
Lecture Notes to Accompany

Scientific Computing

An Introductory Survey
Second Edition

by Michael T. Heath

Chapter 2

Systems of Linear Equations

Copyright c© 2001. Reproduction permitted only for

noncommercial, educational use in conjunction with the

book.

1

Systems of Linear Equations

Given m × n matrix A and m-vector b, find

unknown n-vector x satisfying

Ax = b

System of equations asks “Can b be expressed

as linear combination of columns of A?”

If so, coefficients of linear combination given

by components of solution vector x

Solution may or may not exist, and may or may

not be unique

For now, we consider only square case, m = n

2

Singularity and Nonsingularity

n × n matrix A is nonsingular if it has any of

following equivalent properties:

1. Inverse of A, denoted by A−1, exists

2. det(A) 6= 0

3. rank(A) = n

4. For any vector z 6= o, Az 6= o

3

Singularity and Nonsingularity, cont.

Solvability of Ax = b depends on whether A is

singular or nonsingular

If A is nonsingular, then Ax = b has unique

solution for any b

If A is singular, then number of solutions is

determined by b

If A is singular and Ax = b, then A(x+γz) = b

for any scalar γ, where Az = o and z 6= o, so

solution not unique

One solution: nonsingular
No solution: singular

∞ many solutions: singular

4

Geometric Interpretation

In two dimensions, each equation determines

straight line in plane

Intersection point of two lines is solution

If two straight lines not parallel (nonsingular),

then intersection point unique

If two straight lines parallel (singular), then

lines either do not intersect (no solution) or

else coincide (any point along line is solution)

In higher dimensions, each equation determines

hyperplane. If matrix nonsingular, intersection

of hyperplanes is unique solution

5

Example: Nonsingularity

2× 2 system

2x1 + 3x2 = b1,

5x1 + 4x2 = b2,

or in matrix-vector notation

Ax =

[
2 3

5 4

] [
x1

x2

]
=

[
b1
b2

]
= b,

is nonsingular regardless of value of b

For example, if b = [8 13]T , then x = [1 2]T

is unique solution

6

Example: Singularity

2× 2 system

Ax =

[
2 3

4 6

] [
x1

x2

]
=

[
b1
b2

]
= b

is singular regardless of value of b

With b = [4 7]T , there is no solution

With b = [4 8]T , x = [γ (4− 2γ)/3]T is

solution for any real number γ

7

Vector Norms

Magnitude, modulus, or absolute value for scalars

generalizes to norm for vectors

We will use only p-norms, defined by

‖x‖p =

 n∑
i=1

|xi|p
1/p

for integer p > 0 and n-vector x

Important special cases:

• 1-norm: ‖x‖1 =
∑n
i=1|xi|

• 2-norm: ‖x‖2 =
(∑n

i=1 |xi|
2
)1/2

• ∞-norm: ‖x‖∞ = maxi |xi|

8

Vector Norms, continued

Drawing shows unit sphere in two dimensions

for each of these norms:

−1.5 1.5

−1.5

1.5

..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
......................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...

...................

...................

....................
....................
.....................

.......................
..........................

..............................
...

...
....................................

............................
........................
......................
.....................
....................
...................
...................
..

...............................
...............................

...............................
...............................

...............................
...............................

...............................
...............................

...............................
...............................

...
(−1.6,1.2)

x
1

2

∞

Norms have following values for vector shown:

‖x‖1 = 2.8, ‖x‖2 = 2.0, ‖x‖∞ = 1.6

In general, for any vector x in Rn,

‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞

9

Properties of Vector Norms

For any vector norm,

1. ‖x‖ > 0 if x 6= o

2. ‖γx‖ = |γ| · ‖x‖ for any scalar γ

3. ‖x+y‖ ≤ ‖x‖+‖y‖ (triangle inequality)

In more general treatment, these properties

taken as definition of vector norm

Useful variation on triangle inequality:

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖

10

Matrix Norms

Matrix norm corresponding to given vector norm

defined by

‖A‖ = max
x 6=o

‖Ax‖
‖x‖

Norm of matrix measures maximum stretching

matrix does to any vector in given vector norm

Matrix norm corresponding to vector 1-norm

is maximum absolute column sum,

‖A‖1 = max
j

n∑
i=1

|aij|

Matrix norm corresponding to vector ∞-norm

is maximum absolute row sum,

‖A‖∞ = max
i

n∑
j=1

|aij|

11

Properties of Matrix Norms

Any matrix norm satisfies:

