David Liu

Data Structures and Analysis

Lecture Notes for CSC263 (Version 0.2)

Department of Computer Science
University of Toronto

DATA STRUCTURES AND ANALYSIS 3

These notes are based heavily on past offerings of CSC263,
and in particular the materials of Francois Pitt and Larry
Zhang.

L also thank CSC263 students from Fall 2016 and Daniel
Zingaro for pointing out numerous typos in older versions

of the notes.

Contents

Introduction and analysing running time 7
How do we measure running time? 7
Three different symbols 8
Worst-case analysis 9
Average-case analysis 11

Quicksort is fast on average 15

Priority Queues and Heaps 21
Abstract data type vs. data structure 21
The Priority Queue ADT 22
Heaps 24
Heapsort and building heaps 29

Dictionaries, Round One: AVL Trees 33
Naive Binary Search Trees 33
AVL Trees 36
Rotations 38
AVL tree implementation 42

Analysis of AVL Algorithms 43

6 DAVID LIU

4 Dictionaries, Round Two: Hash Tables 47
Hash functions 47
Closed addressing (“chaining”) 48
Open addressing 52

5 Randomized Algorithms 57
Randomized quicksort 58
Universal Hashing 60

6 Graphs 63

Fundamental graph definitions 63
Implementing graphs 65

Graph traversals: breadth-first search 67
Graph traversals: depth-first search 71
Applications of graph traversals 74
Weighted graphs 79

Minimum spanning trees 79

7 Amortized Analysis 87

Dynamic arrays 87

Amortized analysis 89

8 Disjoint Sets 95
Initial attempts 95
Heuristics for tree-based disjoint sets 97

Combining the heuristics: a tale of incremental analyses

105

1 Introduction and analysing running time

Before we begin our study of different data structures and their applica-
tions, we need to discuss how we will approach this study. In general, we
will follow a standard approach:

1. Motivate a new abstract data type or data structure with some examples
and reflection of previous knowledge.

2. Introduce a data structure, discussing both its mechanisms for how it
stores data and how it implements operations on this data.

3. Justify why the operations are correct.

4. Analyse the running time performance of these operations.

Given that we all have experience with primitive data structures such
as arrays (or Python lists), one might wonder why we need to study data
structures at all: can’t we just do everything with arrays and pointers,
already available in many languages?

Indeed, it is true that any data we want to store and any operation we
want to perform can be done in a programming language using primitive
constructs such as these. The reason we study data structures at all, spend-
ing time inventing and refining more complex ones, is largely because of
the performance improvements we can hope to gain over their more prim-
itive counterparts. Given the importance of this performance analysis, it
is worth reviewing what you already know about how to analyse the run-
ning time of algorithms, and pointing out some common misconceptions
and subtleties you may have missed along the way.

How do we measure running time?

As we all know, the amount of time a program or single operation takes to
run depends on a host of external factors — computing hardware, other
running processes — over which the programmer has no control.

So, in our analysis, we focus on just one central measure of perfor-
mance: the relationship between an algorithm’s input size and the number

This is not to say arrays and pointers
play no role. To the contrary, the study
of data structures can be viewed as

the study of how to organize and
synthesize basic programming language
components in new and sophisticated
ways.

8 DAVID LIU

of basic operations the algorithm performs. But because even what is meant
by “basic operation” can differ from machine to machine or programming
language to programming language, we do not try to precisely quantify
the exact number of such operations, but instead categorize how the number
grows relative to the size of the algorithm’s input.

This is our motivation for Big-Oh notation, which is used to bring to
the foreground the type of long-term growth of a function, hiding all the
numeric constants and smaller terms that do not affect this growth. For
example, the functions n 4+ 1, 3n — 10, and 0.001% + log n all have the same
growth behaviour as n gets large: they all grow roughly linearly with
n. Even though these “lines” all have different slopes, we ignore these
constants and simply say that these functions are O(n), “Big-Oh of n.”

We call this type of analysis asymptotic analysis, since it deals with the
long-term behaviour of a function. It is important to remember two im-
portant facts about asymptotic analysis:

¢ The target of the analysis is always a relationship between the size of the
input and number of basic operations performed.

What we mean by “size of the input” depends on the context, and
we’ll always be very careful when defining input size throughout this
course. What we mean by “basic operation” is any operation whose
running time does not depend on the size of the algorithm'’s input.

® The result of the analysis is a qualitative rate of growth, not an exact
number or even an exact function. We will not say “by our asymptotic
analysis, we find that this algorithm runs in 5 steps” or even “...in 101 +
3 steps.” Rather, expect to read (and write) statements like “we find that
this algorithm runs in O(n) time.”

