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WELCOME TO THE MATRIX

https://xkcd.com/184/
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VECTOR SPACES

WHAT IS A VECTOR SPACE OVER REALS?
• A tuple (V ,+, ·)
• V i the set of vectors
• Vector addition, denoted by +, and scalar multiplication,

denoted by ·, often omitted, satisfy usual algebraic
properties, i.e.:
• ∀v ,w ∈ V ,∀α ∈ R,v +αw ∈ V (Closure)
• ∃0 ∈ V ,∀v ∈ V ,v +0 = v (zero vector exists)
• ∀v ∈ V ,∃w ∈ V ,v +w = 0 (the inverse: w =−v )
• ∀v ∈ V ,∀w ∈ v ,v +w = w +v (commutativity)
• ∀u,v ,w ∈ V ,(u+v)+w = u+(w +v) (associativity)
• ∀α ∈ R,∀v ,w ,∈ V ,α(v +w) = αv +αw
• ∀v ∈ V ∀α,β ∈ R,(α+β)v = αv +βv
• ∀v ∈ V ,1 ·v = v
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EXAMPLES

R2 [
x1
y1

]
+

[
x2
y2

]
=

[
x1 +x2
y1 +y2

]
α

[
x
y

]
=

[
αx
αy

]

FUNCTIONS ALSO FORM A VECTOR SPACE

Let f ,g : R→ R. Then:

f +g : x 7→ f (x)+g(x)

αf : x 7→: αf (x)

are also well defined functions.
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MORE EXAMPLES

Position of a robotic arm can be
represented as vector

Velocity of the ball can be
represented as a vector
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LINEAR INDEPENDENCE

LINEAR SPAN AND INDEPENDENCE

• Let v1, . . . ,vk ∈ V , where V is a real vector space.
• Linear span of v1, . . . ,vk is called the set
{a1v1 + · · ·+akvk |a1, . . .ak ∈ R}.

• A set of vectors {v1, . . . ,vk} is called linearly independent if

∀a1, . . . ,ak ∈ R,a1v1 + · · ·+akvk = 0 =⇒ a1 = · · ·= ak = 0.
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BASIS AND DIMENSION

BASIS OF A VECTOR SPACE V . DIMENSION.
• A set B = {v1, . . . ,vk} ⊂ V is called a basis if V if:

• B is linearly independent and spans V
• Any set of vectors B′ such that B′ ⊃ B (in the strict sense),

is linearly dependent, i.e. B is maximal.
• If a vector space B has a finite basis, it can be shown that

any other basis of V is going to have same number of
vectors. Therefore the cardinality of B is invariant of V ,
called dimension. In this case, V is called finite dimensional
space.

• Otherwise, a vector space is called infnite dimensional.
• In this course, we will study finite dimensional spaces only.
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LINEAR TRANSFORMATIONS.

WHAT HAPPENS IN VECTORS SPACES STAYS IN VECTOR SPACES

• Let V ,W be two real vector spaces.
• A linear transformation is a map T : V →W satisfying

∀v1,v1 ∈V ,∀α1,α2 ∈R,T (α1v1+α2v2)=α1T (v1)+α2T (v2)

• Example, the linear transformation

T : R2→ R2[
x
y

]
7→
[
x cosθ+y sinθ

y cosθ−x sinθ

]
rotates a vector arm with end point coordinates (x ,y) by θ

around origin.
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MATRICES.

WHAT IS A MATRIX?
By definition, a n×m real matrix is an ordered set of m vectors
from Rn space. For example, here is a 2×3 real matrix:[

3 −1 4
0.2 9 −1.2

]
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MATRICES.

WHERE DO MATRICES COME FROM?

Let V = R3,W = R2 be the usual 3-dimensional and
2-dimensional Euclidian spaces. Also let

e1 =

1
0
0

 ,e2 =

0
1
0

 ,e3 =

0
0
1


be the standard basis for V .
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MATRICES.

WHERE DO MATRICES COME FROM?
For any T : V →W , can write due to linearity:

T

x
y
z

= xT

1
0
0

+yT

0
1
0

+zT

0
0
1


This means we can write out the image of any vector from R3

as long as we know how does T transform the vectors of the
basis. The images of e1,e2,e3 will be three vectors from R2.
Writing aij for the i−the coordinate of T (ej) we get[

a11 a12 a13
a21 a22 a23

]
the matrix representing transformation T .



