Linear Systems

Triangular matrices

Permutation matrices

CSC338 WINTER 2022 Week 3 - Systems of Linear Equations

Ilir Dema

University of Toronto

Jan 28, 2022

Linear Systems

Triangular matrices

Permutation matrices

WELCOME TO THE MATRIX

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \Omega_{2}}_{12}$$

https://xkcd.com/184/

Triangular matrices

Permutation matrices

VECTOR SPACES

WHAT IS A VECTOR SPACE OVER REALS?

- A tuple (*V*,+,·)
- V i the set of vectors
- Vector addition, denoted by +, and scalar multiplication, denoted by ·, often omitted, satisfy usual algebraic properties, i.e.:
 - $\forall v, w \in V, \forall \alpha \in \mathbb{R}, v + \alpha w \in V$ (Closure)
 - $\exists 0 \in V, \forall v \in V, v + 0 = v$ (zero vector exists)
 - $\forall v \in V, \exists w \in V, v + w = 0$ (the inverse: w = -v)
 - $\forall v \in V, \forall w \in v, v + w = w + v$ (commutativity)
 - $\forall u, v, w \in V, (u+v) + w = u + (w+v)$ (associativity)
 - $\forall \alpha \in \mathbb{R}, \forall v, w, \in V, \alpha(v+w) = \alpha v + \alpha w$
 - $\forall \mathbf{v} \in \mathbf{V} \ \forall \alpha, \beta \in \mathbb{R}, (\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}$
 - $\forall v \in V, 1 \cdot v = v$

Linear Algebra Review	
00000000000	

Triangular matrices

Permutation matrices

EXAMPLES

 \mathbb{R}^2

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix}$$
$$\alpha \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha x \\ \alpha y \end{bmatrix}$$

FUNCTIONS ALSO FORM A VECTOR SPACE

Let $f, g : \mathbb{R} \to \mathbb{R}$. Then:

$$f+g: x \mapsto f(x)+g(x)$$

$$\alpha f: x \mapsto: \alpha f(x)$$

are also well defined functions.

Linear Systems

Triangular matrices

Permutation matrices

MORE EXAMPLES

Position of a robotic arm can be represented as vector

Velocity of the ball can be represented as a vector

Linear Systems

Triangular matrices

Permutation matrices

LINEAR INDEPENDENCE

LINEAR SPAN AND INDEPENDENCE

- Let $v_1, \ldots, v_k \in V$, where V is a real vector space.
- Linear span of v_1, \ldots, v_k is called the set $\{a_1v_1 + \cdots + a_kv_k | a_1, \ldots a_k \in \mathbb{R}\}.$
- A set of vectors {*v*₁,...,*v*_k} is called linearly independent if

 $\forall a_1,\ldots,a_k \in \mathbb{R}, a_1v_1+\cdots+a_kv_k=0 \implies a_1=\cdots=a_k=0.$

Triangular matrices

Permutation matrices

BASIS AND DIMENSION

BASIS OF A VECTOR SPACE V. DIMENSION.

- A set $B = \{v_1, \ldots, v_k\} \subset V$ is called a *basis* if V if:
 - B is linearly independent and spans V
 - Any set of vectors B' such that B' ⊃ B (in the strict sense), is linearly dependent, i.e. B is maximal.
 - If a vector space B has a finite basis, it can be shown that any other basis of V is going to have same number of vectors. Therefore the cardinality of B is invariant of V, called *dimension*. In this case, V is called finite dimensional space.
 - Otherwise, a vector space is called infnite dimensional.
 - In this course, we will study finite dimensional spaces only.

Triangular matrices

Permutation matrices

LINEAR TRANSFORMATIONS.

WHAT HAPPENS IN VECTORS SPACES STAYS IN VECTOR SPACES

- Let *V*, *W* be two real vector spaces.
- A linear transformation is a map $T: V \rightarrow W$ satisfying

 $\forall v_1, v_1 \in V, \forall \alpha_1, \alpha_2 \in \mathbb{R}, T(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 T(v_1) + \alpha_2 T(v_2)$

• Example, the linear transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \cos \theta + y \sin \theta \\ y \cos \theta - x \sin \theta \end{bmatrix}$$

rotates a vector arm with end point coordinates (x, y) by θ around origin.

Linear Systems

Triangular matrices

Permutation matrices

MATRICES.

WHAT IS A MATRIX?

