Dimensionality Reduction

We want to represent data in a new coordinate system with fewer
dimensions, while preserving as much information as possible

Why?

» Can't easily visualize high dimensional data, but can easily plot
2D (and 3D data)

» We want to extract features from the data (e.g. to build a
linear regression model)

» We want to compress the data while preserving most of the
information



Preserving Information

What does it mean to preserve as much information as possible?

> Preserve distance between data points
» Preserve variations in the data



Principal Component Analysis

PCA is a linear dimensionality reduction technique

The transformed data is a linear transformation of the original data

We want to find a hyperplane that the data lies in and project the
data onto that hyperplane



PCA 2D to 1D

0.0016

0.00144

0.0012+

0.0008 -

0.0004




PCA: Key ldea

1. Rotate the data with some rotation matrix R so that the new
features are uncorrelated

2. Keep only the dimensions with the highest variance (same as
preserving distance)



PCA Rotation Picture

0.0016

0.00144

0.0012+

0.0008 -

0.0004




PCA Derivation

We want to identify directions in our data dimension with high
variance

Let A be our data, where A is m x n, and A is normalized (so the
mean of each column of A is zero)

Look at the covariance matrix E = AT A. The spectral theorem says
that we can diagonalize E:

E = RDRT

Where D is diagonal and R is orthogonal. The diagonals of D are
the eigenvalues. The columns of R are eigenvectors of E.



Do you remember what eigenvectors are?



Why PCA

E = RDRT
ATA=RTDR
RTATAR =D

(RA)YT(AR) =D

So if we rotate A using R, the covariance of the transformed data
will be diagonal.

The columns of AR is uncorrelated.



Numerical Problem

Given E = AT A, find orthogonal R, diagonal D such that

E = RDRT



Finding one eigenvector/eigenvalues

Finding the largest eigenvalue and the corresponding eigenvector is
straightforward using Power lIteration.

Start with a random vector x in IR", and repeatedly compute

X = Ax

(Does this remind you of fixed-point iteration?)



Finding one eigenvector/eigenvalues

Note: the norm of x might grow, so normalize instead



Finding many eigenvectors/eigenvalues

In linear algebra class, you might have used the characteristic
polynomial

In numerical computing, we use simnultaneous iteration: similar
idea to power iteration, but we try to find multiple
eigenvectors/eigenvalues at the same time! Use a matrix X instead
of x

We need to make sure that we find different
eigenvectors/eigenvalues, so we want the columns of X to be
orthogonal!

Compute QR factorization of X in each iteration



Finding many eigenvectors/eigenvalues

In each iteration:

» Compute the QR factorization of X
> Replace X with AQ

We can find all the eigenvectors/eigenvalues in the same way.

(We'll skip the discussion on sensitivity and conditioning. Generally,
the problem becomes ill-conditioned when you have eigenvalues that
are close to each other)



Singular Value Decomposition

Instead of computing the eigenvalue decomposition of AT A,
computing the singular value decomposition of A is a better
conditioned problem.

A=UxZVT

Where U is m x m and orthogonal, V is n x n and orthogonal, and
> is m x n and diagonal.

The diagonal entries of X are called singular values



SVD vs Eigendecomposition

The eigenvalues of AT A are squares of the singular values of A. If
we have the SVD of A= UX VT then

ATA=(UuzvHT(uzvT")
=vTuTuzvT’
—vyTyvT

Which gives us the eigenvalue decomposition ATA = RDRT



SVD and QR Decomposition

QR Decomposition:

s

Where @ is m x m and orthogonal, F is n X n and upper triangular.
Singular Value Decomposition:
A=UzvT

Where U is m x m and orthogonal, V is n x n and orthogonal, and
> is m x n and diagonal.



	Do you remember what eigenvectors are?