Linear Algebra Review Linear Systems Triangular matrices Permutation matrices

MATRICES.

USING ORDINARY RULES OF MATRIX MULTIPLICATION:[
a11 a12 a13
a21 a22 a23

]x
y
z

=

[
b1
b2

]
usually called a linear system with two equations and three
variables, where [

b1
b2

]
=

[
a11x +a12y +a13z
a21x +a22y +a23z

]
In this course, we will deal with systems of equations that have
equal nymber of equations and variables.
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PROBLEMS WE AIM TO SOLVE.

ROBOTIC ARM

Where should we mound the loose end of the robotic arm so it
can reach the point (0,1) if rotated by π/6?[

cosπ/6 sinπ/6
−sinπ/6 cosπ/6

][
x
y

]
=

[
0
1

]
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WHAT IS A LINEAR SYSTEM?

DEFINITIONS

Note: in what follows, vectors will be assumed column vectors.

Let

A =

a11 . . . a1n
. . . . . . . . .
an1 . . . ann


a n×n real matrix and x ,b ∈ Rn. Sometimes we will denote
matrices as follows: A =

[
aij
]

n×n, or, if n is clear from the
context, simply A =

[
aij
]
.

A linear system will be called an equation of the form

Ax = b.
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MATRIX OPERATIONS

DEFINITIONS

Let A =
[
aij
]
,B =

[
bij
]
. Then:

A+B =
[
aij +bij

]
AB =

[
∑

n
k=1 aikbkj

]
Identity matrix is called the special matrix I =

[
δij
]

for δij = 1 if
i 6= j and δii = 0. Example (n = 2):

I =
[
1 0
0 1

]
In general, AB 6= BA. Example:

A =

[
1 1
0 1

]
,B =

[
2 1
−1 3

]
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INVERSE OF A MATRIX

DEFINITIONS

Inverse of a matrix A (if it exists) is called a matrix denoted by
A−1 having the following property:

AA−1 = A−1A = I .

Exercise: Prove that if the inverse of a matrix exists, it is
unique.

Recall determinant of a matrix is called the number computed
by the formula

det(A) = ∑
σ∈Sn

sign(σ)
n

∏
i=1

aiσi

where Sn is the set of all permutations of numbers 1,2, . . . ,n
and the sign of a permutation is the number of its inversions.
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DETERMINANT EXAMPLE

EXAMPLE

Let
n = 3,S3 = {(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}.
Notice (1,2,3) has zero inversions, so its sign is 1, whereas
(1,3,2) has one invesion, so its sign is −1 and so on.

det

1 −1 0
2 1 −1
0 1 1

= a11a22a33−a11a23a32

−a12a21a33 +a12a23a31 +a13a21a32−a13a22a31 = 4

Note: Determinant has the following important property:
det(AB) = det(A)det(B).
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INVERTIBLE (NONSINGULAR) MATRICES

TFAE
A matrix if invertible (or non-degenerate, or nonsingular) if
• It has an inverse: AA−1 = I
• det(A) 6= 0
• rank(A) = n (note: rank of a matrix is the maximum

number of linearly independent rows or columns,
considered as Rn vectors.)
• For any nonzero vector x , it is true that Ax 6= 0.

Otherwise the matrix is called singular.
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SOLVING LINEAR SYSTEMS

Ax = b

Let A be nonsingular. Then A−1 exists, so

x = A−1b

shows the solution exists and it is unique.

If A is singular, the system may or may not have solutions. For
example [

2 0
3 0

][
x
y

]
=

[
0
1

]
has no solution (why?).
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SOLVING LINEAR SYSTEMS

Ax = b
Now let A be singular and assume there is a solution x0 so that
Ax0 = b. Since A is singular, there exists a vector y 6= 0 such
that Ay = 0 (why?). Then

A(x0 + t y) = Ax0+ tAy = b+0 = b

so x0 + ty is another solution for any t .