1. ‖A‖ > 0 if A 6= O

2. ‖γA‖ = |γ| · ‖A‖ for any scalar γ

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖

Matrix norms we have defined also satisfy

4. ‖AB‖ ≤ ‖A‖ · ‖B‖

5. ‖Ax‖ ≤ ‖A‖ · ‖x‖ for any vector x

12

Condition Number of Matrix

Condition number of square nonsingular matrix

A defined by

cond(A) = ‖A‖ · ‖A−1‖

By convention, cond(A) =∞ if A singular

Since

‖A‖ · ‖A−1‖ =

(
max
x 6=o

‖Ax‖
‖x‖

)
·
(

min
x 6=o

‖Ax‖
‖x‖

)−1

,

condition number measures ratio of maximum

stretching to maximum shrinking matrix does

to any nonzero vectors

Large cond(A) means A nearly singular

13

Properties of Condition Number

1. For any matrix A, cond(A) ≥ 1

2. For identity matrix, cond(I) = 1

3. For any matrix A and scalar γ,

cond(γA) = cond(A)

4. For any diagonal matrix D = diag(di),

cond(D) = (max |di|)/(min |di|)

14

Computing Condition Number

Definition of condition number involves matrix

inverse, so nontrivial to compute

Computing condition number from definition

would require much more work than computing

solution whose accuracy to be assessed

In practice, condition number estimated inex-

pensively as byproduct of solution process

Matrix norm ‖A‖ easily computed as maximum

absolute column sum (or row sum, depending

on norm used)

Estimating ‖A−1‖ at low cost more challenging

15

Computing Condition Number, cont.

From properties of norms, if Az = y, then

‖z‖
‖y‖
≤ ‖A−1‖,

and bound achieved for optimally chosen y

Efficient condition estimators heuristically pick

y with large ratio ‖z‖/‖y‖, yielding good esti-

mate for ‖A−1‖

Good software packages for linear systems pro-

vide efficient and reliable condition estimator

16

Error Bounds

Condition number yields error bound for com-

puted solution to linear system

Let x be solution to Ax = b, and let x̂ be

solution to Ax̂ = b+ ∆b

If ∆x = x̂− x, then

b+ ∆b = A(x̂) = A(x+ ∆x) = Ax+A∆x,

which leads to bound

‖∆x‖
‖x‖

≤ cond(A)
‖∆b‖
‖b‖

for possible relative change in solution due to

relative change in right-hand side b

17

Error Bounds, continued

Similar result holds for relative change in

matrix: if (A+E)x̂ = b, then

‖∆x‖
‖x̂‖

≤ cond(A)
‖E‖
‖A‖

In two dimensions, uncertainty in intersection

point of two lines depends on whether lines

nearly parallel

...

.. ..
...

...
...

...

...

...

...

...
...

...
...

...
...

...
...

...
..
..

well-conditioned ill-conditioned

18

Error Bounds, continued

If input data accurate to machine precision,

then bound for relative error in computed

solution given by

‖x̂− x‖
‖x‖

≤ cond(A) εmach

Computed solution loses about log10(cond(A))

decimal digits accuracy relative to accuracy of

input

We will later see example using 3-digit preci-

sion for problem with cond > 103, which yields

no correct digits in solution

19

Caveats

1. Normwise analysis bounds relative error in

largest components of solution; relative error

in smaller components can be much larger

Componentwise error bounds can be obtained,

but somewhat more complicated

2. Conditioning of system affected by scaling

Ill-conditioning can result from poor scaling as

well as near singularity

Rescaling can help former, but not latter

20

Residual

Residual vector of approximate solution x̂ to

linear system Ax = b defined by

r = b−Ax̂

In theory, if A is nonsingular, then ‖x̂ − x‖ =

0 if, and only if, ‖r‖ = 0, but they are not

necessarily small simultaneously

Since

‖∆x‖
‖x̂‖

≤ cond(A)
‖r‖

‖A‖ · ‖x̂‖
,

small relative residual implies small relative

error only if A well-conditioned

21

Residual, continued

If computed solution x̂ exactly satisfies

(A+E)x̂ = b,

then

‖r‖
‖A‖ ‖x̂‖

≤
‖E‖
‖A‖

,

so large relative residual implies large backward

error in matrix, and algorithm used to compute

solution is unstable

Stable algorithm yields small relative residual

regardless how ill-conditioned nonsingular sys-

tem may be

22

Solving Linear Systems

To solve linear system, transform it into one

whose solution is same but easier to compute

What type of transformation of linear system

leaves solution unchanged?