By definition, a $n \times m$ real matrix is an ordered set of m vectors from \mathbb{R}^n space. For example, here is a 2 × 3 real matrix:

$$\begin{bmatrix} 3 & -1 & 4 \\ 0.2 & 9 & -1.2 \end{bmatrix}$$

Linear Systems

Triangular matrices

Permutation matrices

MATRICES.

WHERE DO MATRICES COME FROM?

Let $V = \mathbb{R}^3$, $W = \mathbb{R}^2$ be the usual 3-dimensional and 2-dimensional Euclidian spaces. Also let

$$\boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \boldsymbol{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

be the standard basis for V.

Linear Algebra Review	
000000000000	

Triangular matrices

Permutation matrices

MATRICES.

WHERE DO MATRICES COME FROM?

For any $T: V \rightarrow W$, can write due to linearity:

$$T\begin{bmatrix} x\\ y\\ z\end{bmatrix} = xT\begin{bmatrix} 1\\ 0\\ 0\end{bmatrix} + yT\begin{bmatrix} 0\\ 1\\ 0\end{bmatrix} + zT\begin{bmatrix} 0\\ 0\\ 1\end{bmatrix}$$

This means we can write out the image of any vector from \mathbb{R}^3 as long as we know how does T transform the vectors of the basis. The images of e_1, e_2, e_3 will be three vectors from \mathbb{R}^2 . Writing a_{ij} for the *i*-the coordinate of $T(e_i)$ we get

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

the matrix representing transformation T.

MATRICES.

Linear Systems

Triangular matrices

Permutation matrices

USING ORDINARY RULES OF MATRIX MULTIPLICATION:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

usually called a linear system with two equations and three variables, where

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y + a_{13}z \\ a_{21}x + a_{22}y + a_{23}z \end{bmatrix}$$

In this course, we will deal with systems of equations that have equal nymber of equations and variables.

Linear Systems

Triangular matrices

Permutation matrices

PROBLEMS WE AIM TO SOLVE.

ROBOTIC ARM

Where should we mound the loose end of the robotic arm so it can reach the point (0,1) if rotated by $\pi/6$?

$$\begin{bmatrix} \cos \pi/6 & \sin \pi/6 \\ -\sin \pi/6 & \cos \pi/6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Linear Systems

Triangular matrices

Permutation matrices

WHAT IS A LINEAR SYSTEM?

DEFINITIONS

Note: in what follows, vectors will be assumed column vectors.

Let

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

a $n \times n$ real matrix and $\boldsymbol{x}, \boldsymbol{b} \in \mathbb{R}^n$. Sometimes we will denote matrices as follows: $\boldsymbol{A} = [a_{ij}]_{n \times n}$, or, if *n* is clear from the context, simply $\boldsymbol{A} = [a_{ij}]$.

A linear system will be called an equation of the form

$$Ax = b$$
.

Linear Systems

Triangular matrices

Permutation matrices

MATRIX OPERATIONS

DEFINITIONS

Let
$$\boldsymbol{A} = \begin{bmatrix} a_{ij} \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} b_{ij} \end{bmatrix}$$
. Then:

$$m{A} + m{B} = ig[a_{ij} + b_{ij} ig]$$

$$oldsymbol{AB} = ig[\sum_{k=1}^n a_{ik} b_{kj} ig]$$

Identity matrix is called the special matrix $I = [\delta_{ij}]$ for $\delta_{ij} = 1$ if $i \neq j$ and $\delta_{ii} = 0$. Example (n = 2):

$$\boldsymbol{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

In general, $AB \neq BA$. Example:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$

Linear Systems

Triangular matrices

Permutation matrices

INVERSE OF A MATRIX

DEFINITIONS

Inverse of a matrix A (if it exists) is called a matrix denoted by A^{-1} having the following property:

$$AA^{-1} = A^{-1}A = I.$$

Exercise: Prove that if the inverse of a matrix exists, it is unique.

Recall *determinant* of a matrix is called the number computed by the formula

$$\det(\boldsymbol{A}) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{i=1}^n a_{i\sigma_i}$$

where S_n is the set of all permutations of numbers 1, 2, ..., nand the sign of a permutation is the number of its inversions.

Triangular matrices

Permutation matrices

DETERMINANT EXAMPLE

EXAMPLE

Let

 $n = 3, S_3 = \{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}.$ Notice (1,2,3) has zero inversions, so its sign is 1, whereas (1,3,2) has one invesion, so its sign is -1 and so on.

$$\det \left(\begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \right) = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32}$$

 $-a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} = 4$

Note: Determinant has the following important property: $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$.

