CSC338 WINTER 2022 Week 8 - Nonlinear equations

Ilir Dema

University of Toronto

Mar 11, 2022

https://xkcd.com/1399/

SOLVING NONLINEAR EQUATIONS IS ...

... ROCKET SCIENCE!

NONLINEAR EQUATIONS

WHAT IS A NONLINEAR EQUATION?

Simply put, a nonlinear equation is an equation of the form $f(\mathbf{x}) = 0$ where $f : \mathbb{R}^n \to \mathbb{R}^n$ is a smooth function (smooth means 'has derivatives of all orders').

EXAMPLE: $x^2 - 3^2 - 4^2 = 0$

WHAT IS A SOLUTION TO A NONLINEAR EQUATIONS?

DEFINITION

Root (solution) of a nonlinear equation $f(\mathbf{x}) = 0$ is called the vector $\mathbf{x}^* \in \mathbb{R}^n$ such that $f(\mathbf{x}^*) = 0$.

EXAMPLES

- $e^x + x^2 = 0$, in one dimension, has no roots
- $x + \cos x = 0$, in one dimension, has a single root $x \approx -0.739085$
- In two dimensions, one root, $\boldsymbol{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$: $x_1x_2 - 2x_2 + 1 = 0$ $e^{x_2 - 1} - 1 = 0$
- $\sin x = 0$, in one dimension, an infinity of roots: $x = n\pi, n \in \mathbb{Z}$.

THE MATH BEHIND NONLINEAR EQUATIONS

Facts

- Often no formulas do exist for solving nonlinear equations $(3x^5 10x^4 10x^3 + 60x^2 + 95x 100 = 0)$, it took a few hundred years to understand that
- So, often, numerical methods are the only way to solve them!

RELEVANT THEOREM

 Bolzano (corollary to intermediate value theorem): if *f* : [*a*, *b*] → ℝ is continuous and *f*(*a*)*f*(*b*) < 0 then there exists *c* ∈ (*a*, *b*) such that *f*(*c*) = 0.

EXISTENCE AND UNICITY

INVERSE FUNCTION THEOREM

- If $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable, and around a point c its Jacobian $J_f(c) = \left[\frac{\partial f_i}{\partial x_j}(c)\right]$ is non-degenrate, then f is invertible and there exists a neighborhood of f(c) such that the equation f(x) = y has a unique solution for any y in that neighborhood.
- Please note, more often than not, this is more of a theoretical tool.

MULTIPLE ROOTS

If the above does not hold, the equation may have multiple roots, for example $x^2 - 2x + 1 = 0$ has x = 1 a multiple root (check the derivative of $f(x) = x^2 - 2x + 1$ at x = 1!)

SYSTEMS OF EQUATIONS DEPENDING ON A PARAMETER

INTERVAL BISECTION METHOD

INTERVAL BISECTION METHOD

Interval Bisection Method

Bisection method begins with initial bracket and repeatedly halves its length until solution has been isolated as accurately as desired

while
$$((b-a) > tol)$$
 do
 $m = a + (b-a)/2$
if sign $(f(a)) = sign(f(m))$ then
 $a = m$
else
 $b = m$
end
end
end

PITFALLS OF INTERVAL BISECTION METHOD

FLOATING POINT ARITHMETIC

Q: Why do we compute m = a + (b - a)/2 and not m = (a+b)/2?

EXAMPLE

Consider $\mathcal{F}(\beta = 10, p = 2, U = -10, L = 10)$. Let $a = 6.7 \times 10^{-1}, b = 6.9 \times 10^{-1}$. Then a + b = 1.36 which rounds to 1.4×10^{0} . Next, $(a+b)/2 = 0.7 = 7 \times 10^{-1}$ is outside [a, b]. On the other end, m = a + (b-a)/2 is always guaranteed to be in [a, b].

STOPPING CRITERION

DEPENDS ON THE CASE

- When the search interval is small enough: $|m x^*| < \varepsilon$
 - good when interval is small for f(x*) large
- When value of *f*(*x*^{*}) < ε smaller then a preselected threshold.

good when interval is large but f(x*) is small

CONDITIONING

ASSUME *f* IS DIFFERENTIABLE. THEN:

•
$$C_N = \frac{|f(x+\Delta x)-f(x)|/|f(x)|}{|\Delta x|/|x|} \approx \frac{|xf'(x)|}{f(x)}$$

- Please note this definition is not good when f(x) = 0 (root finding).
- In such cases, *C_N* can be defined as the ratio of absolute errors, leading to
- $C_N = 1/|f'(x)|$ (why?) which means the root finding problem is well conditioned if the slope at the root is >> 1.

CONVERGENCE RATES

DEFINITIONS

- A sequence a_n converges to zero if $\lim_{n\to\infty} a_n = 0$. $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n > N \implies |a_n| < \epsilon$.
- Let a_n a sequence with nonzero terms. If there exists $C, r \in \mathbb{R}, C > 0, r > 0$ such that $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|^r} = C > 0$ we say a_n converges with rate r.

EXAMPLES

• For
$$a_n = \frac{1}{n}, r = 1$$

• For
$$a_n = \frac{1}{2^{2^n}}, r = 2$$

Exercise

Prove the rate of convergence of the interval bisection method is r = 1 and C = 1/2.

FIXED POINT

DEFINITION

A value x^* is called a *fixed point* of the function g if $g(x^*) = x^*$.

WHY IS IT USEFUL?

Sometimes, the root finding problem can be converted to a fixed point finding problem. Example:

Consider the problem of computing the root of $x - 0.2 \sin x - 0.5 = 0$. This is equivalent of finding the fixed point of $g(x) = 0.2 \sin x + 0.5$.

CONTRACTION MAPPING THEOREM

DEFINITION

A function $f : \mathbb{R}^n \to \mathbb{R}^n$ is contractive in $S \subset \mathbb{R}^n$ if there exists $0 < \gamma < 1$ such that for all $x, y \in \mathbb{R}^n$, the following holds: $\|f(x) - f(y)\| \le \gamma \|x - y\|$.

THEOREM

If *g* is contractive in a closed $S \subset \mathbb{R}^n$ and $g(S) \subset S$ then *g* has a fixed point in *S*, i.e. the equation g(x) = x has a solution in *S*.

FIXED POINT ITERATION METHOD

SKETCH OF THE ITERATION METHOD

Let *g* be a smooth function. Define the sequence $x_{n+1} = g(x_n)$ with x_0 an arbitrary value. If $x^* = g(x^*)$ and $|g'(x^*)| < 1$ then it is not hard to show that $\lim_{n\to\infty} x_n = x^*$.

Indeed, the error

 $e_{k+1} = x_{k+1} - g(x^*) = g(x_k) - g(x^*) = g'(\theta_k)(x_k - x^*) = g'(\theta_k)e_k$ by Mean Value Theorem. This implies $|e_{k+1}| \le C|e_k| \le \cdots \le C^k|e_0|$ which converges to 0 since |C| < 1.

FIXED POINT EXAMPLE

WRITE $x^2 - x - 2 = 0$ as a fixed point problem

- $g(x) = x^2 2$, g'(2) = 4, so method diverges
- $g(x) = \sqrt{x+2}, g'(2) = 1/4$, so method converges
- g(x) = 1+2/x, g'(2) = −1/2, so method converges
- $g(x) = (x^2+2)/(2x-1), g'(2) = 0$, so method converges

FIXED POINT SOLUTION

Michael T. Heath Scientific Computing (Revised Second Edition) SIAM