Three different symbols

In practice, programmers (and even theoreticians) tend to use the Big-Oh
symbol O liberally, even when the precise definition of O is not exactly
what we intended. However, in this course it will be important to be
precise, and we will actually use three symbols to convey different pieces
of information, so you will be expected to know which one means what.
Here is a recap:

* Big-Oh. f = O(g) means that the function f(x) grows slower or at the
same rate as g(x). So we can write x2 4+ x = O(x?), but it is also correct
to write x> 4+ x = O(x'%) or even x? + x = O(2%).

* Omega. f = ()(g) means that the function f(x) grows faster or at the
same rate as g(x). So we can write x> + x = Q(x?), but it is also correct

We will not give the formal definition
of Big-Oh here. For that, please consult
the CSC165 course notes.

This is deliberately a very liberal
definition of “basic operation.” We
don’t want you to get hung up on step
counting, because that’s completely
hidden by Big-Oh expressions.

Or, “g is an upper bound on the rate of
growth of f.”

Or, “g is a lower bound on the rate of
growth of f.”

DATA STRUCTURES AND ANALYSIS

to write x* + x = Q(x) or even x> + x = O(loglog x).

e Theta. f = ©(g) means that the function f(x) grows at the same rate
as g(x). So we can write x*> + x = @(x?), but not x? + x = @(2%) or
x>+ x = 0O(x).

Note: saying f = ©(g) is equivalent to saying that f = O(g) and
f =9Q(g), ie., Theta is really an AND of Big-Oh and Omega.

Through unfortunate systemic abuse of notation, most of the time when
a computer scientist says an algorithm runs in “Big-Oh of f time,” she
really means “Theta of f time.” In other words, that the function f is
not just an upper bound on the rate of growth of the running time of the
algorithm, but is in fact the rate of growth. The reason we get away with
doing so is that in practice, the “obvious” upper bound is in fact the rate
of growth, and so it is (accidentally) correct to mean Theta even if one has
only thought about Big-Oh.

However, the devil is in the details: it is not the case in this course that
the “obvious” upper bound will always be the actual rate of growth, and
so we will say Big-Oh when we mean an upper bound, and treat Theta
with the reverence it deserves. Let us think a bit more carefully about why
we need this distinction.

Worst-case analysis

The procedure of asymptotic analysis seems simple enough: look at a
piece of code; count the number of basic operations performed in terms of
the input size, taking into account loops, helper functions, and recursive
calls; then convert that expression into the appropriate Theta form.

Given any exact mathematical function, it is always possible to deter-
mine its qualitative rate of growth, i.e., its corresponding Theta expression.
For example, the function f(x) = 300x° — 4x® 4+ x 4 10 is ©(x°), and that
is not hard to figure out.

So then why do we need Big-Oh and Omega at all? Why can’t we always
just go directly from the f(x) expression to the Theta?

It’s because we cannot always take a piece of code an come up with an
exact expression for the number of basic operations performed. Even if
we take the input size as a variable (e.g.,) and use it in our counting, we
cannot always determine which basic operations will be performed. This
is because input size alone is not the only determinant of an algorithm’s
running time: often the value of the input matters as well.

Consider, for example, a function that takes a list and returns whether
this list contains the number 263. If this function loops through the list
starting at the front, and stops immediately if it finds an occurrence of

Or, “g has the same rate of growth as

X

remember, a basic operation is any
operation whose runtime doesn’t
depend on the input size

9

10 DAVID LIU

263, then in fact the running time of this function depends not just on
how long the list is, but whether and where it has any 263 entries.

Asymptotic notations alone cannot help solve this problem: they help
us clarify how we are counting, but we have here a problem of what exactly
we are counting.

This problem is why asymptotic analysis is typically specialized to
worst-case analysis. Whereas asymptotic analysis studies the relationship
between input size and running time, worst-case analysis studies only the
relationship between input size of maximum possible running time. In other
words, rather than answering the question “what is the running time of
this algorithm for an input size n?” we instead aim to answer the question
“what is the maximum possible running time of this algorithm for an input
size n?” The first question’s answer might be a whole range of values; the
second question’s answer can only be a single number, and that’s how we
get a function involving n.

Some notation: we typically use the name T(n) to represent the maxi-
mum possible running time as a function of #n, the input size. The result
of our analysis could be something like T(n) = ®(n), meaning that the
worst-case running time of our algorithm grows linearly with the input
size.