We can premultiply (from left) both sides of

linear system Ax = b by any nonsingular matrix

M without affecting solution

Solution to MAx = Mb is given by

x = (MA)−1Mb = A−1M−1Mb = A−1b

23

Example: Permutations

Permutation matrix P has one 1 in each row

and column and zeros elsewhere. P−1 = P T

Premultiplying both sides of system by permu-

tation matrix, PAx = Pb, reorders rows, but

solution x unchanged

Postmultiplying A by permutation matrix,

APx = b, reorders columns, which permutes

components of original solution:

x = (AP)−1b = P−1A−1b = P T (A−1b)

24

Example: Diagonal Scaling

Row scaling: Premultiplying both sides of

system by nonsingular diagonal matrix D,

DAx = Db, multiplies each row of matrix and

right-hand side by corresponding diagonal

entry of D, but solution x unchanged

Column scaling: postmultiplying A by D,

ADx = b, multiplies each column of matrix

by corresponding diagonal entry of D, which

rescales original solution:

x = (AD)−1b = D−1A−1b

25

Triangular Linear Systems

Next question is, what type of linear system is

easy to solve?

If one equation in system involves only one

component of solution (i.e., only one entry in

that row of matrix is nonzero), then that com-

ponent can be computed by division

If another equation in system involves only one

additional solution component, then by substi-

tuting one known component into it, we can

solve for other component

If this pattern continues, with only one new

solution component per equation, then all com-

ponents of solution can be computed in suc-

cession.

System with this property called triangular

26

Triangular Matrices

Matrix is lower triangular if all entries above

main diagonal are zero: aij = 0 for i < j

Matrix is upper triangular if all entries below

main diagonal are zero: aij = 0 for i > j

Any triangular matrix can be permuted into

upper or lower triangular form by suitable row

permutation

27

Forward- and Back-Substitution

Forward-substitution for lower triangular sys-

tem Lx = b:

x1 = b1/`11,

xi =

bi − i−1∑
j=1

`ijxj

 /`ii, i = 2, . . . , n

Back-substitution for upper triangular system

Ux = b:

xn = bn/unn,

xi =

bi − n∑
j=i+1

uijxj

 /uii, i = n− 1, . . . ,1

28

Example: Triangular Linear System

2 4 −2

0 1 1

0 0 4


x1

x2

x3

 =

2

4

8



Last equation, 4x3 = 8, can be solved directly

to obtain x3 = 2

x3 then substituted into second equation to

obtain x2 = 2

Finally, both x3 and x2 substituted into first

equation to obtain x1 = −1

29

Elimination

To transform general linear system into trian-

gular form, need to replace selected nonzero

entries of matrix by zeros

This can be accomplished by taking linear com-

binations of rows

Consider 2-vector a =

[
a1

a2

]

If a1 6= 0, then[
1 0

−a2/a1 1

] [
a1

a2

]
=

[
a1

0

]

30

Elementary Elimination Matrices

More generally, can annihilate all entries below

kth position in n-vector a by transformation

Mka =

1 · · · 0 0 · · · 0
...

0 · · · 1 0 · · · 0

0 · · · −mk+1 1 · · · 0
...

0 · · · −mn 0 · · · 1





a1
...

ak
ak+1

...

an


=



a1
...

ak
0
...

0


,

where mi = ai/ak, i = k + 1, . . . , n

Divisor ak, called pivot, must be nonzero

Matrix Mk, called elementary elimination ma-

trix, adds multiple of row k to each subsequent

row, with multipliers mi chosen so that result

is zero

31

Elementary Elimination Matrices, cont.

