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RECAP OF INTERVAL BISECTION METHOD

INTERVAL BISECTION

• Guaranteed convergence
• Rate of convergence is independent of the function
• Only evaluate the function (not the derivative)
• Slow to converge (linear)
• Does not use much info about f , just its sign at the

extremities of the search interval
• Requires initial bounds for the root
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RECAP OF FIXED POINT METHOD

FIXED POINT

• Rewrite your equation as g(x) = x
• Find fixed point of g(x).
• If g(x) has a fixed point x∗ and |g′(x∗)|< 1 then there exist

an interval about x∗ such that if initial value x0 is in this
interval, then the fixed point iteration xk+1 = g(xk )
converges to x∗.
• Downside: not so easy to decide the form g(x) = x (Q:

Explain, why is this a downside?)
• Example: x3−x −1 = 0

• g(x) = x3−1 diverges
• g(x) = (x +1)1/3 converges

• Q: What happens if |g′(x∗)| ≈ 1?
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NEWTON’S METHOD IDEA
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NEWTON’S METHOD

THE MATH BEHIND

• If we take the tangent at a point nearby the root, the
tangent and the curve intersect x-axes approximatley at
the same point.
• Hence,using Taylor’s expansion:

f (xk+1) = f (xk )+ f ′(xk )(xk+1−xk )+
1
2 f ′′(ξ)(xk+1−xk )

2

ξ ∈ [xk+1,xk ] and f is smooth, so the error term
1
2 f ′′(ξ)(xk+1−xk )

2 can be ignored.
• The the linear approximation is

f (xk+1)≈ f (xk )+ f ′(xk )(xk+1−xk ) which can be solved for
xk+1, assuming f (xk+1)≈ 0.
• x0 need be chosen wisely!
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NEWTON’S METHOD EXAMPLE
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NEWTON’S METHOD COVERGENCE

CONVERGENCE

• Letting g(x) = x− f (x)
f ′(x) we see Newton’s method is

equivalent to the computation of fixed point for g(x).

• Since g′(x) = 1− [f ′(x)]2−f (x)f ′′(x)
[f ′(x)]2 at a root x∗ of f , we have

g′(x∗) = 0.
• Continuity of g′ implies |g′(x)|< 1 in (x∗−δ,x∗+δ).

g(x) = g(x∗)+g′(x∗)(x−x∗)+ 1
2g′′(ξ)(x −x∗)2, note

g(x∗) = x∗,g′(x∗) = 0, hence
xk+1−xk = 1

2g′′(ξ)(xk −x∗)2

• g′′ is continuous, hence |g′′| is bounded in (x∗−δ,x∗+δ).
• Therefore, |xk+1−xk | ≤M|xk −x∗|2.
• This shows xk converges quadratically at x∗.
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MULTIPLE ROOTS CASE
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THE IDEA OF THE SECANT

Both lines have same slope, hence computing secant slope
saves us the trouble of computing the derivative.
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THE SECANT METHOD

THE METHOD AND ITS CONVERGENCE

• Aproximate the derivative using the finite difference
f ′(xk ) =

f (xk+1)−f (xk )
xk+1−xk

.

• Some algebra gives xk+1 = xk − f (xk )
xk−xk−1

f (xk )−f (xk−1

• Convergence rate of the secant method is approx 1.62, so
it is superliner, but not quite quadratic. (Proof in the
lecture).
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