Bounding the worst case

But we still haven’t answered the question: where do O and) come
in? The answer is basically the same as before: even with our restricted
focus on worst-case running time, it is not always possible to calculate an
exact expression for this function. What is usually easy to do, however, is
calculate an upper bound on the maximum number of operations. One such
example is the likely familiar line of reasoning, “the loop will run at most
n times” when searching for 263 in a list of length #n. Such analysis, which
gives a pessimistic outlook on the most number of operations that could
theoretically happen, results in an exact count — e.g., n + 1 — which is an
upper bound on the maximum number of operations. From this analysis,
we can conclude that T(n), the worst-case running time, is O(n).

What we can’t conclude is that T(n) = Q(n). There is a subtle implica-
tion here of the English phrase “at most.” When we say “you can have at
most 10 chocolates,” it is generally understood that you can indeed have
exactly 10 chocolates; whatever number is associated with “at most” is
achievable.

In our analysis, however, we have no way of knowing that the upper

bound we obtain by being pessimistic in our operation counting is ac-
tually achievable. This is made more obvious if we explicitly mention

DATA STRUCTURES AND ANALYSIS 11

the fact that we're studying the maximum possible number of operations:
“the maximum running time is less than or equal to n + 1” surely says
something different than “the maximum running time is equal to n 4 1.”

So how do we show that whatever upper bound we get on the max-
imum is actually achievable? In practice, we rarely try to show that the
exact upper bound is achievable, since that doesn’t actually matter. In-
stead, we try to show that an asymptotic lower bound — an Omega —
is achievable. For example, we might want to show that the maximum
running time is Q(n), i.e., grows at least as quickly as n.

To show that the maximum running time grows at least as quickly as
some function f, we need to find a family of inputs, one for each input
size n, whose running time has a lower bound of f(n). For example, for
our problem of searching for 263 in a list, we could say that the family of
inputs is “lists that contain only o’s.” Running the search algorithm on
such a list of length n certainly requires checking each element, and so the
algorithm takes at least n basic operations. From this we can conclude that
the maximum possible running time is Q(n).

To summarize: to perform a complete worst-case analysis and get a
tight, Theta bound on the worst-case running time, we need to do the
following two things:

(i) Give a pessimistic upper bound on the number of basic operations that
could occur for any input of a fixed size n. Obtain the corresponding
Big-Oh expression (i.e., T(n) = O(f)).

(ii) Give a family of inputs (one for each input size), and give a lower bound on
the number of basic operations that occurs for this particular family of
inputs. Obtain the corresponding Omega expression (i.e., T(n) = Q(f)).

If you have performed a careful analysis in (i) and chosen a good family
in (ii), then you’ll find that the Big-Oh and Omega expressions involve the
same function f, and which point you can conclude that the worst-case
running time is T(n) = O(f).

Average-case analysis

So far in your career as computer scientists, you have been primarily con-
cerned with worst-case algorithm analysis. However, in practice this type
of analysis often ends up being misleading, with a variety of algorithms
and data structures having a poor worst-case performance still performing
well on the majority of possible inputs.

Some reflection makes this not too surprising: focusing on the maxi-
mum of a set of numbers (like running times) says very little about the

Remember, the constants don’t matter.
The family of inputs that contain only
1’s for the first half, and only 263’s for
the second half, would also have given
us the desired lower bound.

Observe that (i) is proving something
about all possible inputs, while (ii) is
proving something about just one family
of inputs.

12 DAVID LIU

“typical” number in that set, or, more precisely, the distribution of num-
bers within that set. In this section, we will learn a powerful new tech-
nique that enables us to analyse some notion of “typical” running time for
an algorithm.

Warmup

Consider the following algorithm, which operates on a non-empty array
of integers:

def evens_are_bad(lst):
if every number in lst is even:
repeat 1lst.length times:
calculate and print the sum of lst
return 1
else:
return 0

Let n represent the length of the input list 1st. Suppose that 1st con-
tains only even numbers. Then the initial check on line 2 takes ()(n) time,
while the computation in the if branch takes ()(1n?) time. This means that
the worst-case running time of this algorithm is Q(n?). Tt is not too hard
to prove the matching upper bound, and so the worst-case running time
is @(n?).

However, the loop only executes when every number in 1st is even;
when just one number is odd, the running time is O(n), the maximum
possible running time of executing the all-even check. Intuitively, it seems
much more likely that not every number in 1st is even, so we expect the
more “typical case” for this algorithm is to have a running time bounded
above by O(n), and only very rarely to have a running time of @(n2).

Our goal now is to define precisely what we mean by the “typical case”
for an algorithm’s running time when considering a set of inputs. As
is often the case when dealing with the distribution of a quantity (like
running time) over a set of possible values, we will use our tools from
probability theory to help achieve this goal.

We define the average-case running time of an algorithm to be the
function Tyye (1) which takes a number 7 and returns the (weighted) aver-
age of the algorithm’s running time for all inputs of size 7.