Mk is unit lower triangular and nonsingular

Mk = I −mke
T
k , where

mk = [0, . . . ,0,mk+1, . . . ,mn]T

and ek is kth column of identity matrix

M−1
k = I + mke

T
k , which means M−1

k = Lk
same as Mk except signs of multipliers reversed

If Mj, j > k, is another elementary elimination

matrix, with vector of multipliers mj, then

MkMj = I −mke
T
k −mje

T
j +mke

T
kmje

T
j

= I −mke
T
k −mje

T
j ,

which means product is essentially “union,”

and similarly for product of inverses, LkLj

32

Example: Elementary Elim. Matrices

If a =

 2

4

−2

, then

M1a =

 1 0 0

−2 1 0

1 0 1


 2

4

−2

 =

2

0

0



M2a =

1 0 0

0 1 0

0 1/2 1


 2

4

−2

 =

2

4

0



Note that

L1 = M−1
1 =

 1 0 0

2 1 0

−1 0 1



L2 = M−1
2 =

1 0 0

0 1 0

0 −1/2 1


33

Example Continued

Further note that

M1M2 =

 1 0 0

−2 1 0

1 1/2 1



L1L2 =

 1 0 0

2 1 0

−1 −1/2 1



34

Gaussian Elimination

To reduce general linear system Ax = b to
upper triangular form, first choose M1, with
a11 as pivot, to annihilate first column of A
below first row

System becomes M1Ax = M1b, but solution
unchanged

Next choose M2, using a22 as pivot, to an-
nihilate second column of M1A below second
row. System becomes M2M1Ax = M2M1b,
but solution still unchanged

Process continues for each successive column
until all subdiagonal entries have been zeroed

Resulting upper triangular linear system

MAx = Mn−1 · · ·M1Ax = Mn−1 · · ·M1b = Mb

can be solved by back-substitution to obtain
solution to original linear system Ax = b

35

LU Factorization

Product LkLj unit lower triangular if k < j, so

L = M−1 = M−1
1 · · ·M−1

n−1 = L1 · · ·Ln−1

unit lower triangular

By design, U = MA upper triangular

So A = LU , with L unit lower triangular and

U upper triangular

Thus, Ax = b becomes LUx = b, and can be

solved by forward-substitution in lower triangu-

lar system Ly = b, followed by back-substitution

in upper triangular system Ux = y

y = Mb, transformed right hand side in Gaus-

sian elimination

Gaussian elimination and LU factorization are

two ways of expressing same solution process

36

Example: Gaussian Elimination

Use Gaussian elimination to solve linear system 2 4 −2

4 9 −3

−2 −3 7


x1

x2

x3

 =

 2

8

10



To annihilate subdiagonal entries of first col-

umn of A, M1A = 1 0 0

−2 1 0

1 0 1


 2 4 −2

4 9 −3

−2 −3 7

 =

2 4 −2

0 1 1

0 1 5



M1b =

 1 0 0

−2 1 0

1 0 1


 2

8

10

 =

 2

4

12



37

Example Continued

To annihilate subdiagonal entry of second col-

umn of M1A, M2M1A =1 0 0

0 1 0

0 −1 1


2 4 −2

0 1 1

0 1 5

 =

2 4 −2

0 1 1

0 0 4



M2M1b =

1 0 0

0 1 0

0 −1 1


 2

4

12

 =

2

4

8



We have reduced original system to equivalent

upper triangular system2 4 −2

0 1 1

0 0 4


x1

x2

x3

 =

2

4

8


which can now be solved by back-substitution

to obtain x = [−1 2 2]T

38

Example Continued

To write out LU factorization explicitly,

L = L1L2 = 1 0 0

2 1 0

−1 0 1


1 0 0

0 1 0

0 1 1

 =

 1 0 0

2 1 0

−1 1 1



so that 2 4 −2

4 9 −3

−2 −3 7

 =

 1 0 0

2 1 0

−1 1 1


2 4 −2

0 1 1

0 0 4



39

Row Interchanges

Gaussian elimination breaks down if leading
diagonal entry of remaining unreduced matrix
is zero at any stage

Solution easy: if diagonal entry is zero at stage
k, then interchange row k with some subse-
quent row having nonzero entry in column k

and proceed as usual

What if there is no nonzero on or below diag-
onal in column k?

