
Git Flow

CSC301 (winter 2022)
introduction to software engineering

git

merging and rebasing

git flow

5% of your final grade in this course will come from tutorial participation
There will be a total of 7 (regular non-project related) tutorials where we will be
introducing/teaching new content to you, you will earn 1% per tutorial up to a max of
5% earned.

-> This means that you can attend 5 out of the 7 regular non-project related)
tutorials and still get full marks for this portion of your final course grade.

What counts as participating in a tutorial?
-> Just attend the tutorial, pay attention, take part in the tutorial activities, and

make sure I record your utorId before you leave the room. (and no, unfortunately you
canʼt show up more than halfway through the tutorial or leave very early and expect to
still earn the 1%)

youʼll be expected to form teams on your own. please put in effort to create or join a team, if you do not,
you will be assigned to a random team that has space, but generally thatʼs more complicated for all of us.

all of the sprint 0 deliverables will be due at 11:59pm, January 27th, but youʼll have a chance to submit
proposal.md on January 20th to us for feedback before the final submission and grading on January
27th. more information is on the sprint 0 handout.

project tutorials
your team will be required to sign up for a timeslot that your entire team can attend so that you can demo
your sprint work to the TAs. signups are made through a google form on the course website (will come out
next week).
● There will 4 tutorials where you will be presenting your sprint demos to the TAs!
● These will take place ONLINE ON ZOOM (link TBA)

Your sprint 1 demos will take place on February 10th (please see the other demo dates on the course
website).

an open source project started by Linus Torvalds and the most popular version control
system used by software engineers currently.

modifications to the codebase are represented as “commit” objects, and the git history
is just an immutable, linked list of commits

no doubt you have been exposed to it in previous courses such as csc207 and its basic
commands (add, commit, push, pull, clone)

git is a distributed version control system that enables
teams of software engineers to collaboratively work on
repositories of code

1. branch off main and create your feature branch

2. implement your feature on your feature branch

3. add the untracked files to your next commit

4. create your commit

5. push the commit

6. merge feature branch into main

what is the typical command flow for contributing to a

software project?

> git checkout -b DEV-101

> git add --all

> git commit -m “msg”

> git push

easy enough, right? unfortunately with multiple contributors, things can get complicated

Q. what if someone pushes code to the main branch that I need for my feature branch?

Q. what if I have to undo a commit?

Q. what if I want to reset local changes?

what if someone pushes code to the main branch
that I need for my feature branch?

there are two methods for bringing code in from other branches into your own.

merging Rebase + merging
combines branches together
into a commit

modify, mutate and move commits
on your branch with rebase and
then merge

merging creates a commit which combines the tip of the master branch (HEAD) and the tip

of the feature branch into one commit

▸ this commit is referred to as a “merge commit”

▸ the merge commit becomes the new HEAD after the merge is complete

> git merge <branch>

tends to pollute the master
branch with extra merge commits

● Becomes an issue in high traffic
projects with many contributors

non-destructive, doesnʼt alter
any existing branches

simpler to manage, not as
complicated as rebase

master

new branch

master

new branch

master

new branch

master

new branch

master

new branch

rebasing moves things around, the first commit of feature branch is placed sequentially after the tip

of the branch youʼre rebasing onto

▸ no extra commit merging the two

▸ partially rewrites the git history by creating brand new commits for each commit in the master

branch

▸ requires extra step to merge: rebase feature branch on master, then merge

> git rebase <branch>

requires caution

● Never rebase a public branch onto

your feature branch

● This will result in two different

versions of the master branch,

which will need to be merged back

together

cleaner project history, no

unnecessary merge commits

linear history is maintained

(Can follow the entire history of the

project from the tip of the feature

branch back all the way to where

master was beforehand)

master

new branch

master

new branch

master

new branch

master

new branch

Rebasing new branch ONTO master.

master

new branch

After rebasing we merge master with the new branch (will result
in git just “fast forwarding” the master branch for us).

A better visualization of the benefits of rebasing.

I ran the exact same commands in both of these scenarios. Except that in the first image I
ran “git merge feature-branch” (while on main). In the second image, instead I first
rebased the feature branch onto main (“git rebase main” while on feature-branch) and
then switched to main and ran “git merge feature-branch”.

what if I have to undo a commit?

git is designed to be immutable, so undoing things can get dicey.
You have to be careful and use the right tools!

reverting
undoing your changes

resetting
changes the state of head

restore
restore your changes

stash
store your changes for later

things break, commits introduce bugs, etc. -- this is perfectly normal.

The most simple form of “undo” in git is a revert

git revert <ID/Ref> - Creates a new commit that simply un-does the commit which was specified

reverting is not ideal if you want to undo something locally without an extra commit

resets the state of the repository back to a certain state in the past, in various ways

● soft: modifies where HEAD points, staged/unstaged changes are not touched; previous commits

become staged files

● mixed: modifies where HEAD points, wipes the index clean (staged files), but doesn’t touch unstaged

files; previous commits become unstaged files

● hard: “nukes” everything, be careful when using. Staged and unstaged files reset to the specific

commit, HEAD updated, previous commits are gone

Q. what if I want to reset local changes?

resets the state of the repository to the latest

commit. Can be used to restore one or more

files based on the provided file path.

● Run git status to see the modified files

● git restore [files]

stores the locally modified files into a stash, which can

be popped from to restore changes. good for storing

changes before merging/rebasing

● git stash

● git stash pop

● git stash clear

restore stash

git flow is a commonly used git branch structure that promotes agile software
development & continuous integration/continuous deployment.

the master branch stores the official release history, and the develop branch is

used to integrate features.

feature branches are merged into develop

once develop has been thoroughly tested and contains all the features/fixes for a

release, you merge develop into master!

if there are issues with a feature, we can revert the feature branch in develop

if there are issues with a release, we can revert the merge commit in master

result: isolating our environments prevents issues from becoming a problem!

As mentioned here, “pull requests let you tell others about changes you've pushed to a branch in a

repository on GitHub. Once a pull request is opened, you can discuss and review the potential

changes with collaborators and add follow-up commits before your changes are merged into the

base branch.”

Pull requests are extremely useful when you may want others to review your before merging

into other branches!

the crux of the git workflow

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

● after pushing your changes into a branch, you create a pull request from your branch into the

develop branch.

● automated checks will run against it informing you of any bugs/errors.

● it can be then be reviewed by one or more engineers, where they can provide comments on

how to improve it.

the crux of the git workflow

after being approved, use the github UI to

merge your pull request! we recommend

squashing and merging your commits so

that all your changes are added to develop

as one commit.

itʼs a nice way to encapsulate the changes

and ensure the commit history of develop

is clean.

● use git flow! Itʼs industry practice for a reason

● commit messages should be descriptive and useful

 Bad ads Good

● automated testing is worth the effort

● use pull request templates

(https://gist.github.com/jcserv/33f19818fde83c18e755b1c138eeac49)

● have one or two people thoroughly review each pull request

Additional Resources
Here are some additional resources on git that I co-created when I TA-ed CSC207 last
semester.

"CSC207: Using Git and GitHub to Collaborate on a Project":
https://docs.google.com/document/d/1Q__9_O-hfYV4Roqy2xW7XWfvhlmPNbeTGbb05
H6nFSs/edit?usp=sharing

"CSC207: Merging and Pull Requests":
https://docs.google.com/document/d/1HdASRicsjV16Nl9aZDsAZ92d8kwJOYiO1ln72vL
Cz48/edit?usp=sharing

Quick pull request activity

https://github.com/Daniel-Laufer/csc301-w23-tutorial-1