For now, let’s ignore the “weighted” part, and just think of Ty (1) as
computing the average of a set of numbers. What can we say about the
average-case for the function evens_are_bad? First, we fix some input size

We leave it as an exercise to justify why
the 1if branch takes (}(1?) time.

Because executing the check might

abort quickly if it finds an odd number
early in the list, we used the pessimistic
upper bound of O(n) rather than ©(n).

DATA STRUCTURES AND ANALYSIS 13

n. We want to compute the average of all running times over all input lists
of length n.

At this point you might be thinking, “well, each number is even with
probability one-half, so...” This is a nice thought, but a little premature —
the first step when doing an average-case analysis is to define the possible
set of inputs. For this example, we’ll start with a particularly simple set
of inputs: the lists whose elements are between 1 and 5, inclusive. The
reason for choosing such a restricted set is to simplify the calculations we
need to perform when computing an average.

As the calculation requires precise numbers, we will need to be precise
about what “basic operations” we’re counting. For this example, we’ll
count only the number of times a list element is accessed, either to check
whether it is even, or when computing the sum of the list. So a “step” will
be synonymous with “list access.”

The preceding paragraphs are the work of setting up the context of
our analysis: what inputs we’re considering, and how we’re measuring
runtime. The final step is what we had initially talked about: compute the
average running time over inputs of length n. This often requires some
calculation, so let’s get to it. To simplify our calculations even further, we’ll
assume that the all-evens check on line 2 always accesses all n elements.
In the loop, there are n? steps (each number is accessed 7 times, once per
time the sum is computed).

There are really only two possibilities: the lists that have all even num-
bers will run in n? 4 n steps, while all the other lists will run in just n
steps. How many of each type of list are there? For each position, there
are two possible even numbers (2 and 4), so the number of lists of length
n with every element being even is 2". That sounds like a lot, but consider
that there are five possible values per element, and hence 5" possible in-
puts in all. So 2" inputs have all even numbers and take n? +n steps,
while the remaining 5" — 2" inputs take 7 steps.

The average running time is:

2"(n? +n) + (5" —2")n

Tavg(n) = o (5" inputs total)
2p?
n
= (;) n?+n
=0(n)

This analysis tells us that the average-case running time of this algo-

It is actually fairly realistic to focus
solely on operations of a particular
type in a runtime analysis. We typically
choose the operation that happens the
most frequently (as in this case), or

the one which is the most expensive.
Of course, the latter requires that we
are intimately knowledgeable about

the low-level details of our computing
environment.

You'll explore the “return early” variant
in an exercise.

In the language of counting: make
n independent decisions, with each
decision having two choices.

Number Steps
all even 2" n”+n
the rest 5" —2" n

Remember that any exponential grows
faster than any polynomial, so the first
term goes to 0 as 1 goes to infinity.

14 DAVID LIU

rithm is ©(n), as our intuition originally told us. Because we computed
an exact expression for the average number of steps, we could convert this
directly into a Theta expression.

The probabilistic view

The analysis we performed in the previous section was done through the
lens of counting the different kinds of inputs and then computing the aver-
age of their running times. However, there is a more powerful technique:
treating the algorithm’s running time as a random variable T, defined over
the set of possible inputs of size n. We can then redo the above analysis in
this probabilistic context, performing these steps:

1. Define the set of possible inputs and a probability distribution over this
set. In this case, our set is all lists of length n that contain only ele-
ments in the range 1-5, and the probability distribution is the uniform
distribution.

2. Define how we are measuring runtime. (This is unchanged from the
previous analysis.)

3. Define the random variable T over this probability space to represent
the running time of the algorithm.

In this case, we have the nice definition

T n? +n, input contains only even numbers
n, otherwise

4. Compute the expected value of T, using the chosen probability dis-
tribution and formula for T. Recall that the expected value of a vari-
able is determined by taking the sum of the possible values of T, each
weighted by the probability of obtaining that value.

E[T] =) t Pr[T =]
t

In this case, there are only two possible values for T:

E[T] = (n? + n) - Pr]the list contains only even numbers]

+ n - Prthe list contains at least one odd number]

=otn-(3) +n (1-(3))

=n-- — +n

As is the case with worst-case analysis,
it won’t always be so easy to compute
an exact expression for the average,
and in those cases the usual upper and
lower bounding must be done.

Recall that the uniform distribution
assigns equal probability to each
element in the set.

Recall that a random variable is a
function whose domain is the set of
inputs.