SUMMARY - SOLVING Ax = b
• A nonsingular: unique solution x = A−1b
• A singular: no solution if b /∈ imgAx
• A singular: infinitely many solutions if b ∈ imgAx
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SOLVING LINEAR SYSTEMS

Ax = b,A UPPER TRIANGULAR

A =


a11 a12 . . . a1n
0 a22 . . . a2n
. . . . . . . . . . . .
0 0 . . . ann

 ,aij = 0, i > j

Assuming aii 6= 0, one can successively compute

xn =
bn

ann
,xi =

1
aii

(bi −
n

∑
k=i+1

aikxk ),1≤ i ≤ n−1
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SOLVING LINEAR SYSTEMS

Ax = b,A LOWER TRIANGULAR

A =


a11 0 . . . 0
a21 a22 . . . 0
. . . . . . . . . . . .
an1 an2 . . . ann

 ,aij = 0, i < j

Assuming aii 6= 0, one can successively compute

x1 =
b1

a11
,xi =

1
aii

(bi −
i−1

∑
k=1

aikxk ),2≤ i ≤ n
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SOLVING LINEAR SYSTEMS

HOW TO SIMPLIFY A LINEAR SYSTEM?
Let T be a nonsingular matrix. The following computation

TAx = Tb =⇒ x = (TA)−1Tb = A−1T−1Tb = A−1Ib = A−1b

shows the solution to a linear ysstem does not change when
we multiply both sides with a nonsingular matrix.

SOLUTION STRATEGY - GAUSS ELIMINATION

Multiply both sides of the given system with nonsingular
matrices until we obtain an upper triangular system.
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GAUSS ELIMINATION

A FIRST EXAMPLE

Ax =

 2 4 −2
4 9 −3
−2 −3 7

x1
x2
x3

=

 2
8

10

= b

Want to convert a21,a31,a32 to zero. To this end, multiply first
row by 2 and subtract it from second row, applying same
operation to the right hand side:

Ax =

 2 4 −2
0 1 1
−2 −3 7

x1
x2
x3

=

 2
4

10

= b
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GAUSS ELIMINATION

A FIRST EXAMPLE - CONTINUED

Multiply first row to −1 and subtract it from third row:

Ax =

2 4 −2
0 1 1
0 1 5

x1
x2
x3

=

 2
4

12

= b

Subtract second row from third row:

Ax =

2 4 −2
0 1 1
0 0 4

x1
x2
x3

=

2
4
8

= b
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GAUSS ELIMINATION

A FIRST EXAMPLE - BACK SUBSTITUTION

x3 = 8/4 = 2,x2 = 4−x3 = 2,x1 = (2−4 ·2+2 ·2)/2 =−1

QUESTION

How to generalize?
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ELEMENTARY ELIMINATION MATRICES

We are interested to transform a column of matrix A as follows:

a1k
. . .
akk

ak+1,k
. . .
ank

→


a1k
. . .
akk
0
. . .
0


Not very hard to see, the following matrix will do (note
det(Mk ) = 1):

Mk =



1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 1 0 . . . 0
0 . . . −ak+1,k

akk
1 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . −ank

akk
0 . . . 1


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PROPERTIES OF ELEMENTARY ELIMINATION MATRICES

• In order to transfor a matrix to upper triangular, using
elimination matrices, we need n−1 of them: M1, . . . ,Mn−1.
• Each Mk is lower triangular and nonsingular
• Recall the transposition operator and let

mk =
[
0 . . . 0 −ak+1,k

akk
. . . −ank

akk

]T

and ek the k−th column of the indentity matrix, it’s not hard
to see that

Mk = I−mk eT
k

• Check (exercise!)

M−1
k = I +mk eT

k

and denote Lk = M−1
k .
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GAUSS ELIMINATION

• Consider the system Ax = b, assuming aii 6= 0 for all i , we
may actually apply matrices M1,M2, . . . ,Mn−1 to our system
and notice the solution does not change, so the following
system

Mn−1 . . .M1Ax = Mn−1 . . .M1b

has same solution as the original system.
• The matrix U = Mn−1 . . .M1A is upper-triangular, so the

system Ux = Mn−1 . . .M1b can be solved using
back-substitution.
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LU FACTORIZATION

• Recall M−1
k = Lk are lower triangular and product of lower

triangular matrices is also lower triangular.
• Ux = Mn−1 . . .M1b =⇒ LUx = b letting L = M−1

1 . . .M−1
n−1.

• As an easy exercise, prove that A = LU. This is precisely
LU factorization of a nonsingular matrix A with nonzero
diagonal elements.
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WHEN GAUSS ELIMINATION BREAKS

WHAT HAPPENS WHEN aii = 0?
• Gaussian elimination breaks down if leading diagonal entry

of remaining unreduced matrix is zero at any stage
• Example: 

2 1 1 0
0 1 1 0
0 0 0 2
0 0 2 2


• We are unable to cancel the blue colored item due to the

zero value (in red).
• Clearly, we need to permute lines 3 and 4.
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PERMUTING THE ROWS

WHAT IS A PERMUTATION MATRIX?
• We permute two rows by using a permutation matrix.

