# CSC338 WINTER 2022

### WEEK 9 - NEWTON'S METHOD

### Ilir Dema

University of Toronto

Mar 18, 2022



# **RECAP OF INTERVAL BISECTION METHOD**

### INTERVAL BISECTION

- Guaranteed convergence
- Rate of convergence is independent of the function
- Only evaluate the function (not the derivative)
- Slow to converge (linear)
- Does not use much info about *f*, just its sign at the extremities of the search interval
- Requires initial bounds for the root

# **RECAP OF FIXED POINT METHOD**

### FIXED POINT

- Rewrite your equation as g(x) = x
- Find fixed point of g(x).
- If g(x) has a fixed point x\* and |g'(x\*)| < 1 then there exist an interval about x\* such that if initial value x<sub>0</sub> is in this interval, then the fixed point iteration x<sub>k+1</sub> = g(x<sub>k</sub>) converges to x\*.
- Downside: not so easy to decide the form g(x) = x (Q: Explain, why is this a downside?)
- Example:  $x^3 x 1 = 0$ 
  - $g(x) = x^3 1$  diverges
  - $g(x) = (x+1)^{1/3}$  converges
- Q: What happens if  $|g'(x^*)| \approx 1$ ?

# NEWTON'S METHOD IDEA



# NEWTON'S METHOD

#### THE MATH BEHIND

- If we take the tangent at a point nearby the root, the tangent and the curve intersect x-axes approximatley at the same point.
- Hence, using Taylor's expansion:

$$f(x_{k+1}) = f(x_k) + f'(x_k)(x_{k+1} - x_k) + \frac{1}{2}f''(\xi)(x_{k+1} - x_k)^2$$
  
  $\xi \in [x_{k+1}, x_k]$  and *f* is smooth, so the error term

 $\frac{1}{2}f''(\xi)(x_{k+1}-x_k)^2$  can be ignored.

- The the linear approximation is  $f(x_{k+1}) \approx f(x_k) + f'(x_k)(x_{k+1} x_k)$  which can be solved for  $x_{k+1}$ , assuming  $f(x_{k+1}) \approx 0$ .
- x<sub>0</sub> need be chosen wisely!

# NEWTON'S METHOD EXAMPLE

#### Example: Newton's Method

Use Newton's method to find root of

$$f(x) = x^2 - 4\sin(x) = 0$$

Derivative is

$$f'(x) = 2x - 4\cos(x),$$

so iteration scheme is

$$x_{k+1} = x_k - \frac{x_k^2 - 4\sin(x_k)}{2x_k - 4\cos(x_k)}$$

Taking  $x_0 = 3$  as starting value, we obtain

| x        | f(x)     | f'(x)    | h         |
|----------|----------|----------|-----------|
| 3.000000 | 8.435520 | 9.959970 | -0.846942 |
| 2.153058 | 1.294772 | 6.505771 | -0.199019 |
| 1.954039 | 0.108438 | 5.403795 | -0.020067 |
| 1.933972 | 0.001152 | 5.288919 | -0.000218 |
| 1.933754 | 0.000000 | 5.287670 | 0.000000  |

# NEWTON'S METHOD COVERGENCE

### CONVERGENCE

- Letting  $g(x) = x \frac{f(x)}{f'(x)}$  we see Newton's method is equivalent to the computation of fixed point for g(x).
- Since  $g'(x) = 1 \frac{[f'(x)]^2 f(x)f''(x)}{[f'(x)]^2}$  at a root  $x^*$  of f, we have  $g'(x^*) = 0$ .
- Continuity of g' implies |g'(x)| < 1 in  $(x^* \delta, x^* + \delta)$ .  $g(x) = g(x^*) + g'(x^*)(x - x^*) + \frac{1}{2}g''(\xi)(x - x^*)^2$ , note  $g(x^*) = x^*, g'(x^*) = 0$ , hence  $x_{k+1} - x_k = \frac{1}{2}g''(\xi)(x_k - x^*)^2$
- g" is continuous, hence |g"| is bounded in (x\* − δ, x\* + δ).
- Therefore,  $|x_{k+1} x_k| \le M |x_k x^*|^2$ .
- This shows *x<sub>k</sub>* converges quadratically at *x*\*.

## MULTIPLE ROOTS CASE

For multiple root, Newton's method linearly convergent (with constant C = 1 - (1/m), where m is multiplicity)

Both cases illustrated below

| k | $f(x) = x^2 - 1$ | $f(x) = x^2 - 2x + 1$ |
|---|------------------|-----------------------|
| 0 | 2.0              | 2.0                   |
| 1 | 1.25             | 1.5                   |
| 2 | 1.025            | 1.25                  |
| 3 | 1.0003           | 1.125                 |
| 4 | 1.00000005       | 1.0625                |
| 5 | 1.0              | 1.03125               |

### THE IDEA OF THE SECANT



Both lines have same slope, hence computing secant slope saves us the trouble of computing the derivative.

### THE SECANT METHOD

#### THE METHOD AND ITS CONVERGENCE

- Approximate the derivative using the finite difference  $f'(x_k) = \frac{f(x_{k+1}) f(x_k)}{x_{k+1} x_k}$ .
- Some algebra gives  $x_{k+1} = x_k f(x_k) \frac{x_k x_{k-1}}{f(x_k) f(x_{k-1})}$
- Convergence rate of the secant method is approx 1.62, so it is superliner, but not quite quadratic. (Proof in the lecture).



Michael T. Heath Scientific Computing (Revised Second Edition) SIAM