
Dimensionality Reduction

We want to represent data in a new coordinate system with fewer
dimensions, while preserving as much information as possible

Why?

I Can’t easily visualize high dimensional data, but can easily plot
2D (and 3D data)

I We want to extract features from the data (e.g. to build a
linear regression model)

I We want to compress the data while preserving most of the
information

Preserving Information

What does it mean to preserve as much information as possible?

I Preserve distance between data points
I Preserve variations in the data

Principal Component Analysis

PCA is a linear dimensionality reduction technique

The transformed data is a linear transformation of the original data

We want to find a hyperplane that the data lies in and project the
data onto that hyperplane

PCA 2D to 1D

##
PCA 3D to 2D

PCA: Key Idea

1. Rotate the data with some rotation matrix R so that the new
features are uncorrelated

2. Keep only the dimensions with the highest variance (same as
preserving distance)

PCA Rotation Picture

PCA Derivation

We want to identify directions in our data dimension with high
variance

Let A be our data, where A is m × n, and A is normalized (so the
mean of each column of A is zero)

Look at the covariance matrix E = AT A. The spectral theorem says
that we can diagonalize E :

E = RDRT

Where D is diagonal and R is orthogonal. The diagonals of D are
the eigenvalues. The columns of R are eigenvectors of E.

Do you remember what eigenvectors are?

Why PCA

E = RDRT

AT A = RT DR
RT AT AR = D

(RA)T (AR) = D

So if we rotate A using R, the covariance of the transformed data
will be diagonal.

The columns of AR is uncorrelated.

Numerical Problem

Given E = AT A, find orthogonal R, diagonal D such that

E = RDRT

Finding one eigenvector/eigenvalues

Finding the largest eigenvalue and the corresponding eigenvector is
straightforward using Power Iteration.

Start with a random vector x in IRn, and repeatedly compute

x = Ax

(Does this remind you of fixed-point iteration?)

Finding one eigenvector/eigenvalues

Note: the norm of x might grow, so normalize instead

x = Ax

x = x
||x||

Finding many eigenvectors/eigenvalues

In linear algebra class, you might have used the characteristic
polynomial

In numerical computing, we use simnultaneous iteration: similar
idea to power iteration, but we try to find multiple
eigenvectors/eigenvalues at the same time! Use a matrix X instead
of x

We need to make sure that we find different
eigenvectors/eigenvalues, so we want the columns of X to be
orthogonal!

Compute QR factorization of X in each iteration

Finding many eigenvectors/eigenvalues

In each iteration:

I Compute the QR factorization of X
I Replace X with AQ

We can find all the eigenvectors/eigenvalues in the same way.

(We’ll skip the discussion on sensitivity and conditioning. Generally,
the problem becomes ill-conditioned when you have eigenvalues that
are close to each other)

Singular Value Decomposition

Instead of computing the eigenvalue decomposition of AT A,
computing the singular value decomposition of A is a better
conditioned problem.

A = UΣV T

Where U is m ×m and orthogonal, V is n × n and orthogonal, and
Σ is m × n and diagonal.

The diagonal entries of Σ are called singular values

SVD vs Eigendecomposition

The eigenvalues of AT A are squares of the singular values of A. If
we have the SVD of A = UΣV T then

AT A = (UΣV T)T (UΣV T)
= V ΣT UT UΣV T

= V ΣT ΣV T

Which gives us the eigenvalue decomposition AT A = RDRT

SVD and QR Decomposition

QR Decomposition:

A = Q
[

R
O

]
Where Q is m ×m and orthogonal, F is n × n and upper triangular.

Singular Value Decomposition:

A = UΣV T

Where U is m ×m and orthogonal, V is n × n and orthogonal, and
Σ is m × n and diagonal.

	Do you remember what eigenvectors are?

