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WHAT IS VECTOR NORM?

e Let V be a vector space. Norm on V is a map
||| : V — R=0 satifying the following properties:
(1) Yve V,|v]|>0and ||v| =0 if and only if v =0
() Yve V,VaeR,|av| =|a||v]
() Yv,we V |lv+wl| < ||v|+ ||w]|

Let V=R",v = (x1,....Xn).
° |lv|l =X |x]| (1-norm)
° ||v]l2 = (X7 |xi[?)"/2 (2-norm)
® |[V[lw = maxi<j<n|Xi| (c-norm)
e Exercise: Prove that the above three are indeed norms.
e Exercise: Prove that (in general): |||u]| — [|v||| < [[u— V||
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GEOMETRICAL INTERPREATION

Drawing shows unit sphere in two dimensions
for each of these norms:

1.5+

N 2
N

SNYE

(~1.6,1.2)

Norms have following values for vector shown:

[zl =28, |lz[l2=2.0, [z]o=1.6
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WHAT IS MATRIX NORM?

DEFINITION

e Let V be a vector space of dimension nand A€ M., a
matrix, representing some linear transformation of V.

Definition

Ax
A= max 12X
x#0.xeV || X||

Exercise: Prove that the defined matrix norm satsfies the
properties of norms.

Exercise: Prove that for any two n x n matrices,

|IAB]| < [|A[[[[B]l-

Exercise: Prove that for any matrix A and any vector x,
A < [|A][|x]]-
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EQUIVALENCY OF NORMS

DEFINITION

e Two norms ||||1, ||||2 are called equivalent if there exist
positive numbers a, b such that || x||; < a||x||> and
|||z < bl|x||1 for any vector x.

EXERCISES

* Prove equivalency of ||||1,[|]l2, ]|/l norms in R".

e Let Abe matrix and
|All+ = max; X7 a1, || All.. = max; £ |aj]. Are they
equivalent? Also, are they eugiva,ent to the previously
defined matrix norm?

* Exercise: Prove that [|Al| = max |1 [|Ax]|.
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ILL-CONDITIONED SYSTEMS

EXAMPLE

* When there is a small change in one or more coefficients
in a system, if the system is well conditioned, the change in
the solution will also be small

¢ |n the case of ill conditioned systems, a small change in
some of the coefficients, will result in large changes in the

e oz -1 = B[
ose oze) [2]= 157 = []-[3]

e Q: What is an adequate measure of size for linear
systems?
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GEOMETRICAL INTERPREATION

Consider the graphical interpretation for a 2-equation system:

ay A | x| _ [bo (1)
a, a, X, 1133 (2)

We can plot the two linear equations on a graph of x; vs. X,.

L:Jncenainty
in x,

- e X
Uncertainty

in X,
Well-conditioned lll-conditioned
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CONDITIONING NUMBER OF A MATRIX

DEFINITION

e For nonsingular A, cond(A) = || A|[|A~"].
e For singular A, cond(A) = oo.

PROPERTIES OF cond(A)

e For any matrix A, cond(A) > 1.

e cond(l)=1

¢ For any nonzero number a, cond(aA) = cond(A)

¢ For a diagonal matrix A, cond(A) = (max;|a;]|)/(min;|a;]|)

* JAIAT] = (maxx=1 | Ax|[)(minj =1 | Ax|}) ", therefore
the conditioning number of a matrix describes the ratio to

max stretch that A inflicts on unit vectors versus min
stretch that A inflicts on unit vectors.
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ESTIMATING ERRORS

DEFINITION

e Let x be the true value of a vector, and X an approximate
value of it. Recall that absolute error of x is the difference
AX =X—X.

* Note that || Ax]|| = ||x — X].
* Relative error 8x = ﬁ will be defined only for nonzero x.

THEOREM

Let Ax = b be a linear system. Then the following hold:

18x|| < cond(A)||5b]

18x]| < cond(A)||8A]|
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FULL BACKWARD ERROR

ANALYSIS
Let Ax=b,AXx=b,A=A+ DA X=x+Ax,b=b+ Ab.
It's not hard to see that

AAx+AAXx+AAAXx = ADb

hence ingoring second degree differences, we get the linear
relationship
AAx=Ab—- AAx.

Since A is invertible,

Ax=A"(Ab- AAx).
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MATRIX CONDITIONG NUMBER

FACTS

¢ Conditioning number of a matrix is not easy to compute
because it involves inverting the matrix (a O(n%) complexity
operation) and computing the norm of both.

e An alternative way (same complexity though!) is to obtain
singluar value decomposition A= UXV where U,V are
orthogonal (that is det(U),det(V) = £1) and X = diag(o;).
Then cond(A) = c1/0p.

