CSC301 (winter 2022)
introduction to software engineering

Tutorial 1

Git Flow

01 it

tutorial outline 02 mergingand rebasing

03 gitflow

info

5% of your final grade in this course will come from tutorial participation

There will be a total of 7 (regular non-project related) tutorials where we will be
introducing/teaching new content to you, you will earn 1% per tutorial up to a max of
5% earned.

-> This means that you can attend 5 out of the 7 regular non-project related)

tutorials and still get full marks for this portion of your final course grade.
What counts as participating in a tutorial?

-> Just attend the tutorial, pay attention, take part in the tutorial activities, and
make sure | record your utorld before you leave the room. (and no, unfortunately you
can’t show up more than halfway through the tutorial or leave very early and expect to
still earn the 1%)

info

you’ll be expected to form teams on your own. please put in effort to create or join a team, if you do not,
you will be assigned to a random team that has space, but generally that’s more complicated for all of us.

all of the sprint 0 deliverables will be due at 11:59pm, January 27th, but you’ll have a chance to submit
proposal.md on January 20th to us for feedback before the final submission and grading on January
27th. more information is on the sprint 0 handout.

project tutorials
your team will be required to sign up for a timeslot that your entire team can attend so that you can demo
your sprint work to the TAs. signups are made through a google form on the course website (will come out

next week).

e There will 4 tutorials where you will be presenting your sprint demos to the TAs!

e These will take place ONLINE ON ZOOM (link TBA)
Your sprint 1 demos will take place on February 10th (please see the other demo dates on the course
website).

® - _ :
I t gitis a distributed version control system that enables
g teams of software engineers to collaboratively work on

repositories of code

an open source project started by Linus Torvalds and the most popular version control
system used by software engineers currently.

modifications to the codebase are represented as “commit” objects, and the git history
is just an immutable, linked list of commits

no doubt you have been exposed to it in previous courses such as csc207 and its basic
commands (add, commit, push, pull, clone)

typical git usage

what is the typical command flow for contributing to a

software project?

1.

branch off main and create your feature branch
implement your feature on your feature branch
add the untracked files to your next commit
create your commit

push the commit

merge feature branch into main

> git checkout -b DEV-101

> git add --all
> git commit -m “msg”

> git push

typical git usage

easy enough, right? unfortunately with multiple contributors, things can get complicated

Q. what if someone pushes code to the main branch that | need for my feature branch?
Q. what if I have to undo a commit?

Q. what if | want to reset local changes?

what if someone pushes code to the main branch
that | need for my feature branch?

there are two methods for bringing code in from other branches into your own.

Rebase + merging

modify, mutate and move commits
on your branch with rebase and
then merge

merging

combines branches together
into a commit

> git merge <branch>

merging creates a commit which combines the tip of the master branch (HEAD) and the tip
of the feature branch into one commit

> this commitis referred to as a “merge commit”

> the merge commit becomes the new HEAD after the merge is complete

non-destructive, doesn’t alter
any existing branches

simpler to manage, not as
complicated as rebase

pros

v/

v/

cons

X tends to pollute the master
branch with extra merge commits

e Becomesan issuein high traffic
projects with many contributors

Merge branch ‘bwikwset-use-unsigned

kwset: use unsigned char to store values with high-bit set
Merge branch 'akit5516-typofix

15516: comect misspelled pushinsteadOf

Merge branch 'ms/submodule-update-config-doc’

- improve of update
Ierge branch ‘jaiclean-confirm-118n°
Add hint i ive cleaning

Merge branch ‘mi/diff-shortstat-dirstat-fix
diff -shortstat —dirstat remove duplicate output
Yrge branch ‘mg/doc-remote-tags-or-not

gitremote b describe behavior without ~tags and -no-tags

Ierge branch ‘na/grep-exclude-standard-help-fix
\glen correct help string for —exclude-standard

Merge branch ‘mr/doc-clean-f-f

Dy clean bt that-f may need to be given twice
Merge branch ye/itp-accept-language’
-\ gettext.c. move get_preferred_languages() from hitp.c
Syncwith 23.2
%_ﬂm Git232
\\\Morge branch ‘rj/no-xopen-source-for-cygwin’ into maint
\ Merge branch rs/simple-cleanups’ into maint

GEER "iiiora s

1, 0
!