DATA STRUCTURES AND ANALYSIS 15

Of course, the calculation ended up being the same, even if we ap-
proached it a little differently. The point to shifting to using probabilities
is in unlocking the ability to change the probability distribution. Remember
that our first step, defining the set of inputs and probability distribution,
is a great responsibility of the ones performing the runtime analysis. How
in the world can we choose a “reasonable” distribution? There is a ten- What does it mean for a distribution to
dency for us to choose distributions that are easy to analyse, but of course be “reasonable,” anyway?

this is not necessarily a good criterion for evaluating an algorithm.

By allowing ourselves to choose not only what inputs are allowed, but
also give relative probabilities of those inputs, we can use the exact same
technique to analyse an algorithm under several different possible scenar-
ios. This is both the reason we use “weighted average” rather than simply
“average” in our above definition of average-case, and also how we are
able to calculate it.

Exercise Break!

1.1 Prove that the evens_are_bad algorithm on page 12 has a worst-case
running time of O(n?), where n is the length of the input list.

1.2 Consider this alternate input space for evens_are_bad: each element in

the list is even with probability %, independent of all other elements.

Prove that under this distribution, the average-case running time is still
O(n).

1.3 Suppose we allow the “all-evens” check on line 2 of evens_are_bad to
stop immediately after it finds an odd element. Perform a new average-
case analysis for this mildly-optimized version of the algorithm using
the same input distribution as in the notes.

Hint: part of the running time T now can take on any value between 1
and #; first compute the probability of getting each of these values, and
then use the expected value formula.

Quicksort is fast on average

The previous example may have been a little underwhelming, since it was
“obvious” that the worst-case was quite rare, and so not surprising that
the average-case running time is asymptotically faster than the worst-case.
However, this is not a fact you should take for granted. Indeed, it is often
the case that algorithms are asymptotically no better “on average” than

they are in the worst-case. Sometimes, though, an algorithm can have a Keep in mind that because asymptotic
notation hides the constants, saying two
functions are different asymptotically is
much more significant than saying that
one function is “bigger” than another.

significantly better average case than worst case, but it is not nearly as

16 DAVID LIU

obvious; we'll finish off this chapter by studying one particularly well-
known example.

Recall the quicksort algorithm, which takes a list and sorts it by choos-
ing one element to be the pivot (say, the first element); partitioning the
remaining elements into two parts, those less than the pivot, and those
greater than the pivot; recursively sorting each part; and then combining
the results.

def quicksort(array):

if array.length < 2:
return

else:
pivot = array[0]
smaller, bigger = partition(array[l:], pivot)
quicksort(smaller)
quicksort(bigger)
array = smaller + [pivot] + bigger # array concatenation

def partition(array, pivot):
smaller = []
bigger = []
for item in array:
if item <= pivot:
smaller.append(item)
else:
bigger.append(item)
return smaller, bigger

You have seen in previous courses that the choice of pivot is crucial, as
it determines the size of each of the two partitions. In the best case, the
pivot is the median, and the remaining elements are split into partitions of
roughly equal size, leading to a running time of ©(nlogn), where n is the
size of the list. However, if the pivot is always chosen to be the maximum
element, then the algorithm must recurse on a partition that is only one
element smaller than the original, leading to a running time of @ (n?).

So, given that there is a difference between the best- and worst-case
running times of quicksort, the next natural question to ask is: What is
the average-case running time? This is what we’ll answer in this section.

First, let n be the length of the list. Our set of inputs is all possible
permutations of the numbers 1 to n (inclusive). We'll assume any of these
n! permutations are equally likely; in other words, we'll use the uniform
distribution over all possible permutations of {1,...,n}. We will measure

This version of quicksort uses linear-
size auxiliary storage; we chose this
because it is a little simpler to write
and analyse. The more standard “in-
place” version of quicksort has the
same running time behaviour, it just
uses less space.

Our analysis will therefore assume the
lists have no duplicates.

DATA STRUCTURES AND ANALYSIS 17

runtime by counting the number of comparisons between elements in the list
in the partition function.

Let T be the random variable counting the number of comparisons
made. Before starting the computation of E[T], we define additional ran-
dom variables: for each i,j € {1,...,n} with i < j, let X;; be the indicator
random variable defined as:

1, ifiand j are compared

Xij = .
0, otherwise

Because each pair is compared at most once, we obtain the total number
of comparisons simply by adding these up:

n
L X

j=i+1

T:

Mx

Il
MR

The purpose of decomposing T into a sum of simpler random variables
is that we can now apply the linearity of expectation (see margin note).

n n
i=1j=i+1
n n
=)) Prfiand j are compared]
i=1j=i+1

To make use of this “simpler” form, we need to investigate the prob-
ability that i and j are compared when we run quicksort on a random
array.

Proposition 1.1. Let 1 < i < j < n. The probability that i and j are compared
when running quicksort on a random permutation of {1,...,n}is2/(j—i+1).

