Welcome to CSC301!
Who am i?

- Jason Wang

- Lifelong engineer, started when i was 12 years old

- Graduated from the university of waterloo ~10 years ago

- In startups all my life, and now | am an engineering manager at Uber

What can you expect?
- My first time teaching the course - but | was a student once too

- Very open to feedback on what you want to learn and hear about

- No term tests, because | believe this course is fairly subjective and the
main goal | have is to teach you about tradeoffs. There is rarely a one
“right” answer, there are just degrees of pros and cons. Tests presume
there is one right answer to everything.

- Want to leave plenty of time for question and answers every lecture

- Learning the practice of engineering software in real life, goal is to expose you to
some of the messiness of building software and will touch on as many topics as |
can

- Be the singular most useful course you take in your university career.

- I don’t want to speak for the entire 2 hours that we have together. Therefore | will
break up the lectures into 1.5 hours in the beginning, and 30 mins at the end of
open Q&A. You are free to come and go at any time, if you are interested in
asking questions or listening to answers by me or your peers, feel free to stay for
the entire 2 hour session.

Project

- This course has a huge project focus, personally the part that | enjoy the most is
building something from nothing and building something not just for the sake of
building it, but have it solve a real problem that someone has

- The project will be done in groups, and it will simulate what a real project in a
company might operate: you’ll be using real-world agile practices and proper git
flow

- One Note: projects in this course will have a strong utility requirement. The ideal
end result will be viable as a starting point of a startup company. So no projects
strictly for teaching purposes like a pet sitter project, calendar app or something
generic pulled from another website

- Project will be 60% of the course mark.

- Components:

- Prior to you starting the project, it's required to write a one page proposal
that (ideally) includes the following information:

- Adetailed description of what you are proposing to do

- Some competitor analysis, with at least 5 competing services and
go into some details about why what you are building is needed in
the marketplace

- Market sizing analysis, how big is the addressable market and
who are you targeting in various stages of release. This can and

should go above and beyond what you are building during this
course
- Once development start, we will provide you with a detailed marking
rubric
- Sprints are one every 2 weeks, 4 sprints in total, there will be a few things
you are required to do each and every sprint in addition to making
progress on your development, such as sprint retroactives and keeping
your Trello board updated
- You'll spend the first week finding a team, and then you’ll submit your
sprint O deliverables (including the project proposal) at the end of week 3.
Sprint 1 will start on week 4 and end at the end of week 5, etc

- What makes a good team

Two ways of finding fellow team members
- People who compliment your skillset + with whom you work well together
- People who want to work on the same idea
| want to encourage you to branch out and work with people who you don’t
normally work with
Note, just because you are on the same team together, it DOES NOT mean you
will get the same grades
We will take a holistic approach to grading projects, and take into account peer
evaluations (which are not public, so anonymous to your group members, but not
to me and TAs), Github activities etc. As a result, individuals may get higher than
group grade and vice versa.
However, | don’t want this to be zero sum either. If everyone works hard, they’ll
equally share in the rewards, and | want you to help each other to improve in this
course as well.

- Assignments

Assignments will be in Java and it will expose you to aspects/technologies that
you may not otherwise be working with

| won't be the best person to ask questions about the assignments, as these
assignments are inherited from previous iterations of the course. Feel free to ask
any of the TAs about the assignments though during tutorial or on piazza (you
can ask on discord, but try to keep assignment-specific questions on piazza).
Some of the TAs will also be hosting assignment office hours throughout the
term.

Assignments will be 15% and 20% of the marks respectively, due Feb 18th and
April 05.

- Tutorials

There will be a total of six in-person tutorials which will be graded for
participation. In this course, as long as you show up for the tutorial (and aren’t
doing some other work unrelated to the tutorial), you will get full marks. We will
be only counting your “best” 5 out of the 6 tutorials. This means that you can miss
one of the tutorials and still get the whole 5%. More details will be discussed
during your first tutorial.

The first tutorial will take place this week on friday january 13th

Tutorials will be primarily focused on introducing and teaching new technologies
to you such as Neo4j, docker, mongo, react, etc. You will need to use much of
the content covered in tutorial within your assignments, and you may also would
like to use some of it in developing your group project.