Merge pull request #49 from |
fixing issues around idv in online ch

Merge branch "Ib_web_checkout' i

minor stuff for validation handl
correct usage of merchant utili;
Merge branch "'2015-03-10_rel

Merge branch 'lb_web_check
bundling global_offers

Merge branch '2015-03-10_
Merge branch "Ib_web_check
force the global offers ger
update Gemfile for global,
Merge branch '2015-03
Merge branch Ib_wel
Merge branch 'Ib_v
Merge branch "Ib_v
Merge branch "It
| don’t know v
Merge branch
Merge branch
removed commt¢
Merge branch 'lb_v

Merge branch "Ib_wel

Merge branch "Ib_wel

Merge branch "Ib_wel

Merge branch "Ib_wel
Merge branch "Ib_wet
Merge branch 'Ib_web_c¢
Merge branch "Ib_web_che
Merge branch 'Ib_web_check
Merge branch 'Ib_web_checkou
Merge branch 'Ib_web_checkout' i
Merge branch 'Ib_web_checkout' int¢

Merge branch 'Ib_web_checkout' into 2
Merge branch 'lb_web_checkout' into 201
Merge branch 'Ib_web_checkout' into 2015~
Merge branch 'Ib_web_checkout' into 2015-03
Merge branch 'Ib_web_checkout' into 2015-03-1

¢
N\

o T T

Merge branch 'master’ into 2015-03-10 _release
Merge pull request #46 from

Merge branch '2015-03-10_release’ into update_dispatc
using latest global_offers in the prerelease branch
different way to use trace logging

nil protect loan application expiration date
approvals spec coverage

Merge branch 'Ib_web_checkout' of

fix mobile lease detail condition

git merge

=@

master

git merge

commit
1

commit
3

master

new branch

git merge

commit f >
1

master

new branch

git merge

commit commit commit
1 2 4

master

commit

new branch

git merge

commit commit :> merge
1 2 commit

master

new branch

{% reba sing + Merge > sic revsse wrance>

rebasing moves things around, the first commit of feature branch is placed sequentially after the tip
of the branch you’re rebasing onto

> no extra commit merging the two

» partially rewrites the git history by creating brand new commits for each commit in the master

branch

> requires extra step to merge: rebase feature branch on master, then merge

1} rebasing

cleaner project history, no

unnecessary merge com mits

linear history is maintained

(Can follow the entire history of the
project from the tip of the feature
branch back all the way to where

master was beforehand)

pros

Vv
Vv

cons

X requires caution

e Never rebase a public branch onto

your feature branch

e This will result in two different
versions of the master branch,
which will need to be merged back

together

git rebase

commit
1

commit
3

master

new branch

git rebase

commit
1

master

new branch

git rebase

commit :>
1
— commit
@ 5

master

new branch

git rebase

Rebasing new branch ONTO master.

commit commit
1 2

master

new branch

git rebase

After rebasing we merge master with the new branch (will result
in git just “fast forwarding” the master branch for us).

commit commit commit :>
1 2 3

master

@ @

new branch

A better visualization of the benefits of rebasing.

merge-on-rebase-demo X

branch Undo P sh Terminal rebase-demo =}

main v)

v T 2

v main O3 [main] resolved merge conflict

v main = — [main] added line 3

v main O - +1 [feature-branch] added :) after line 2.

feature-branch O3 [feature-branch] added :) after line 2. [feature-branch] modified line 2
[feature-branch] modified line 2. :
[main] added line 3
[main] added line 2.
[main] added line 2.
[main] added line 1

40-(30-(40-10-(48

[main] added line 1

| ran the exact same commands in both of these scenarios. Except that in the firstimage |
ran “git merge feature-branch” (while on main). In the second image, instead | first
rebased the feature branch onto main (“git rebase main” while on feature-branch) and
then switched to main and ran “git merge feature-branch”.

what if | have to undo a commit?

gitis designed to be immutable, so undoing things can get dicey.
You have to be careful and use the right tools!

reverting resetting

undoing your changes changes the state of head

restore @ stash

restore your changes store your changes for later

D undoing things in git

reverting

things break, commits introduce bugs, etc. -- this is perfectly normal.
The most simple form of “undo” in git is a revert
git revert <ID/Ref> - Createsanew commit that simply un-does the commit which was specified

reverting is not ideal if you want to undo something locally without an extra commit

