanges can be handled

Transport Layer 3-42

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

Transport Layer 3-43

Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-44

congestion:
§ informally: “too many sources sending too much

data too fast for network to handle”
§ different from flow control!
§ manifestations:
• lost packets (buffer overflow at routers)
• long delays (queueing in router buffers)

§ a top-10 problem!

Principles of congestion control

Transport Layer 3-45

Causes/costs of congestion

§ two senders, two
receivers

§ one router, infinite buffers
§ output link capacity: R
§ no retransmission

§ maximum per-connection
throughput: R/2

unlimited shared
output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l o
ut

lin R/2
de

la
y

lin
v large delays as arrival rate, lin,

approaches capacity

Transport Layer 3-46

Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion
control

Transport Layer 3-47

TCP congestion control: additive increase
multiplicative decrease

§ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
• additive increase: increase cwnd by 1 MSS every

RTT until loss detected
• multiplicative decrease: cut cwnd in half after loss

co
ng

es
tio

n
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time
cwnd: congestion window, number of unACKed bytes allowed at sender.
MSS: maximum segment size

Transport Layer 3-48

TCP Congestion Control: details

§ sender limits transmission:

§ cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:
§ roughly: send cwnd

bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
LastByteAcked

< min(cwnd, rwnd)

sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

Transport Layer 3-49

TCP Slow Start

§ when connection begins,
increase rate
exponentially until first
loss event:

• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing
cwnd for every ACK
received

§ summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

Transport Layer 3-50

TCP: detecting, reacting to loss

§ loss indicated by timeout:
• cwnd set to 1 MSS;
• window then grows exponentially (as in slow start)

to threshold, then grows linearly
§ loss indicated by 3 duplicate ACKs: TCP RENO
• dup ACKs indicate network capable of delivering

some segments
• cwnd is cut in half window then grows linearly

§ TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

Transport Layer 3-51

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
§ variable ssthresh
§ on loss event, ssthresh

is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Transport Layer 3-52

TCP throughput
§ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume always data to send

§ W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W
• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

Transport Layer 3-53

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-54

Why is TCP fair?
two competing sessions:
§ additive increase gives slope of 1, as throughout increases
§ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-55

Transport Layer: Summary
§ principles behind transport

layer services:
• multiplexing,

demultiplexing
• reliable data transfer
• flow control
• congestion control

§ instantiation,
implementation in the
Internet
• UDP
• TCP

next:
§ leaving the network
“edge” (application,
transport layers)

§ into the network
“core”

§ two network layer
chapters:
• data plane
• control plane