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




2 1 1 0
0 1 1 0
0 0 0 2
0 0 2 2

=


2 1 1 0
0 1 1 0
0 0 2 2
0 0 0 2


• The permutation matrix to the left has been obtained from

identity matrix permuting rows 3 and 4.
• This implies the general rule to obtain the upper triangular

matrix U is:
Mn−1Pn−1 . . .M1P1A = U
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NOT EVERY INVERTIBLE MATRIX AS AN LU
FACTORIZATION

WHAT IS A PERMUTATION MATRIX?
• Observe the permutation matrices are invertible.
• In general, P−1

1 M−1
1 . . .P−1

n−1M−1
n−1 is not lower triangular.

• Example:
[
0 1
1 0

]
• To make it worse, there are non-invertible matrices that

have LU factorization.

• Example:
[
1 1
1 1

]
=

[
1 0
1 0

][
0 1
0 1

]
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PARTIAL PIVOTING

WHAT IS A PARTIAL PIVOTING?
• Let P = Pn−1 . . .P1.
• Then PA = LU.
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MORE TROUBLE WITH GAUSS ELIMINATION

WHAT HAPPENS WHEN |aii | IS SMALL?
• Gaussian elimination may lead to large errors if pivot is

very small
• Example: 

2 1 1 0
0 1 1 0
0 0 0.0001 2
0 0 2 2


• Canceling the blue item involves dividing with a very small

number, leading to error propagation.
• Also this points to poor conditioning.
• In this case, permuting columns 3 and 4 helps.
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COMPLETE PIVOTING

WHAT IS A COMPLETE PIVOTING?
• Let Q be the product of permutation matrices used to

permute columns
• Then PAQ = LU.
• Numerical stability of complete pivoting theoretically

superior, but pivot search more expensive than partial
pivoting
• Numerical stability of partial pivoting more than adequate

in practice, so almost always used in solving linear
systems by Gaussian elimination
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GAUSS ELIMINATION

• Let Ax = b, where A is an n×n non-singular matrix, and
x ,b column vectors from Rn.
• By conducting the appropriate row reduction operations,

combined with necessary row permuations, we transform
our system to Mn−1Pn−1 . . .M1P1Ax = Mn−1Pn−1 . . .M1P1b
or Ux = b′ where U = Mn−1Pn−1 . . .M1P1 is
upper-triangular and b′ = Mn−1Pn−1 . . .M1P1b.
• This transformation is know as Gauss Elimination. By

checking out our implementation (completed in tutorial and
homework), we conclude its computational complexity is of
the order O(n3).
• To complete the solution of our system, we just need to

perform the backward substitution, whose complexity is
O(n2).
• Therefore, the allover complexity is O(n3).
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GAUSS ELIMINATION EXAMPLE

EXAMPLE

Ax =

 2 4 −2
4 9 −3
−2 −3 7

x1
x2
x3

=

 2
8

10

= b

After a few suitable row reductions, we have completed Gauss
Elimination:

Ux =

2 4 −2
0 1 1
0 0 4

x1
x2
x3

=

2
4
8

= b′

Every solution of the original system is a solution of the
transformed system and vice versa. Therefore, we obtain the
solution to the original system by performing backward
substitution to the transformed system.
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GAUSS JORDAN ELIMINATION EXAMPLE

EXAMPLE

By continuing elimination of the elements in the upper triangle
of the matrix:

Ux =

2 4 −2
0 1 1
0 0 4

x1
x2
x3

=

2
4
8

= b′

we obtain:

Ux =

2 0 0
0 1 0
0 0 4

x1
x2
x3

=

−2
2
8

= b′

After diagonalization, the solution can be easily computed by
divided RHS components by diagonal elements.



Linear Algebra Review Linear Systems Triangular matrices Permutation matrices

GAUSS JORDAN ELIMINATION

THE ALGORITHM

• Transform the system in upper triangular form
• Eliminate elements above the main diagonal
• The Gauss Jordan Elimination process finishes by

producing a diagonal matrix.

SOLVING THE SYSTEM AND COMPLEXITY

After diagonalization, the solution can be easily computed by
divided RHS components by diagonal elements. The
complexity of the last operation is O(n), however the elimination
of the upper triangular elements is of the order O(n3), so we do
not gain in overall complexity.
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