Then nothing to do at this stage, so move on
to next column

This leaves zero on diagonal, so resulting upper
triangular matrix U singular, but LU factoriza-
tion can still be completed

Subsequent back-substitution will fail, however,
as it should for singular matrix

40

Partial Pivoting

In principle, any nonzero value will do as pivot,

but in practice choice should be made to min-

imize error

Should avoid amplifying previous rounding

errors when multiplying remaining portion of

matrix by elementary elimination matrix

So multipliers should not exceed 1 in magni-

tude, which can be accomplished by choosing

entry of largest magnitude on or below diago-

nal as pivot

Such partial pivoting is essential in practice for

numerically stable implementation of Gaussian

elimination for general linear systems

41

LU with Partial Pivoting

With partial pivoting, each Mk preceded by

Pk, permutation interchanging rows to bring

entry of largest magnitude into diagonal pivot

position

Still have MA = U , with U upper triangular,

but now

M = Mn−1Pn−1 · · ·M1P1

M−1 still triangular in general sense, but be-

cause of permutations, M−1 not necessarily

lower triangular, but still denoted by L

Alternatively, can write

PA = LU ,

where P = Pn−1 · · ·P1 permutes rows of A into

order determined by partial pivoting, and now

L really is lower triangular

42

Complete Pivoting

Complete pivoting is more exhaustive strategy

where largest entry in entire remaining unre-

duced submatrix is permuted into diagonal pivot

position

Requires interchanging columns as well as rows,

leading to factorization

PAQ = LU ,

with L unit lower triangular, U upper triangu-

lar, and P and Q permutations

Numerical stability of complete pivoting the-

oretically superior, but pivot search more ex-

pensive than partial pivoting

Numerical stability of partial pivoting more than

adequate in practice, so almost always used in

solving linear systems by Gaussian elimination

43

Example: Pivoting

Need for pivoting has nothing to do with whether

matrix is singular or nearly singular

For example,

A =

[
0 1

1 0

]

is nonsingular yet has no LU factorization un-

less rows interchanged, whereas

A =

[
1 1

1 1

]

is singular yet has LU factorization

44

Example: Small Pivots

To illustrate effect of small pivots, consider

A =

[
ε 1

1 1

]
,

where ε is positive number smaller than εmach

If rows not interchanged, then pivot is ε and

multiplier is −1/ε, so

M =

[
1 0

−1/ε 1

]
, L =

[
1 0

1/ε 1

]
,

U =

[
ε 1

0 1− 1/ε

]
=

[
ε 1

0 −1/ε

]
in floating-point arithmetic. But then

LU =

[
1 0

1/ε 1

] [
ε 1

0 −1/ε

]
=

[
ε 1

1 0

]
6= A

45

Example Continued

Using small pivot, and correspondingly large

multiplier, has caused unrecoverable loss of in-

formation in transformed matrix

If rows interchanged, then pivot is 1 and mul-

tiplier is −ε, so

M =

[
1 0

−ε 1

]
, L =

[
1 0

ε 1

]
,

U =

[
1 1

0 1− ε

]
=

[
1 1

0 1

]
in floating-point arithmetic

Thus,

LU =

[
1 0

ε 1

] [
1 1

0 1

]
=

[
1 1

ε 1

]
,

which is correct after permutation

46

Pivoting, continued

Although pivoting generally required for sta-

bility of Gaussian elimination, pivoting not re-

quired for some important classes of matrices:

• Diagonally dominant:

n∑
i=1, i6=j

|aij| < |ajj|, j = 1, . . . , n

• Symmetric positive definite:

A = AT and xTAx > 0 for all x 6= o

47

Residual

Recall that residual r = b−Ax̂ satisfies

‖r‖
‖A‖ ‖x̂‖

≤
‖E‖
‖A‖

,

where E is backward error in matrix A

How large is ‖E‖ likely to be in practice?

For LU factorization by Gaussian elimination,

‖E‖
‖A‖

≤ ρ n εmach,

where growth factor ρ is ratio of largest entry

of U to largest entry of A

Without pivoting, ρ can be arbitrarily large, so

Gaussian elimination without pivoting is unsta-

ble

With partial pivoting, ρ can still be as large as

2n−1, but such behavior extremely rare

48

Residual, continued

There is little or no growth in practice, so

‖E‖
‖A‖

≈ n εmach,

which means Gaussian elimination with partial

pivoting yields small relative residual regardless

how ill-conditioned system is

Thus, small relative residual does not neces-

sarily imply computed solution close to “true”

solution unless system is well-conditioned

Complete pivoting yields even smaller growth

factor, but additional margin of stability usually

not worth extra cost

49

Example: Small Residual

Using 3-digit decimal arithmetic to solve[
0.641 0.242

0.321 0.121

] [
x1

x2

]
=

[
0.883

0.442

]
,

Gaussian elimination with partial pivoting yields

triangular system[
0.641 0.242

0 0.000242

] [
x1

x2

]
=

[
0.883

−0.000383

]
,

and back-substitution then gives solution

x = [0.782 1.58]T

Exact residual for this solution is

r = b−Ax =

[
−0.000622

−0.000202

]
,

which is as small as can expect using 3-digit

arithmetic
50

Example Continued

But exact solution is

x =

[
1.00

1.00

]
,

so error is almost as large as solution

Cause of this phenomenon is that matrix is

nearly singular (cond > 4000)