C undoing things in git

resetting

resets the state of the repository back to a certain state in the past, in various ways

e soft: modifies where HEAD points, staged/unstaged changes are not touched; previous commits

become staged files

e mixed: modifies where HEAD points, wipes the index clean (staged files), but doesn’t touch unstaged

files; previous commits become unstaged files

e hard: “nukes” everything, be careful when using. Staged and unstaged files reset to the specific

commit, HEAD updated, previous commits are gone

oy undoing things in git

restore / stash

Q. what if | want to reset local changes?

restore stash
resets the state of the repository to the latest stores the locally modified files into a stash, which can
commit. Can be used to restore one or more be popped from to restore changes. good for storing
files based on the provided file path. changes before merging/rebasing
e Run git status to see the modified files e git stash
e git restore [files] e git stash pop

e git stash clear

O <[

¥ git flow

git flow is a commonly used git branch structure that promotes agile software
development & continuous integration/continuous deployment.

the master branch stores the official release history, and the develop branch is

used to integrate features.

P git flow

feature branches are merged into develop

once develop has been thoroughly tested and contains all the features/fixes for a

release, you merge develop into master!

if there are issues with a feature, we can revert the feature branch in develop

if there are issues with a release, we can revert the merge commit in master

result: isolating our environments prevents issues from becoming a problem!

n p u ll re q u eSts the crux of the git workflow

As mentioned here, “pull requests let you tell others about changes you've pushed to a branch in a
repository on GitHub. Once a pull request is opened, you can discuss and review the potential

changes with collaborators and add follow-up commits before your changes are merged into the

base branch.”

Pull requests are extremely useful when you may want others to review your before merging

into other branches!

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

n p u ll re q u eSts the crux of the git workflow

e after pushing your changes into a branch, you create a pull request from your branch into the

develop branch.
e automated checks will run against it informing you of any bugs/errors.

e itcan be then be reviewed by one or more engineers, where they can provide comments on

how to improve it.

Feat/lambdalayer remove #7(

ammarkarachi

) Conversation 2

ammarkarachi ¢ 0 = ¢ Contributor | (©)

Description of changes

Added prompt to remove versions from the lambda layer
Issue #, if available
Description of how you validated changes

Checklist

PR description included
yarn test passes
Tests are ch

Relevant documentation is changed or added (and PR referenced)

By submitting this pull request, | confirm that my contribution is made under the terms of the Apache 2.0 license.

aguests

Open with ~

Files changed

0 / 59 files viewed

jest.mock(*amplify-cli-core');
stateManager_mock = stateManager as jest.Mocked<t stateManager>;
stateManager_mock.getMeta.mockReturnValue({
providers: {
loudformation: {
*myMockRegion’,

¥
} as $TSContext;

openConsole(contextStub, ServiceName.LambdaFunction);

t openMock = open a

expect (openMock .mo h).toBe(1);

n pull requests

after being approved, use the github Ul to

v Changes approved
2 approving reviews Learn more,

merge your pull request! we recommend e
squashing and merging your commits so
that all your changes are added to develop

as one commit.

it’s a nice way to encapsulate the changes

Close pull request

and ensure the commit history of develop

is clean.

project advice

e use git flow! It’s industry practice for a reason

e commit messages should be descriptive and useful

Add theme file and provider.
pain
“‘ EthanLam1

Bad 2 Good

m EthanLam1

ction contents to home page.

WHY DOESN'T THIS WORK
@ EthanLam1

Make theme type accurate and apply it to Storybook.

@ rioscro

Compartmentalize hero section and add missing localizations.

@ rmiosenpai

Add Storyboard support for hero section.

@ e

why doesn't this work
w EthanLam1

e automated testing is worth the effort
e use pull request templates
(https://gist.github.com/jcserv/33f19818fde83c18e755b1c138eeac49)

e have one or two people thoroughly review each pull request

Additional Resources

Here are some additional resources on git that | co-created when | TA-ed CSC207 last
semester.

""CSC207: Using Git and GitHub to Collaborate on a Project":

https://docs.google.com/document/d/1Q__9_0-hfYV4Roqy2xW7XWfvhImPNbeTGbb05
H6nFSs/edit?usp=sharing

""CSC207: Merging and Pull Requests"':

https://docs.google.com/document/d/1HdASRIicsjV16NI9aZDsAZ92d8kwJOYiO1lln72vL
Cz48/edit?usp=sharing

Quick pull request activity

https://github.com/Daniel-Laufer/csc301-w23-tutorial-1

