
Lec 3 - How to find 
a job + Databases



How to look for a job?
- And the secrets of landing one (hard 

work, mostly)



PEY
- Anyone know what’s the current 

situation with PEY? Are there a lot of 

opportunities?

- Any tips?



Conversion Funnels
- Resume review (50%)

- Pre screen (30%)

- Interview (10%)

- Get a job! (0.5*0.3*0.1 = 1.5%)



How to get ahead
- Resume review - apply often!

- Pre screen - take your time to prep

- Interview - do more interviews

- Get a job!



Resume
- Keep it to one page

- Set a timer for 20s, see how much info 

you can read

- Ruthlessly cut down to size



Prescreen
- This is where you shine, now show 

them what you know

- Do preparation before attempting the 

real one

- Don’t cheat - will be caught



Interivews



Interviews
- If this is your first interview, you are 

doing it wrong
- How many people are looking for a 

job?
- How many people have never done an 

interview before?



How to treat lectures?
- Tutorials are super important

- You are gaining context and 

background info to understand topics 

better



Storage



What’s missing?
- Schema

- SQL

- Read performance

- Resiliency

- Scalability



How to improve read?
- What about in memory dictionary that 

records key + offset

- All keys must fit in RAM

- Crash recovery takes a long time



Is this useful?
- Yes! WAL is basically a version of this



Everything is tradeoff
- Everytime you improve something, 

something else gets worse

- Typically it’s system gets more 

complex

- Key to your job as engineers



More to follow
- We will cover distributed systems at 

the end of the course



SQL
- Relational - how different objects are 

related

- Declarative

- ACID complaint (typically)



NoSQL
- Twitter hashtag

- Greater easier scalability

- Open source vs commercial

- Specialized queries/models (graph)

- Schemaless (document)



Document (Mongo)
- Schemaless? Schema on read?

- How does it compare to programming?

- When to use document db?



Graph (Neo4j)
- Different data model, more expressive 

when full of many-to-many

- Complex queries that’s graph based



Dependency Injection
- Injecting dependency into objects 

dynamically (typically through 

constructor parameters)

- Similar to first class functions