Division that determines x2 is between two

quantities that are both on order of rounding

error, and hence result is essentially arbitrary

When arbitrary value for x2 is substituted into

first equation, value for x1 is computed so that

first equation is satisfied, yielding small resid-

ual, but poor solution

51

Implementation of Gaussian Elimination

Gaussian elimination, or LU factorization, has

general form of triple-nested loop

for

for

for

aij = aij − (aik/akk)akj
end

end

end

Indices i, j, and k of for loops can be taken in

any order, for total of 3! = 6 different ways of

arranging loops

These variations have different memory access

patterns, which may cause their performance

to vary widely, depending on architectural fea-

tures such as cache, paging, etc.

52

Uniqueness of LU Factorization

Despite variations in computing it, LU factor-

ization unique up to diagonal scaling of factors

Provided row pivot sequence is same, if we

have two LU factorizations PA = LU = L̂Û ,

then L̂−1L = ÛU−1 = D is both lower and

upper triangular, hence diagonal

If both L and L̂ unit lower triangular, then D

must be identity matrix, so L = L̂ and U = Û

Uniqueness made explicit in LDU factorization

PA = LDU , with L unit lower triangular, U

unit upper triangular, and D diagonal

53

Storage Management

Elementary elimination matrices Mk, their in-

verses Lk, and permutation matrices Pk used in

formal description of factorization process are

not formed explicitly in actual implementation

U overwrites upper triangle of A, multipliers

in L overwrite strict lower triangle of A, and

unit diagonal of L need not be stored

Row interchanges usually not done explicitly;

auxiliary integer vector keeps track of row order

in original locations

54

Complexity of Solving Linear Systems

LU factorization requires about n3/3 floating-

point multiplications and similar number of ad-

ditions

Forward- and back-substitution for single right-

hand-side vector together require about n2 mul-

tiplications and similar number of additions

Can also solve linear system by matrix inver-

sion: x = A−1b

Computing A−1 tantamount to solving n lin-

ear systems, requiring LU factorization of A

followed by n forward- and back-substitutions,

one for each column of identity matrix

Operation count for inversion is about n3, three

times as expensive as LU factorization

55

Inversion vs Factorization

Even with many right-hand sides b, inversion

never overcomes higher initial cost, since each

matrix-vector multiplication A−1b requires n2

operations, similar to cost of forward- and back-

substitution

Inversion gives less accurate answer. Simple

example: solving system 3x = 18 by division

gives x = 18/3 = 6, but inversion gives x =

3−1 × 18 = 0.333 × 18 = 5.99 using 3-digit

arithmetic

Matrix inverses often occur as convenient no-

tation in formulas, but explicit inverse rarely

required to implement such formulas

For example, product A−1B should be com-

puted by LU factorization of A, followed by

forward- and back-substitutions using each col-

umn of B
56

Gauss-Jordan Elimination

In Gauss-Jordan elimination, matrix reduced to

diagonal rather than triangular form

Row combinations used to annihilate entries

above as well as below diagonal

Elimination matrix used for given column vec-

tor a of form



1 · · · 0 −m1 0 · · · 0
...
0 · · · 1 −mk−1 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 −mk+1 1 · · · 0
...
0 · · · 0 −mn 0 · · · 1





a1...
ak−1

ak
ak+1

...
an


=



0
...
0
ak
0
...
0


,

where mi = ai/ak, i = 1, . . . , n

57

Gauss-Jordan Elimination, cont.