Linear Systems

Triangular matrices

Permutation matrices

INVERTIBLE (NONSINGULAR) MATRICES

TFAE

A matrix if invertible (or non-degenerate, or nonsingular) if

- It has an inverse: $AA^{-1} = I$
- det $(\boldsymbol{A}) \neq 0$
- rank(A) = n (note: rank of a matrix is the maximum number of linearly independent rows or columns, considered as ℝⁿ vectors.)
- For any nonzero vector \boldsymbol{x} , it is true that $\boldsymbol{A}\boldsymbol{x} \neq 0$.

Otherwise the matrix is called singular.

Linear Systems

Triangular matrices

Permutation matrices

SOLVING LINEAR SYSTEMS

Ax = b

Let **A** be nonsingular. Then
$$A^{-1}$$
 exists, so

$$x = A^{-1}b$$

shows the solution exists and it is unique.

If **A** is singular, the system may or may not have solutions. For example

$$\begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

has no solution (why?).

Linear Systems

Triangular matrices

Permutation matrices

SOLVING LINEAR SYSTEMS

Ax = b

Now let **A** be singular and assume there is a solution x_0 so that $Ax_0 = b$. Since **A** is singular, there exists a vector $y \neq 0$ such that Ay = 0 (why?). Then

$$A(x_0 + ty) = Ax_0 + tAy = b + 0 = b$$

so $x_0 + ty$ is another solution for any t.

SUMMARY - SOLVING Ax = b

- **A** nonsingular: unique solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
- A singular: no solution if $b \notin img Ax$
- A singular: infinitely many solutions if b ∈ img Ax

Linear Systems

Triangular matrices

Permutation matrices

SOLVING LINEAR SYSTEMS

Ax = b, A UPPER TRIANGULAR

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}, a_{ij} = 0, i > j$$

Assuming $a_{ii} \neq 0$, one can successively compute

$$x_n = \frac{b_n}{a_{nn}}, x_i = \frac{1}{a_{ii}}(b_i - \sum_{k=i+1}^n a_{ik}x_k), 1 \le i \le n-1$$

Triangular matrices

Permutation matrices

Back-Substitution

• Back-substitution for upper triangular system Ux = b

$$x_n = b_n/u_{nn}, \quad x_i = \left(b_i - \sum_{j=i+1}^n u_{ij}x_j\right) / u_{ii}, \quad i = n - 1, \dots, 1$$

for
$$j = n$$
 to 1
if $u_{jj} = 0$ then stop
 $x_j = b_j/u_{jj}$
for $i = 1$ to $j - 1$
 $b_i = b_i - u_{ij}x_j$
end
end

{ loop backwards over columns } { stop if matrix is singular } { compute solution component }

{ update right-hand side }

Linear Systems

Triangular matrices

Permutation matrices

SOLVING LINEAR SYSTEMS

Ax = b, A lower triangular

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, a_{ij} = 0, i < j$$

Assuming $a_{ii} \neq 0$, one can successively compute

$$x_1 = \frac{b_1}{a_{11}}, x_i = \frac{1}{a_{ii}}(b_i - \sum_{k=1}^{i-1} a_{ik}x_k), 2 \le i \le n$$

Linear Systems

Triangular matrices

Permutation matrices

Forward-Substitution

• Forward-substitution for lower triangular system Lx = b

$$x_1 = b_1/\ell_{11}, \quad x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}, \quad i = 2, \dots, n$$

for
$$j = 1$$
 to n
if $\ell_{jj} = 0$ then stop
 $x_j = b_j/\ell_{jj}$
for $i = j + 1$ to n
 $b_i = b_i - \ell_{ij}x_j$
end
end

{ loop over columns } { stop if matrix is singular } { compute solution component }

{ update right-hand side }

Linear Systems

Triangular matrices

Permutation matrices

SOLVING LINEAR SYSTEMS

HOW TO SIMPLIFY A LINEAR SYSTEM?

Let **T** be a nonsingular matrix. The following computation

$$TAx = Tb \implies x = (TA)^{-1}Tb = A^{-1}T^{-1}Tb = A^{-1}Ib = A^{-1}b$$

shows the solution to a linear ysstem does not change when we multiply both sides with a nonsingular matrix.