- How to ask questions

It's never acceptable to ask “hey, doesn’t work, help!”, if there is no
evidence you have attempted to solve your own problems, your questions will
likely be ignored.

A better template to use is

- Hieveryone, | am working on , and | am stuck on . | tried ,
it didn’t work because . | also tried , and it didn’t work
because . | am assuming and . Does anyone have any

hints as to what might be wrong?
Unless it's a persona/private question that involves your personal information,
please post any and all questions into Piazza so that everyone may benefit from
any answers that come from it.
My office hour will be 1 hour immediately following the lecture. If you want to be
guaranteed a slot, please make an appointment either by email or before the
lecture. Otherwise | will try my best to meet with everyone who is interested in
talking to me.
When sending messages on Discord, never just say “hey” or “good morning” and
wait for the other person to respond. Always include your question in your first
message, so that when the other person sees the message, they can
immediately compose an answer to your question.

- Difference between real world and academia:

70% of the stuff you learn at university you will not use 90% of the time in real
life.
For example, you will not be designing new and novel algorithms, the data
structures you will be using consists of array/list/dictionary (basically everything
that comes with JSON). You will not be thinking about the network stack at all, or
details about operating systems etc.
Why are you learning it?

- Because of leaky abstraction:

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

80-90% of the time, you are operating on a abstraction level so far above
anything difficult or academic that what you are learning feels like useless and a
waste of time
However, the 10-20% of the time when shit hits the fan is when your 4 years of
education pays off compared to someone who came out of a bootcamp for 4-6
months.
That depth of thinking and understanding is why you are all sitting here listening
to me speak, the days and nights struggling with assignments and studying for
tests. So that one day, when you are oncall at a company and something goes

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

wrong, you are/feel equipped to tackle the problem regardless of where things go
wrong

You at least understand the underpinning of what makes computers tick all the
way from processor design/1s and Os all the way up to whatever framework dejur
that you are using

- Software development models

Software is interesting, traditional engineering (for bridges and planes etc)
requires a great deal of planning and requirement gathering ahead of time. The
amount of prep you spend is directly correlated with how expensive it is to fix
mistakes when in “production”.

Imagine an extreme example, NASA is launching a 10 B rocket to explore the far
fringes of the galaxy. There is pretty much zero opportunity to fix issues once the
payload is launched, it needs to work the first time or you just wasted 10B.
Therefore, if you can write 10 lines of code per day that go into the final product,
you should consider yourself lucky. Every line that gets written, every component
that gets built, is carefully considered and scrutinized.

Imagine another extreme example, you are building a quick script to solve a
pressing problem of your own. As long as you control all the systems, it doesn’t
really matter if something breaks. You are the author, you can fix whatever that
comes up. As long as it works for the case you are considering, it's good enough
to launch.

You would never apply the software development model used for building a
rocket to your personal project, and vice versa. Professional development
there is never a right answer, just degrees of tradeoffs that you as a
professional are making. My job here is to start you down the path of critical
thinking and as a result, tests really have no place in this course.

- Two primary software development models are Waterfall and Agile.

Traditional view are that Waterfall is an old and antiquated way of doing software
development. Typically derived from traditional engineering disciplines such as
civil and mechanical. Where we go through distinct phases of software
development from requirements gathering, design, implementation, and
verification.

Agile is the new and shiny way (and typically what you would find in most
software development organizations). The core of it basically states the
traditional waterfall ways doesn’t yield useful results, it's not responsive to
changing customer and business requirements. Agile is much more focused on
incremental development, short cycles and the goal of always having working
software as much and as often as possible.

- Backbone process: Sprint, typically 1-2 week. Any longer than that opens
up the sprint to be much less flexible and less responsive to changing
needs

- Each sprint typically bookended on both sides by a planning session and
a retrospective session. Where planning the team talks about what will be

done the next sprint, and retrospective typically talks about what worked

and what didn’t work
It also typically includes daily standups, where the main purpose of the standup is
for everyone to know what everyone else is working on, plus for people on the
team to voice any blockers that they are encountering and ask for help from

fellow members to help unblock.