Gauss-Jordan elimination requires about n3/2

multiplications and similar number of additions,

50% more expensive than LU factorization

During elimination phase, same row operations

also applied to right-hand-side vector (or vec-

tors) of system of linear equations

Once matrix in diagonal form, components of

solution computed by dividing each entry of

transformed right-hand-side by corresponding

diagonal entry of matrix

Latter requires only n divisions, but not enough

cheaper to offset more costly elimination phase

58

Solving Modified Problems

If right-hand side of linear system changes but
matrix does not, then LU factorization need
not be repeated to solve new system

Substantial savings in work, since additional
triangular solutions cost only O(n2) work, in
contrast to O(n3) cost of factorization

Sometimes refactorization can be avoided even
when matrix does change

Sherman-Morrison formula gives inverse of ma-
trix resulting from rank-one change to matrix
whose inverse is already known:

(A−uvT)−1 = A−1+A−1u(1−vTA−1u)−1vTA−1,

where u and v are n-vectors

Evaluation of formula requires O(n2) work (for
matrix-vector multiplications) rather than O(n3)
work required for inversion

59

Solving Modified Problems, cont.

To solve linear system (A − uvT)x = b with

new matrix, use formula to obtain

x = (A− uvT)−1b

= A−1b+A−1u(1− vTA−1u)−1vTA−1b,

which can be implemented by steps

1. Solve Az = u for z, so z = A−1u

2. Solve Ay = b for y, so y = A−1b

3. Compute x = y + ((vTy)/(1− vTz))z

If A already factored, procedure requires only

triangular solutions and inner products, so only

O(n2) work and no explicit inverses

60

Example: Rank-1 Updating of Solution

Consider rank-one modification 2 4 −2

4 9 −3

−2 −1 7


x1

x2

x3

 =

 2

8

10


(with 3,2 entry changed) of system whose LU

factorization was computed in earlier example

One way to choose update vectors:

u =

 0

0

−2

 and v =

0

1

0

 ,
so matrix of modified system is A− uvT

61

Example Continued

Using LU factorization of A to solve Az = u

and Ay = b,

z =

−3/2

1/2

−1/2

 and y =

−1

2

2



Final step computes updated solution

x = y +
vTy

1− vTz
z =

−1

2

2

+
2

1− 1/2

−3/2

1/2

−1/2

 =

−7

4

0



We have thus computed solution to modified

system without factoring modified matrix

62

Scaling Linear Systems

In principle, solution to linear system unaffected

by diagonal scaling of matrix and right-hand-

side vector

In practice, scaling affects both conditioning

and selection of pivots in Gaussian elimina-

tion, which in turn affect numerical accuracy

in finite-precision arithmetic

Usually best if all entries (or uncertainties in

entries) of matrix have about same size

Sometimes obvious how to accomplish this by

choice of measurement units for variables, but

there is no foolproof method for doing so in

general

Scaling can introduce rounding errors if not

done carefully

63

Example: Scaling

Linear system[
1 0

0 ε

] [
x1

x2

]
=

[
1

ε

]

has condition number 1/ε, so ill-conditioned if

ε small

If second row multiplied by 1/ε, then system

becomes perfectly well-conditioned

Apparent ill-conditioning due purely to poor

scaling

Much less obvious how to correct poor scaling

in general

64

Iterative Refinement

Given approximate solution x0 to linear system

Ax = b, compute residual

r0 = b−Ax0

Now solve linear system Az0 = r0 and take

x1 = x0 + z0

as new and “better” approximate solution, since

Ax1 = A(x0 + z0) = Ax0 +Az0

= (b− r0) + r0 = b

Process can be repeated to refine solution suc-

cessively until convergence, potentially produc-

ing solution accurate to full machine precision

65

Iterative Refinement, continued

Iterative refinement requires double storage,

since both original matrix and LU factorization

required

Due to cancellation, residual usually must be

computed with higher precision for iterative re-

finement to produce meaningful improvement

For these reasons, iterative improvement often

impractical to use routinely, but can still be

useful in some circumstances

66

Special Types of Linear Systems

Work and storage can often be saved in solving

linear system if matrix has special properties

Examples include:

• Symmetric: A = AT , aij = aji for all i, j

• Positive definite: xTAx > 0 for all x 6= o

• Band: aij = 0 for all |i− j| > β, where β is

bandwidth of A

• Sparse: most entries of A are zero

67

Symmetric Positive Definite Matrices

If A is symmetric and positive definite, then

LU factorization can be arranged so that

U = LT , that is, A = LLT ,

where L is lower triangular with positive diag-

onal entries

Algorithm for computing Cholesky factoriza-

tion derived by equating corresponding entries

of A and LLT and generating them in correct

order

In 2× 2 case, for example,[
a11 a21

a21 a22

]
=

[
l11 0

l21 l22

] [
l11 l21

0 l22

]
,

which implies

l11 =
√
a11, l21 = a21/l11, l22 =

√
a22 − l221

68

Cholesky Factorization

One way to write resulting general algorithm,

in which Cholesky factor L overwrites original

matrix A:

for j = 1 to n

for k = 1 to j − 1

for i = j to n

aij = aij − aik · ajk
end

end

ajj = √ajj
for k = j + 1 to n

akj = akj/ajj
end

end

69

Cholesky Factorization, continued

Features of Cholesky algorithm symmetric pos-

itive definite matrices:

