CSC338 WINTER 2022 Week 6 - Linear Least Squares Part 2

Ilir Dema

University of Toronto

Feb 18, 2022

CURVE FITTING

DERIVATION OF NORMAL EQUATIONS - RECAP

- $\phi(\boldsymbol{x}) = (\boldsymbol{b} \boldsymbol{A}\boldsymbol{x})^T (\boldsymbol{b} \boldsymbol{A}\boldsymbol{x})$
- Require $\nabla \phi = 0$.
- $\nabla \phi = 2(\mathbf{A}^T \mathbf{A} \mathbf{x} \mathbf{A}^T \mathbf{b}) = 0.$
- $H(x) = 2\mathbf{A}^T \mathbf{A}$.
- Therefore we need two conditions:
 - $A^T A x = A^T b$ (normal equations)
 - **A^T A** be positive definite.
 - The last condition can be guaranteed if **A** has full rank (that is *n*, assuming **A** is *m*×*n*, *m* > *n*.
- Since $A^T A$ is positive definite, using Cholesky factorization, $L^T L x = A^T b$ we can solve the system.
- If *rank*(**A**) < *n* the solution may not be unique.

Shortcomings of Normal Equations

Information can be lost in forming $oldsymbol{A}^Toldsymbol{A}$ and $oldsymbol{A}^Toldsymbol{b}$

For example, take

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix},$$

where ϵ is positive number smaller than $\sqrt{\epsilon_{\mathsf{mach}}}$

Then in floating-point arithmetic

$$\boldsymbol{A}^{T}\boldsymbol{A} = \begin{bmatrix} 1+\epsilon^{2} & 1\\ 1 & 1+\epsilon^{2} \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix},$$

which is singular

GEOMETRICAL VIEWPOINT

- Two vectors *u*, *v* are orthogonal (perpendicular) iff
 u · *v* = 0. Write: *u* ⊥ *v*.
- Let U be a subspace of some finite dimensional vector space, not equal to the whole space. Orthogonal Complement of U is called the subspace U[⊥] with the property: for all u ∈ U, ∀w ∈ U[⊥], u ⊥ w.
- It is a fact that for any proper subspace V of a finite dimensional vector space W, any vector w ∈ W can be uniquely written as follows: w = v + v^T where v ∈ V and v^T ∈ V^T.

ORTHOGONAL PROJECTORS

- Recall we want "the closest" vector to **b** among **Ax** which is nothin but the span of columns of **A**.
- The closest vector to **b** in the span of **A** is its projection in it. We want to know the projection operator.

DEFINITION

A matrix **P** is called *orthogonal projector* if it is idempotent: $P^2 = P$ and symmetric: $P^T = P$.

- Orthogonal projector onto orthogonal complement span(P)[⊥] is given by P[⊥] = I − P.
- As an immediate consequence, for any vector v, we have that v = Pv + (I - P)v.

PROPOSITION

If $rank(\mathbf{A}) = n$ then

$$\boldsymbol{P} = \boldsymbol{A}(\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T$$

is the projection operator on span(A) and

$$b = Pb + P^{\perp}b = Ax + (b - Ax) = y + r.$$

DEFINITIONS

- Let A be $m \times n$ matrix. The matrix $A^+ = (A^T A)^{-1} A^T$ is called *pseudoinverse* of A.
- Please check that *A*⁺*A* = *I* and *P* = *AA*⁺ is an orthogonal projector onto *span*(*A*).
- The least squares solution $Ax \approx b$ is given by $x = A^+ b$.
- If m > n for $\mathbf{A} \in M_{m \times n}$, $cond(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^+\|_2$ if $rank(\mathbf{A}) = n$. Otherwise, $cond(\mathbf{A}) = \infty$.

Observe that conditioning number of $A^T A$ would be $(cond(A))^2$.

Sensitivity of $\mathbf{A}\mathbf{x} \approx \mathbf{b}$ dependos on both \mathbf{A}, \mathbf{b} .

DEFINITION

$$\cos \theta = \frac{\|\boldsymbol{A}\boldsymbol{x}\|_2}{\|\boldsymbol{b}\|_2}$$

PROPOSITION $\frac{\|\Delta x\|_2}{\|x\|_2} \leq \frac{cond(A)}{\cos\Theta} \frac{\|\Delta b\|_2}{\|b\|_2}$ $\frac{\|\Delta x\|_2}{\|x\|_2} \leq ((cond(A))^2 \tan\theta + cond(A)) \frac{\|\Delta A\|_2}{\|A\|_2}$

How to avoid numerical difficulties of normal equations

- Need alternative method that avoids numerical difficulties of normal equations
- Need numerically robust transformation that produces easier problem
- Observation: linear least squares is pased on orthogonal projections, dot products, and generally concepts of Euclidean norm.
- A set of transformations that preserve Euclidean distance and angles, is the set of *orthogonal transformations*.
- A square matrix Q is orthogonal if $Q^T Q = I$.
- Multiplying both sides of least squares problem by orthogonal matrix does not change its solution.

- The idea is to transform $Ax \approx b$ to $\begin{bmatrix} R \\ O \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ so that R is upper triangualr and the new system has same solution as $Ax \approx b$.
- Then we can use backward substitution to compute x_1 , which means $Rx_1 = b_1$ can be solved exactly, whereas $Ox_2 = b_2$ generally has no solution.
- Then min $\|Ax b\|_2 = \|b_2\|_2$.

- We aim to find an orthogonal matrix \boldsymbol{Q} such that $\boldsymbol{A} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{0} \end{bmatrix}$.
- Linear least squares problem $Ax \approx b$ transforms to $Q^T Ax \approx Q^T b = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$
- Both problems have same solution because $\|\boldsymbol{r}\|_{2}^{2} = \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{b} - \boldsymbol{Q}\begin{bmatrix}\boldsymbol{R}\\\boldsymbol{O}\end{bmatrix}\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{c}_{1} - \boldsymbol{R}\boldsymbol{x}\|_{2}^{2} + \|\boldsymbol{c}_{2}\|_{2}^{2}$
- Why is the above correct? Can you prove it?

HOUSEHOLDER TRANSFORMATION

- Householder transformation enables annihilation of subdiagonal entries of successive columns of *A*, eventually reaching triangular form.
- The final QR factorization can be expressed as a composition of Householder transformations.
- Fact: product of orthogonal matrices is orthogonal (prove it!).
- Householder transform has this form:

$$H = I - 2 \frac{v v^T}{v^T v}$$

for nonzero vectors **v**.

- Execise: show that **H** is orthogonal.
- How to apply it: give a vector *a*, chose *v* = *a* α*e*₁ where α = ±||*a*||₂ with the sign chosen appropriately to avoid cancellation.

Michael T. Heath Scientific Computing (Revised Second Edition) SIAM