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CURVE FITTING

Source:https://xkcd.com/2048/
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CURVE FITTING

• It’s a known fact that n+1 points on the plane uniquely
determine a polinomial of degree n.
• However, what if we are given the n+1 points, and from

other considerations we know the shape of the curve, but
we just need the parameters?
• A little history: Jan 1, 1801, Italian astronomer Giuzeppe

Piazzi observed a new celestial object, whose motion he
could trace for 42 days before the object disappeared.
• In Sep. 1801, the 24-years old Gauss, computed its orbit

using curve fitting methods (regression). This is the first
know attempt to use least squares method.
• Keep in mind, at that time, the theory of matrices was not

yet developed in full.
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GAUSS
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CURVE FITTING



Linear Least Squares

CURVE FITTING
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LINEAR CASE (CREDIT: WOLFRAM)
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EXAMPLE

Credit: SIAM
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EXAMPLE (CONTINUED)

Credit: SIAM
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EXAMPLE (EXPLAINED)

• We want a simple linear model that fits the data and allows
us to make predictions about future performance of
athletes
• A line is determined by two points, so given we know their

coordinates (xi ,yi),(xj ,yj), using the general equation of
the line y = mx +k is not hard to write a system which
allows us compute the parameters m,k :[

xi 1
xj 1

][
m
k

]
=

[
yi
yj

]
• This way we get a mess of lines good for nothing (the

problem is over determined).
• Therefore we seek the line that is closest to all data points

simultaneously.
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EXAMPLE (EXPLAINED)



0 1
4 1
8 1
12 1
20 1
24 1
28 1
32 1
36 1
48 1
. . .
76 1
80 1
84 1
88 1



[
m
k

]
≈



10.8
11.0
10.8
10.8
10.8
10.6
10.8
10.3
10.3
10.3
. . .

10.06
10.25
9.99
9.92
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EXAMPLE (EXPLAINED)

• The previous system looks like Ax = B where A is a 20×2
matrix and b is a 20 dimensional vector, whereas x is a 2
dimensional vector.
• The system is overdetermined, (almost) always impossible

to satify precisely, so we instead seek to minimize ‖r‖2
where r = b−Ax is the residual.
• For ‖r‖22 = φ(x ,y) = ‖b−Ax‖22 to attain minimal value, we

need ∇φ = ( ∂φ

∂x ,
∂φ

∂y ) = (0,0) and Hessian

H(x ,y) =
[

φxx φxy
φyx φyy

]
be positive definite.
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FORMALIZATION OF THE LINEAR PROBLEM
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LET’S DO THE MATH

• φ(x) = (b−Ax)T (b−Ax)
• Require ∇φ = 0.
• ∇φ = 2(AT Ax−AT b) = 0.
• H(x) = 2AT A.
• Therefore we need two conditions:

• AT Ax = AT b (normal equations)
• AT A be positive definite.
• The last condition can be guaranteed if A has full rank (that

is n, assuming A is m×n,m > n.
• Since AT A is positive definite, using Cholesky

factorization, LT Lx = AT b we can solve the system.
• If rank(A)< n the solution may not be unique.
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GEOMETRICAL VIEWPOINT
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GEOMETRICAL VIEWPOINT
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