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CURVE FITTING

CURVE-FITTING METHODS
PAND THE. MESSAGES THEY SEND

T SOPHSTCATED, NOT TH MAKING A

UKE THOSE BUMBUNG SCATTER PLOT BUT'
PoLYNOMAL PEDPLE” LDONT LANT TO°

“I NEED TO CONNECT HESE  "USTEN, SCENCE IS HARD. “L HAVE A THEORY,
WO UNES, BUT MY FRST IDEA  BUT IM A SEROUS AND THIS IS THE ONLY
DONT HAVE ENOUGH MATH”  PERSON DONG MY BEST" DATA T (OULD FIND®

“I CLIKED ‘5100 THAD ANIDEA FORHOU A6 YOU CAN SEE, THIS
LNES' N EXCEL” T CLEAN UP THE DATA. MODEL SMOOTHLY FITS
WHAT DO YOU THNK?®  THE~ WAIT NOAD DONT

EXTEND IT APARAAY"

Source:https://xkcd.com/2048/
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CURVE FITTING

e |t's a known fact that n+ 1 points on the plane uniquely
determine a polinomial of degree n.

e However, what if we are given the n+ 1 points, and from
other considerations we know the shape of the curve, but
we just need the parameters?

e A little history: Jan 1, 1801, Italian astronomer Giuzeppe
Piazzi observed a new celestial object, whose motion he
could trace for 42 days before the object disappeared.

¢ |In Sep. 1801, the 24-years old Gauss, computed its orbit
using curve fitting methods (regression). This is the first
know attempt to use least squares method.

¢ Keep in mind, at that time, the theory of matrices was not
yet developed in full.
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GAUSS

(Left) Carl Friedrich Gauss,
considered one of the

three greatest mathematicians
of all time (along with
Archimedes and

Sir Isaac Newton).

(Right) Gauss at 24,

when he computed

the orbit of Ceres.

s (Left) Gauss’
*\V'\ -, sketch of the orbit
+ of Ceres.

|
/ /7% (Right) Image of
m//'/ Ceres from the

Hubble telescope.

Sketch af the oebity of Cercs and Pallas (oachlud Gautl, Handb, 4) Couttey of Ui
Versi xhihothek Gitingen.
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CURVE FITTING

Example: Data Fitting

Fitting quadratic polynomial to five data points
gives linear least squares problem

1 ¢ t% Y1
1 to t% 1 Yo
Ar = |1 t3 t% o | E|yz3| =0b

P R
1 t5 t% Ys

Matrix with columns (or rows) successive pow-
ers of independent variable called Vandermonde
matrix
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CURVE FITTING

For data

t|—-1.0 —-05 0.0 05 1.0
Y 1.0 0.5 0.0 05 20

overdetermined 5 x 3 linear system is

1 -10 1.0 1.0

1 -05 025z 0.5
Az=|1 00 00 ||an|=]|00|=0b

1 05 025]|las 0.5

1 10 1.0 2.0

Solution, which we will see later how to com-
pute, is

x=1[0.086 0.40 1.4]T,
so approximating polynomial is

p(t) = 0.086 + 0.4t + 1.4¢>
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CURVE FITTING

Example: Data Fitting

Resulting curve and original data points shown
in graph:
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LINEAR CASE (CREDIT: WOLFRAM)
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b -

vertical offsets perpendicular offsets
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EXAMPLE

Example: Olympic winning times

To illustrate the computations, consider the following 20 data pairs, where x is the
time in years since 1900 and y is the Olympic winning time in seconds for men in
the final round of the 100-meter event [50, p. 248]:

0 4 8 12 20 24 28 32 36 48
10.8 11.0 10.8 10.8 108 106 10.8 103 103 103 ‘
52 56 60 64 68 72 76 80 84 88

y | 104 105 102 100 995 10.14 10.06 1025 9.99 992 ‘

== R

The data set covers all Olympic events held between 1900 and 1988. (Olympic games
were not held in 1916, 1940, and 1944.)

Credit: SIAM
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EXAMPLE (CONTINUED)
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Figure 14.1. Olympic winning time in seconds for men’s 100-meter finals
(vertical axis) versus year since 1900 (horizontal axis). The gray line is the linear
least squares fit, y = 10.898 — 0.011x.

Credit: SIAM



Linear Least Squares
000000000 e0000000

EXAMPLE (EXPLAINED)

¢ We want a simple linear model that fits the data and allows
us to make predictions about future performance of
athletes

e Aline is determined by two points, so given we know their
coordinates (x;,yi),(X;,;), using the general equation of
the line y = mx + k is not hard to write a system which
allows us compute the parameters m, k:

Xi 1 m Vi
i ALkl L
e This way we get a mess of lines good for nothing (the

problem is over determined).

¢ Therefore we seek the line that is closest to all data points
simultaneously.
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EXAMPLE (EXPLAINED)

[0 1] [10.8 ]
4 1 11.0
8 1 10.8
12 1 10.8
20 1 10.8
24 1 10.6
28 1| . |108
32 1 Mz 10.3
36 1 10.3
48 1 10.3
76 1 10.06
80 1 10.25
84 1 9.99
88 1) 9.92 |
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EXAMPLE (EXPLAINED)

® The previous system looks like Ax = B where Aisa 20 x2
matrix and b is a 20 dimensional vector, whereas x is a 2
dimensional vector.

e The system is overdetermined, (almost) always impossible
to satify precisely, so we instead seek to minimize ||r||2
where r = b— Ax is the residual.

* For ||r||3 = d(x,y) = || b— Ax|)3 to attain minimal value, we
need V¢ = (g—f, g—ﬁ) = (0,0) and Hessian

o) = [ 9]

Oyx  Oyy

be positive definite.
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FORMALIZATION OF THE LINEAR PROBLEM

Linear Least Squares

For linear problems, obtain overdetermined
linear system Ax = b, with m x n matrix A,
m>n

Better written Axz £ b, since equality usually
not exactly satisfiable when m >n

Least squares solution x minimizes squared
Euclidean norm of residual vector r = b — Ax,

- 2 _ . 2
min{jr[z = min[[b — Az|3
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LET’S DO THE MATH

o(x) = (b— Ax)T(b— Ax)

Require V¢ = 0.

Vo =2(ATAx - ATb) =0.

H(x) =2ATA.

Therefore we need two conditions:
e ATAx = ATb (normal equations)
* AT A be positive definite.

® The last condition can be guaranteed if A has full rank (that
is n, assuming Ais mxn,m> n.

Since AT A is positive definite, using Cholesky
factorization, LT Lx = AT b we can solve the system.

If rank(A) < n the solution may not be unique.
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GEOMETRICAL VIEWPOINT

Vectors vy and vy are orthogonal if their inner
product is zero, vIv, =0

Space spanned by columns of m x n matrix A,
span(A) = {Ax : x € R"}, is of dimension at
most n

If m > n, b generally does not lie in span(A),
SO no exact solution to Ax =b

Vector y = Ax in span(A) closest to b in 2-
norm occurs when residual » = b — Ax orthog-
onal to span(A)

Thus,
o=ATr = AT(b - Ax),
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GEOMETRICAL VIEWPOINT

r=0b-— Ax

y = Ax

span(A)
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