¢ An evaluation of cond(A) can be obtained by observing

that if Ax = y then H <||A~1||). The equality can be
achieved for a careful choice of x, y. Usually y is a vector
with components +1 with signs chosen such that || x|| is

maximized.

¢ Software packages have functions to compute it, e.g.
numpy.linalg.cond.
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THE RESIDUAL

WHAT 1S IT?

e Suppose a numerical algorithm for Ax = b yields X.

* One way is to verify our solution, is to plug it in the original
system, obtaining b = Ax and evaluate r = b — AX.

e Some computation (please do it on your own in the form of
an exercise!) shows that

[Ax]
1]l

I lAA|
— < cond(A)——
TATR AT

< cond(A)

where AA is the backward error on A.
¢ This shows residual is good if A is well conditioned.
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RESIDUAL IS NO GOOD: EXAMPLE

THE RESIDUAL NOT GOOD IF MATRIX IS NOT WELL CONDITIONED

Ay _ [0:913 0.659] [xi] _[0.254] _
= [0.457 0.330] |xo| ~ |0.127]

Consider two approximate solutions

o _ [06391] - _ [0.999
= —05 "™~ | -1.001

The norms of their residuals are

K| =7.0x107°||n||=2.4x 102

The real solution is [ !

_J . What can we conclude?
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ITERATIVE REFINEMENT

HERE 1S HOW

¢ Recall the residual r = b— Ax. The process can be
repeated solving r = AZ and forming the approximate
solution x + z.

¢ Denoting xp the solution obtained in the iteration n, it's not
hard to see

-1
X1 — x| < [|A7[[[| AA]|[|xn — x|[.

where AA is the error in the n-th iteration of Gauss
Elimination.

e Clearly, if |A~'|||| AA|| < 1 the procedure converges.

¢ |t can be shown ||AA|| < pnemach||Al|| where p is a constant
factor computed during the Gauss elimination process.
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SHERMAN-MORRISON FORMULA

Sherman-Morrison formula gives inverse of ma-
trix resulting from rank-one change to matrix
whose inverse is already known:

(A—uvH) T=A"14+ A w1 —vTA ) TwTA T,
where u and v are n-vectors
Evaluation of formula requires @(n?) work (for

matrix-vector multiplications) rather than O(n3)
work required for inversion
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SHERMAN-MORRISON EXAMPLE

Consider rank-one modification

2 4 —271[m 2
4 9 —3||ap|=] 8
—2 -1 7] las 10

(with 3,2 entry changed) of system whose LU
factorization was computed in earlier example

One way to choose update vectors:

u=[ 8-‘ and 'vz[Sw,
[—2] Lo]

so matrix of modified system is A — uv?
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EXAMPLE (CONTINUED)

Using LU factorization of A to solve Az = u

and Ay = b,
-3/2 -1
z= 1/2 and y=| 2
—-1/2 2

Final step computes updated solution

T
vy
Tr = [
y+1—'sz
1 . [-3/2 7
+—= | 1/2|=]| 4

1-1/2 1 0
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To solve linear system (A — uvD)x = b with
new matrix, use formula to obtain

r = (A—uv)) b
= A b+ A u(@ —vT A Tw) T A 1y,

which can be implemented by steps
1. Solve Az =wu for z, s0 z = A 1u
2. Solve Ay =b for y, so y = A~ 1b

3. Compute z =y + ((vTy)/(1 —vT2))z
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CHOLESKY FACTORIZATION

Symmetric Positive Definite Matrices

If A is symmetric and positive definite, then
LU factorization can be arranged so that

U=L" thatis, A=LL",

where L is lower triangular with positive diag-
onal entries

Algorithm for computing Cholesky factoriza-
tion derived by equating corresponding entries
of A and LLT and generating them in correct
order
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CHOLESKY FACTORIZATION (CONTINUED)

Features of Cholesky algorithm symmetric pos-
itive definite matrices:

e All n square roots are of positive numbers,
so algorithm well defined
e NO pivoting required for numerical stability

e Only lower triangle of A accessed, and hence
upper triangular portion need not be stored

e Only n3/6 multiplications and similar num-
ber of additions required
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SYMMETRIC MATRICES

For symmetric indefinite A, Cholesky factor-
ization not applicable, and some form of piv-
oting generally required for numerical stability

Factorization of form
PAPT = LDL7,

with L unit lower triangular and D either tridi-
agonal or block diagonal with 1 x 1 and 2 x 2
diagonal blocks, can be computed stably using
symmetric pivoting strategy
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