SOLUTION STRATEGY - GAUSS ELIMINATION

Multiply both sides of the given system with nonsingular matrices until we obtain an upper triangular system.

Linear Systems

Triangular matrices

Permutation matrices

GAUSS ELIMINATION

A FIRST EXAMPLE

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \boldsymbol{b}$$

Want to convert a_{21} , a_{31} , a_{32} to zero. To this end, multiply first row by 2 and subtract it from second row, applying same operation to the right hand side:

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 10 \end{bmatrix} = \boldsymbol{b}$$

Linear Systems

Triangular matrices

Permutation matrices

GAUSS ELIMINATION

A FIRST EXAMPLE - CONTINUED

Multiply first row to -1 and subtract it from third row:

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} = \boldsymbol{b}$$

Subtract second row from third row:

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \boldsymbol{b}$$

Linear Systems

Triangular matrices

Permutation matrices

GAUSS ELIMINATION

A FIRST EXAMPLE - BACK SUBSTITUTION

$$x_3 = 8/4 = 2, x_2 = 4 - x_3 = 2, x_1 = (2 - 4 \cdot 2 + 2 \cdot 2)/2 = -1$$

QUESTION

How to generalize?

ELEMENTARY ELIMINATION MATRICES

We are interested to transform a column of matrix **A** as follows:

$$\begin{bmatrix} a_{1k} \\ \dots \\ a_{kk} \\ a_{k+1,k} \\ \dots \\ a_{nk} \end{bmatrix} \rightarrow \begin{bmatrix} a_{1k} \\ \dots \\ a_{kk} \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

Not very hard to see, the following matrix will do (note $det(M_k) = 1$):

$$\boldsymbol{M_{k}} = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & -\frac{a_{k+1,k}}{a_{kk}} & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & -\frac{a_{nk}}{a_{kk}} & 0 & \dots & 1 \end{bmatrix}$$

Linear	Algebra	Review
		00

Triangular matrices

Permutation matrices

PROPERTIES OF ELEMENTARY ELIMINATION MATRICES

- In order to transfor a matrix to upper triangular, using elimination matrices, we need n-1 of them: M_1, \ldots, M_{n-1} .
- Each *M_k* is lower triangular and nonsingular
- Recall the transposition operator and let

$$\boldsymbol{m_k} = \begin{bmatrix} 0 & \dots & 0 & -\frac{a_{k+1,k}}{a_{kk}} & \dots & -\frac{a_{nk}}{a_{kk}} \end{bmatrix}^T$$

and e_k the *k*-th column of the indentity matrix, it's not hard to see that

$$M_k = I - m_k e_k^T$$

• Check (exercise!)

$$M_k^{-1} = I + m_k e_k^T$$

and denote $L_k = M_k^{-1}$.

Linear Systems

Triangular matrices

Permutation matrices

GAUSS ELIMINATION

Consider the system *Ax* = *b*, assuming *a_{ii}* ≠ 0 for all *i*, we may actually apply matrices *M*₁, *M*₂,..., *M*_{n-1} to our system and notice the solution does not change, so the following system

$$M_{n-1}\ldots M_1Ax = M_{n-1}\ldots M_1b$$

has same solution as the original system.

• The matrix $U = M_{n-1} \dots M_1 A$ is upper-triangular, so the system $Ux = M_{n-1} \dots M_1 b$ can be solved using back-substitution.

Linear Systems

Triangular matrices

Permutation matrices

LU FACTORIZATION

• Recall $M_k^{-1} = L_k$ are lower triangular and product of lower triangular matrices is also lower triangular.

• $Ux = M_{n-1} \dots M_1 b \implies LUx = b$ letting $L = M_1^{-1} \dots M_{n-1}^{-1}$.

 As an easy exercise, prove that *A* = *LU*. This is precisely LU factorization of a nonsingular matrix *A* with nonzero diagonal elements.

Linear Systems

Triangular matrices

Permutation matrices

WHEN GAUSS ELIMINATION BREAKS

What happens when $a_{ii} = 0$?

- Gaussian elimination breaks down if leading diagonal entry of remaining unreduced matrix is zero at any stage
- Example:

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

- We are unable to cancel the blue colored item due to the zero value (in red).
- Clearly, we need to permute lines 3 and 4.

Triangular matrices

Permutation matrices

PERMUTING THE ROWS

WHAT IS A PERMUTATION MATRIX?

