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WHAT IS OPTIMIZATION?

• Consider a smooth function f : Rn→ R, and a set S, also
defined using a set of equations and/or inequalities.
• Example: S = {(x ,y ,z)|3x +2y −4z = 0}, a plane

perpendicular to
[
3 2 −4

]T
• We require x∗ such that f (x∗) = minx∈S f (x).
• Seeking max f (x) is equivalent to seeking min(−f (x)).
• Minima can be local or global.
• The function f can be linear or nonlinear.
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UNCONSTRAINTED OPTIMIZATION

GOLDEN SECTION SEARCH

• Find a local minimum of f : R→ R, S = R
• If f is unimodal on [a,b] (a.k.a has a unique minimum) then

we can iteratively shrink the interval in which the minima x?

lies in



Univariate Case Multivariate Case Gradient Descent

GOLDEN SEARCH
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UNCONSTRAINTED OPTIMIZATION

NEWTON’S METHOD

• Find a local minimum of f : R→ R, S = R
• We seek a unique minimum around a point x = a

(assuming it exists)
• Let f (x) = f (a)+ f ′(a)(x −a)+ 1

2 f ′′(a)(x−a)2 +h.o. terms
by Talyor’s expansion
• Approximate

f (x)≈ g(x) = f (a)+ f ′(a)(x −a)+ 1
2 f ′′(a)(x−a)2

• Please note g(x) is a quadratic function approximating f (x)
around a. It’s minimum is found at
g′(x) = f ′(a)+ f ′′(a)(x −a) = 0 so x = a− f ′(a)

f ′′(a) .

• Hence the iterative formula is xn+1 = xn− f ′(xn)
f ′′(xn)

.
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NEWTON’S METHOD - MULTIVARIATE CASE

• Same idea - use Taylor’s expansion for f : Rn→ R.
• f (x) =

f (a)+∇f (a)(x−a)T + 1
2(x−a)T Hf (a)(x−a)+h.o. terms

• Ignoring higher order terms, we seek to minimize
g(x) = f (a)+∇f (a)(x−a)T + 1

2(x−a)T Hf (a)(x−a)
• A mimimun could be reached where the gradient of g

vanishes, of course with the additional condition that its
Hessian is positive definite at a small neighborhood around
a.
• Solving for x , we get the iterative formula

xn+1 = xn−H−1
f (xn)∇f (xn)

• Please do not invert the Hessian. Instead solve
Hf (xn)zn =−∇f (xn) and iterate xn+1 = xn +zn.
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NEWTON’S METHOD EXAMPLE

THE PROBLEM

We wish to find a local minimum of

f (x) = x4
1 +x2

1 x2 +x2
1 +2x2

2 +x2, starting with x0 =

[
1
1

]
.

First, compute ∇xf (x) and Hf (x)

COMPUTE THE GRADIENT AND THE HESSIAN

∇xf (x) =
[
4x3

1 +2x1x2 +2x1
x2

1 +4x2 +1

]
Hf (x) =

[
12x1 +2x2 +2 2x1

2x1 4

]
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NEWTON’S METHOD EXAMPLE (CONT)

CONTINUED

Plug in x0 =

[
1
1

]
. What are the values of ∇xf (x0) and Hf (x0)?

∇xf (x) =
[
4x3

1 +2x1x2 +2x1
x2

1 +4x2 +1

]
=

[ ]
Hf (x) =

[
12x1 +2x2 +2 2x1

2x1 4

]
=

[ ]
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NEWTON’S METHOD EXAMPLE

Plug in x0 =

[
1
1

]
. What are the values of ∇xf (x0) and Hf (x0)?

∇xf (x0) =

[
8
6

]
Hf (x0) =

[
16 2
2 4

]
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NEWTON’S METHOD EXAMPLE

We need s0 so that Hf (x0)s0 =−∇xf (x0).
Solve for s0 in:

[
16 2
2 4

]
s0 =−

[
8
6

]
Use Gauss Elimination!
. . .
We get

s0 =

[
−2

5
−4

5

]
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NEWTON’S METHOD UPDATE

How do we compute x1 given

x0 =

[
1
1

]
s0 =

[
−2

5
−4

5

]
?
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FUNCTION 3D PLOT
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CONTOUR PLOT
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HOW TO READ CONTOUR PLOTS
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STEEPEST DESCENT

STEEPEST DESCENT / GRADIENT DESCENT

Key idea:
- The gradient of a differentiable function points uphill
- The negative gradient of a differentiable function points

downhill
- The gradient is always perpendicular to the contour!

Why does this work?
- Intuition, a function f : Rn→ R locally looks like a plane.
- f (x)≈ f (a)+∇f (a)(x −a)T

- It turns out that −∇f (a) has, locally, the direction of the
steepest descent.
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GRADE PREDICTION EXAMPLE

Suppose the problem call for predicting a student’s hw3 grade
given their hw1 and hw2 grades.

A =


a(1)

1 a(1)
2

a(2)
1 a(2)

2
...

...
a(73)

1 a(73)
2

 b =


b(1)

1
b(2)

1
...

b(73)
1


Problem: Find x =

[
x1
x2

]
to minimize ||Ax −b||2

We can treat this as a non-linear optimization problem!
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GRADE PREDICTION AS NON-LINEAR OPTIMIZATION

Define

f (x) = ||Ax−b||2
= (Ax−b)T (Ax−b)
=

COMPUTING GRADIENT

Now, given that

f (x) =
73

∑
j=1

(a(j)
1 x1 +a(j)

2 x2−b(j))2

Let’s compute ∇x f (x):
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GRADIENT DESCENT

Start with some x0, e.g. x0 =

[
0
0

]
or x0 =

[
0.5
0.5

]
. (Why?)

Then take gradient descent steps
until xk+1 is sufficiently close to xk , or until f (xk+1) is sufficiently
close to f (xk )

WHY GRADIENT DESCENT?
Instead of computing ∇x f (x) exactly, we can estimate the
gradient using a small subset of our data (subset of 73
students)
Gradient descent works for more complicated functions, like
neural networks!
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