Proof. First, let us think about precisely when elements are compared with
each other in quicksort. Quicksort works by selecting a pivot element,
then comparing the pivot to every other item to create two partitions, and
then recursing on each partition separately. So we can make the following
observations:

(i) Every comparison must involve the “current” pivot.

(if) The pivot is only compared to the items that have always been placed
into the same partition as it by all previous pivots.

So in order for 7 and j to be compared, one of them must be chosen as
the pivot while the other is in the same partition. What could cause i and

Remember, this is all in the context of
choosing a random permutation.

If X, Y, and Z are random variables and
X =Y + Z, then E[X] = E[Y] + E[Z],
even if Y and Z are dependent.

Recall that for an indicator random
variable, its expected value is simply
the probability that it takes on the value
1.

Or, once two items have been put into
different partitions, they will never be
compared.

18 DAVID LIU

j to be in different partitions? This only happens if one of the numbers
between i and j (exclusive) is chosen as a pivot before i or j is chosen.
So then i and j are compared by quicksort if and only if one of them is
selected to be pivot first out of the set of numbers {i,i +1,...,j}.

Because we’ve given an implementation of quicksort that always chooses
the first item to be the pivot, the item that is chosen first as pivot must
be the one that appears first in the random input permutation. Since
we choose the permutation uniformly at random, each item in the set
{i,...,j} is equally likely to appear first, and thus be chosen first as pivot.

Finally, because there are j — i + 1 numbers in this set, the probability
that either i or j is chosen first is 2/(j — i+ 1), and this is the probability
that 7 and j are compared. O

Now that we have this probability computed, we can return to our
expected value calculation to complete our average-case analysis.

Theorem 1.2 (Quicksort average-case runtime). The average number of com-

parisons made by quicksort on a uniformly chosen random permutation of {1,...,n}

is ©(nlogn).

Proof. As before, let T be the random variable representing the running
time of quicksort. Our previous calculations together show that

n
E[T] = Z ‘ Y Prli and j are compared)]

(change of index j = j — i)

Now, note that the individual terms of the inner summation don’t de-
pend on i; only the bound does. The first term, when j' = 1, occurs when
1 <i<n-—1,orn—1 times in total; the second (j’ = 2) occurs when
i <n—2,and in general the j/ = k term appears n — k times.

So we can simplify the counting to eliminate the summation over i:

Of course, the input list contains other
numbers, but because our partition
algorithm preserves relative order
within a partition, if @ appears before
b in the original list, then a will still
appear before b in every subsequent
partition that contains them both.

i j values
1 1,23,....n—2,n-1
1,23,...,n—=2
n—3 1123
n—211,2
n—11]1
n

DATA STRUCTURES AND ANALYSIS 19

n—1

E[T]=2)

=1

n—1 Tl+1
“2L <j’+1_1>

j'=1

n—j
S

n—1

1
_2(n+1)]§1m—2(n—1)

n—1
1
We will use the fact from mathematics that the function Z 1 is
i=1

G)(log 1’1) , and so we get that [E [T] = @(1’1 log n) . O Actually, we even know the exact
constant hidden in the ®: Look up the
Harmonic series if you're interested in
learning more!

Exercise Break!

1.4 Review the insertion sort algorithm, which builds up a sorted list by
repeatedly inserting new elements into a sorted sublist (usually at the
front). We know that its worst-case running time is ®(r?), but its best
case is ©(n), even better than quicksort. So, does it beat quicksort on
average?

Suppose we run insertion sort on a random permutation of the numbers
{1,...,n}, and consider counting the number of swaps as the running
time. Let T be the random variable representing the total number of
swaps.

(a) For each 1 <i < n, define the random variable S; to be the number
of swaps made when i is inserted into the sorted sublist.
Express T in terms of S;.

(b) For each 1 <1i,j < n, define the random indicator variables X;; that is
1 if 7 and j are swapped during insertion sort.

Express S; in terms of the Xij.
(c) Prove that E[X;] =1/2.

(d) Show that the average-case running time of insertion sort is ©@(1?).

2 Priority Queues and Heaps

In this chapter, we will study our first major data structure: the heap. As
this is our first extended analysis of a new data structure, it is important to
pay attention to the four components of this study outlined at the previous
chapter:

1. Motivate a new abstract data type or data structure with some examples
and reflection of previous knowledge.

2. Introduce a data structure, discussing both its mechanisms for how it
stores data and how it implements operations on this data.

3. Justify why the operations are correct.

4. Analyse the running time performance of these operations.

Abstract data type vs. data structure

The study of data structures involves two principal, connected pieces: a
specification of what data we want to store and operations we want to
support, and an implementation of this data type. We tend to blur the
line between these two components, but the difference between them is
fundamental, and we often speak of one independently of the other. So
before we jump into our first major data structure, let us remind ourselves
of the difference between these two.