• We permute two rows by using a permutation matrix.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

- The permutation matrix to the left has been obtained from identity matrix permuting rows 3 and 4.
- This implies the general rule to obtain the upper triangular matrix U is:

$$M_{n-1}P_{n-1}\ldots M_1P_1A=U$$

Linear Systems

Triangular matrices

Permutation matrices

NOT EVERY INVERTIBLE MATRIX AS AN **LU** FACTORIZATION

WHAT IS A PERMUTATION MATRIX?

- Observe the permutation matrices are invertible.
- In general, $P_1^{-1}M_1^{-1}\dots P_{n-1}^{-1}M_{n-1}^{-1}$ is not lower triangular.
- Example: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- To make it worse, there are non-invertible matrices that have *LU* factorization.

• Example:
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Linear Systems

Triangular matrices

Permutation matrices

PARTIAL PIVOTING

WHAT IS A PARTIAL PIVOTING?

• Let
$$P = P_{n-1} \dots P_1$$
.

Triangular matrices

Permutation matrices

MORE TROUBLE WITH GAUSS ELIMINATION

What happens when $|a_{ii}|$ is small?

- Gaussian elimination may lead to large errors if pivot is very small
- Example:

[2 0	1	1	0]
0	1	1	0
0	0	0.0001	2
0	0	2	2 2

- Canceling the blue item involves dividing with a very small number, leading to error propagation.
- Also this points to poor conditioning.
- In this case, permuting columns 3 and 4 helps.

Linear Systems

Triangular matrices

Permutation matrices

COMPLETE PIVOTING

WHAT IS A COMPLETE PIVOTING?

- Let *Q* be the product of permutation matrices used to permute columns
- Then *PAQ* = *LU*.
- Numerical stability of complete pivoting theoretically superior, but pivot search more expensive than partial pivoting
- Numerical stability of partial pivoting more than adequate in practice, so almost always used in solving linear systems by Gaussian elimination

Linear Algebra Review	Linear Systems	Triangular matrices	Permutation matrices

GAUSS ELIMINATION

- Let Ax = b, where A is an $n \times n$ non-singular matrix, and x, b column vectors from \mathbb{R}^n .
- By conducting the appropriate row reduction operations, combined with necessary row permuations, we transform our system to $M_{n-1}P_{n-1}...M_1P_1Ax = M_{n-1}P_{n-1}...M_1P_1b$ or Ux = b' where $U = M_{n-1}P_{n-1}...M_1P_1$ is upper-triangular and $b' = M_{n-1}P_{n-1}...M_1P_1b$.
- This transformation is know as **Gauss Elimination**. By checking out our implementation (completed in tutorial and homework), we conclude its computational complexity is of the order $O(n^3)$.
- To complete the solution of our system, we just need to perform the backward substitution, whose complexity is $O(n^2)$.
- Therefore, the allover complexity is $O(n^3)$.

Linear Systems

Triangular matrices

Permutation matrices

GAUSS ELIMINATION EXAMPLE

EXAMPLE

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \boldsymbol{b}$$

After a few suitable row reductions, we have completed Gauss Elimination:

$$\boldsymbol{U}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \boldsymbol{b}'$$

Every solution of the original system is a solution of the transformed system and vice versa. Therefore, we obtain the solution to the original system by performing backward substitution to the transformed system.

Linear Systems

Triangular matrices

Permutation matrices

GAUSS JORDAN ELIMINATION EXAMPLE

EXAMPLE

By continuing elimination of the elements in the upper triangle of the matrix:

$$\boldsymbol{U}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \boldsymbol{b}'$$

we obtain:

$$\boldsymbol{U}\boldsymbol{x} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 8 \end{bmatrix} = \boldsymbol{b}'$$

After diagonalization, the solution can be easily computed by divided RHS components by diagonal elements.

Triangular matrices

Permutation matrices

GAUSS JORDAN ELIMINATION

THE ALGORITHM

- Transform the system in upper triangular form
- Eliminate elements above the main diagonal
- The **Gauss Jordan Elimination** process finishes by producing a diagonal matrix.

SOLVING THE SYSTEM AND COMPLEXITY

After diagonalization, the solution can be easily computed by divided RHS components by diagonal elements. The complexity of the last operation is O(n), however the elimination of the upper triangular elements is of the order $O(n^3)$, so we do not gain in overall complexity.

Linear Systems

Triangular matrices

Permutation matrices

REFERENCES

Michael T. Heath Scientific Computing (Revised Second Edition) SIAM