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Vector Norms Modified Problems

WHAT IS VECTOR NORM?

DEFINITION

• Let V be a vector space. Norm on V is a map
‖‖ : V → R≥0 satifying the following properties:

(I) ∀v ∈ V ,‖v‖ ≥ 0 and ‖v‖= 0 if and only if v = 0
(II) ∀v ∈ V ,∀a ∈ R,‖av‖= |a|‖v‖

(III) ∀v ,w ∈ V ,‖v + w‖ ≤ ‖v‖+‖w ||

EXAMPLES

Let V = Rn,v = (x1, . . . ,xn).
• ‖v‖1 = ∑

n
i=1 |xi | (1-norm)

• ‖v‖2 = (∑
n
i=1 |xi |2)1/2 (2-norm)

• ‖v‖∞ = max1≤i≤n |xi | (∞-norm)
• Exercise: Prove that the above three are indeed norms.
• Exercise: Prove that (in general): |‖u‖−‖v‖| ≤ ‖u−v‖
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GEOMETRICAL INTERPREATION
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WHAT IS MATRIX NORM?

DEFINITION

• Let V be a vector space of dimension n and A ∈Mn×n a
matrix, representing some linear transformation of V .
• Definition

‖A‖= max
x 6=0,x∈V

‖Ax‖
‖x‖

• Exercise: Prove that the defined matrix norm satsfies the
properties of norms.
• Exercise: Prove that for any two n×n matrices,
‖AB‖ ≤ ‖A‖‖B‖.
• Exercise: Prove that for any matrix A and any vector x ,
‖Ax‖ ≤ ‖A‖‖x‖.
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EQUIVALENCY OF NORMS

DEFINITION

• Two norms ‖‖1,‖‖2 are called equivalent if there exist
positive numbers a,b such that ‖x‖1 ≤ a‖x‖2 and
‖x‖2 ≤ b‖x‖1 for any vector x .

EXERCISES

• Prove equivalency of ‖‖1,‖‖2,‖‖∞ norms in Rn.
• Let A be matrix and
‖A‖1 = maxj ∑

n
i=1 |aij |,‖A‖∞ = maxi ∑

n
j=1 |aij |. Are they

equivalent? Also, are they euqiva,ent to the previously
defined matrix norm?
• Exercise: Prove that ‖A‖= max‖x‖=1 ‖Ax‖.
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ILL-CONDITIONED SYSTEMS

EXAMPLE

• When there is a small change in one or more coefficients
in a system, if the system is well conditioned, the change in
the solution will also be small
• In the case of ill conditioned systems, a small change in

some of the coefficients, will result in large changes in the
solution.[

1 2
0.48 0.99

][
x1
x2

]
=

[
3

1.47

]
=⇒

[
x1
x2

]
=

[
1
1

]
[

1 2
0.49 0.99

][
x1
x2

]
=

[
3

1.47

]
=⇒

[
x1
x2

]
=

[
3
0

]
• Q: What is an adequate measure of size for linear

systems?
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CONDITIONING NUMBER OF A MATRIX

DEFINITION

• For nonsingular A, cond(A) = ‖A‖‖A−1‖.
• For singular A, cond(A) = ∞.

PROPERTIES OF cond(A)

• For any matrix A, cond(A)≥ 1.
• cond(I) = 1
• For any nonzero number a, cond(aA) = cond(A)

• For a diagonal matrix A, cond(A) = (maxi |aii |)/(mini |aii |)
• ‖A‖‖A−1‖= (max‖x‖=1 ‖Ax‖)(min‖x‖=1 ‖Ax‖)−1, therefore

the conditioning number of a matrix describes the ratio to
max stretch that A inflicts on unit vectors versus min
stretch that A inflicts on unit vectors.
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ESTIMATING ERRORS

DEFINITION

• Let x be the true value of a vector, and x̂ an approximate
value of it. Recall that absolute error of x is the difference
∆x = x̂ −x .
• Note that ‖∆x‖= ‖x− x̂‖.
• Relative error δx = ∆x

‖x‖ will be defined only for nonzero x .

THEOREM

Let Ax = b be a linear system. Then the following hold:

‖δx‖ ≤ cond(A)‖δb‖

‖δx‖ ≤ cond(A)‖δA‖
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FULL BACKWARD ERROR

ANALYSIS

Let Ax = b, Âx̂ = b̂, Â = A + ∆A, x̂ = x + ∆x , b̂ = b + ∆b.
It’s not hard to see that

∆Ax + A∆x + ∆A∆x = ∆b

hence ingoring second degree differences, we get the linear
relationship

A∆x = ∆b−∆Ax .

Since A is invertible,

∆x = A−1(∆b−∆Ax).
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MATRIX CONDITIONG NUMBER

FACTS

• Conditioning number of a matrix is not easy to compute
because it involves inverting the matrix (a O(n3) complexity
operation) and computing the norm of both.
• An alternative way (same complexity though!) is to obtain

singluar value decomposition A = UΣV where U,V are
orthogonal (that is det(U),det(V ) =±1) and Σ = diag(σi).
Then cond(A) = σ1/σn.

• An evaluation of cond(A) can be obtained by observing
that if Ax = y then ‖x‖‖y‖ ≤ ‖A

−1‖). The equality can be
achieved for a careful choice of x ,y . Usually y is a vector
with components ±1 with signs chosen such that ‖x‖ is
maximized.
• Software packages have functions to compute it, e.g.
numpy.linalg.cond.
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THE RESIDUAL

WHAT IS IT?
• Suppose a numerical algorithm for Ax = b yields x̂ .
• One way is to verify our solution, is to plug it in the original

system, obtaining b̂ = Ax̂ and evaluate r = b−Ax̂ .
• Some computation (please do it on your own in the form of

an exercise!) shows that

‖∆x‖
‖x̂‖

≤ cond(A)
‖r‖
‖A‖‖x̂‖

≤ cond(A)
‖∆A‖
‖A‖

where ∆A is the backward error on A.
• This shows residual is good if A is well conditioned.
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RESIDUAL IS NO GOOD: EXAMPLE

THE RESIDUAL NOT GOOD IF MATRIX IS NOT WELL CONDITIONED

Ax =

[
0.913 0.659
0.457 0.330

][
x1
x2

]
=

[
0.254
0.127

]
= b

Consider two approximate solutions

x̂1 =

[
0.6391
−0.5

]
, x̂2 =

[
0.999
−1.001

]
The norms of their residuals are

‖r1‖= 7.0×10−5,‖r1‖= 2.4×10−2

The real solution is
[

1
−1

]
. What can we conclude?
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ITERATIVE REFINEMENT

HERE IS HOW

• Recall the residual r = b−Ax̂ . The process can be
repeated solving r = Aẑ and forming the approximate
solution x + z .
• Denoting xn the solution obtained in the iteration n, it’s not

hard to see

‖xn+1−x‖ ≤ ‖A−1‖‖∆A‖‖xn−x‖.

where ∆A is the error in the n-th iteration of Gauss
Elimination.

• Clearly, if ‖A−1‖‖∆A‖< 1 the procedure converges.
• It can be shown ‖∆A‖ ≤ ρnεmach‖A‖ where ρ is a constant

factor computed during the Gauss elimination process.



Vector Norms Modified Problems

SHERMAN-MORRISON FORMULA
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SHERMAN-MORRISON EXAMPLE
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EXAMPLE (CONTINUED)
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PROOF
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CHOLESKY FACTORIZATION
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CHOLESKY FACTORIZATION (CONTINUED)
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SYMMETRIC MATRICES
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