Definition 2.1 (abstract data type, data structure). An abstract data type
(ADT) is a theoretical model of an entity and the set of operations that
can be performed on that entity.

A data structure is a value in a program which can be used to store and
operate on data.

For example, contrast the difference between the List ADT and an array
data structure.

List ADT

e LENGTH(L): Return the number of items in L.

The key term is abstract: an ADT is a
definition that can be understood and
communicated without any code at all.

22 DAVID LIU

e GET(L,i): Return the item stored at index i in L.

e STORE(L, i, x): Store the item x at index i in L.

This definition of the List ADT is clearly abstract: it specifies what the
possible operations are for this data type, but says nothing at all about
how the data is stored, or how the operations are performed.

It may be tempting to think of ADTs as the definition of interfaces or
abstract classes in a programming language — something that specifies a
collection of methods that must be implemented — but keep in mind that
it is not necessary to represent an ADT in code. A written description of
the ADT, such as the one we gave above, is perfectly acceptable.

On the other hand, a data structure is tied fundamentally to code. It
exists as an entity in a program; when we talk about data structures, we
talk about how we write the code to implement them. We are aware of
not just what these data structures do, but how they do them.

When we discuss arrays, for example, we can say that they implement
the List ADT; i.e., they support the operations defined in the List ADT.
However, we can say much more than this:

¢ Arrays store elements in consecutive locations in memory

¢ They perform GET and STORE in constant time with respect to the
length of the array.

* How LENGTH is supported is itself an implementation detail specific
to a particular language. In C, arrays must be wrapped in a struct to
manually store their length; in Java, arrays have a special immutable
attribute called length; in Python, native lists are implemented using
arrays an a member to store length.

The main implementation-level detail that we’ll care about this in course
is the running time of an operation. This is not a quantity that can be spec-
ified in the definition of an ADT, but is certainly something we can study if
we know how an operation is implemented in a particular data structure.

The Priority Queue ADT

The first abstract data type we will study is the Priority Queue, which is
similar in spirit to the stacks and queues that you have previously studied.
Like those data types, the priority queue supports adding and removing
an item from a collection. Unlike those data types, the order in which
items are removed does not depend on the order in which they are added,
but rather depends on a priority which is specified when each item is
added.

There may be other operations you
think are fundamental to lists; we’ve
given as bare-bones a definition as
possible.

At least, the standard CPython imple-

mentation of Python.

DATA STRUCTURES AND ANALYSIS 23

A classic example of priority queues in practice is a hospital waiting
room: more severe injuries and illnesses are generally treated before minor
ones, regardless of when the patients arrived at the hospital.

Priority Queue ADT

* INSERT(PQ, x, priority): Add x to the priority queue PQ with the given
priority.

¢ FINDMAXx(PQ): Return the item in PQ with the highest priority.

¢ ExTRACTMAX(PQ): Remove and return the item from PQ with the high-
est priority.

As we have already discussed, one of the biggest themes of this course
is the distinction between the definition of an abstract data type, and the
implementation of that data type using a particular data structure. To em-
phasize that these are separate, we will first give a naive implementation
of the Priority Queue ADT that is perfectly correct, but inefficient. Then,
we will contrast this approach with one that uses the heap data structure.

A basic implementation

Let us consider using an unsorted linked list to implement a priority
queue. In this case, adding a new item to the priority queue can be done
in constant time: simply add the item and corresponding priority to the
front of the linked list. However, in order to find or remove the item
with the lowest priority, we must search through the entire list, which is a
linear-time operation.

Given a new ADT, it is often helpful to come up with a “naive” or
“brute force” implementation using familiar primitive data structures like
arrays and linked lists. Such implementations are usually quick to come
up with, and analysing the running time of the operations is also usually
straight-forward. Doing this analysis gives us targets to beat: given that
we can code up an implementation of priority queue which supports IN-
SERT in O(1) time and FINDMax and ExXTRACTMAX in ©(n) time, can we
do better using a more complex data structure? The rest of this chapter is
devoted to answering this question.

def Insert(PQ, x, priority):
n = Node(x, priority)
oldHead = PQ.head
n.next = old_head
PQ.head = n

One can view most hospital waiting
rooms as a physical, buggy implemen-
tation of a priority queue.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

24 DAVID LIU

def FindMax(PQ):
n = PQ.head
maxNode = None
while n is not None:
if maxNode is None or n.priority > maxNode.priority:
maxNode = n
n = n.next
return maxNode.item

def ExtractMax(PQ):
n = PQ.head
prevNode = None
maxNode = None
prevMaxNode = None
while n is not None:
if maxNode is None or n.priority > maxNode.priority:
maxNode, prevMaxNode = n, prevNode
prevNode, n = n, n.next

if prevMaxNode is None:
self.head = maxNode.next
else:
prevMaxNode.next = maxNode.next

return maxNode.item

Heaps

Recall that a binary tree is a tree in which every node has at most two
children, which we distinguish by calling the left and right. You probably
remember studying binary search trees, a particular application of a binary
tree that can support fast insertion, deletion, and search.