• All n square roots are of positive numbers,

so algorithm well defined

• No pivoting required for numerical stability

• Only lower triangle of A accessed, and hence

upper triangular portion need not be stored

• Only n3/6 multiplications and similar num-

ber of additions required

70

Symmetric Indefinite Systems

For symmetric indefinite A, Cholesky factor-

ization not applicable, and some form of piv-

oting generally required for numerical stability

Factorization of form

PAP T = LDLT ,

with L unit lower triangular and D either tridi-

agonal or block diagonal with 1 × 1 and 2 × 2

diagonal blocks, can be computed stably using

symmetric pivoting strategy

In either case, cost comparable to Cholesky

factorization

71

Band Matrices

Gaussian elimination for band matrices differs

little from general case — only ranges of loops

change

Typically store matrix in array by diagonals to

avoid storing zero entries

If pivoting required for numerical stability, band-

width can grow (but no more than double)

General purpose solver for arbitrary bandwidth

similar to code for Gaussian elimination for

general matrices

For fixed small bandwidth, band solver can be

extremely simple, especially if pivoting not re-

quired for stability

72

Tridiagonal Matrices

Consider tridiagonal matrix, for example

A =



b1 c1 0 · · · 0

a2 b2 c2
.

0 0
... . . . an−1 bn−1 cn−1

0 · · · 0 an bn



If pivoting not required for stability, then Gaus-

sian elimination reduces to

d1 = b1
for i = 2 to n

mi = ai/di−1

di = bi −mici−1

end

73

Tridiagonal Matrices, continued

LU factorization of A given by

L =



1 0 · · · · · · 0

m2 1

0
... . . . mn−1 1 0

0 · · · 0 mn 1

 ,

U =



d1 c1 0 · · · 0

0 d2 c2
.

... 0

... . . . dn−1 cn−1

0 · · · · · · 0 dn



74

General Band Matrices

In general, band system of bandwidth β re-

quires O(βn) storage and factorization requires

O(β2n) work

Compared with full system, savings substantial

if β � n

75

Iterative Methods for Linear Systems

Gaussian elimination is direct method for solv-

ing linear system, producing exact solution in

finite number of steps (in exact arithmetic)

Iterative methods begin with initial guess for

solution and successively improve it until de-

sired accuracy attained

In theory, might take infinite number of iter-

ations to converge to exact solution, but in

practice terminate iterations when residual as

small as desired

For some types of problems, iterative methods

have significant advantages over direct meth-

ods

We will study specific iterative methods later

when we consider solution of partial differential

equations

76

LINPACK and LAPACK

LINPACK is software package for solving wide va-

riety of systems of linear equations, both gen-

eral dense systems and special systems, such

as symmetric or banded

Solving linear systems of such fundamental im-

portance in scientific computing that LINPACK

has become standard benchmark for compar-

ing performance of computers

LAPACK is more recent replacement for LINPACK

featuring higher performance on modern com-

puter architectures, including some parallel com-

puters

Both LINPACK and LAPACK available from Netlib

77

Basic Linear Algebra Subprograms

High-level routines in LINPACK and LAPACK based

on lower-level Basic Linear Algebra Subpro-

grams (BLAS)

BLAS encapsulate basic operations on vectors

and matrices so they can be optimized for given

computer architecture while high-level routines

that call them remain portable

Generic Fortran versions of BLAS available from

Netlib, and many computer vendors provide

custom versions optimized for their particular

systems

78

Examples of BLAS

Level Work Examples Function
1 O(n) saxpy Scalar × vector + vector

sdot Inner product
snrm2 Euclidean vector norm

2 O(n2) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 O(n3) sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-k update

Level-3 BLAS have more opportunity for data

reuse, and hence higher performance, because

they perform more operations per data item

than lower-level BLAS

79