Unfortunately, this particular variant of binary trees does not exactly
suit our purposes, since the item with the highest priority will generally
be at or near the bottom of a BST. Instead, we will focus on a variation of
binary trees that uses the following property:

Definition 2.2 (heap property). A tree satisfies the heap property if and
only if for each node in the tree, the value of that node is greater than or
equal to the value of all of its descendants.

Alternatively, for any pair of nodes a, b in the tree, if a is an ancestor of

We'll look at a more advanced form of
binary search trees in the next chapter.

DATA STRUCTURES AND ANALYSIS 25

b, then the value of a is greater than or equal to the value of b.

This property is actually less stringent than the BST property: given
a node which satisfies the heap property, we cannot conclude anything
about the relationships between its left and right subtrees. This means
that it is actually much easier to get a compact, balanced binary tree that
satisfies the heap property than one that satisfies the BST property. In fact,
we can get away with enforcing as strong a balancing as possible for our
data structure.

Definition 2.3 (complete binary tree). A binary tree is complete if and
only if it satisfies the following two properties:

e All of its levels are full, except possibly the bottom one.

¢ All of the nodes in the bottom level are as far to the left as possible.

Complete trees are essentially the trees which are most “compact.” A
complete tree with n nodes has [logn| height, which is the smallest pos-
sible height for a tree with this number of nodes.

Moreover, because we also specify that the nodes in the bottom layer
must be as far left as possible, there is never any ambiguity about where
the “empty” spots in a complete tree are. There is only one complete tree
shape for each number of nodes.

Because of this, we do not need to use up space to store references be-
tween nodes, as we do in a standard binary tree implementation. Instead,
we fix a conventional ordering of the nodes in the heap, and then simply
write down the items in the heap according to that order. The order we
use is called level order, because it orders the elements based on their depth
in the tree: the first node is the root of the tree, then its children (at depth
1) in left-to-right order, then all nodes at depth 2 in left-to-right order, etc.

With these two definitions in mind, we can now define a heap.
Definition 2.4 (heap). A heap is a binary tree that satisfies the heap property
and is complete.

We implement a heap in a program as an array, where the items in the
array correspond to the level order of the actual binary tree.

A note about array indices

In addition to being a more compact representation of a complete binary
tree, this array representation has a beautiful relationship between the
indices of a node in the tree and those of its children.

We assume the items are stored starting at index 1 rather than o, which
leads to the following indices for the nodes in the tree.

Every leaf must be in one of the two
bottommost levels.

The array representation of the above
complete binary tree.

(A[B]C[D[E]F]

This is a nice example of how we use
primitive data structures to build
more complex ones. Indeed, a heap is
nothing sophisticated from a technical
standpoint; it is merely an array whose
values are ordered in a particular way.

26 DAVID LIU

A pattern quickly emerges. For a node corresponding to index i, its
left child is stored at index 2i, and its right child is stored at index 2i + 1.
Going backwards, we can also deduce that the parent of index i (when
i > 1) is stored at index [i/2]. This relationship between indices will
prove very useful in the following section when we start performing more
complex operations on heaps.

Heap implementation of a priority queue

Now that we have defined the heap data structure, let us see how to use
it to implement the three operations of a priority queue.

FINDMAXx becomes very simple to both implement and analyse, be-
cause the root of the heap is always the item with the maximum priority,
and in turn is always stored at the front of the array.

def FindMax(PQ):
return PQ[1]

REMOVE is a little more challenging. Obviously we need to remove the
root of the tree, but how do we decide what to replace it with? One key
observation is that because the resulting heap must still be complete, we
know how its structure must change: the very last (rightmost) leaf must
no longer appear.

Remember that indexing starts at 1
rather than o.

20

21

22

23

24

DATA STRUCTURES AND ANALYSIS 27

So our first step is to save the root of the tree, and then replace it with
the last leaf. (Note that we can access the leaf in constant time because we
know the size of the heap, and the last leaf is always at the end of the list
of items.)

But the last leaf priority is smaller than many other priorities, and so if
we leave the heap like this, the heap property will be violated. Our last
step is to repeatedly swap the moved value with one of its children until
the heap property is satisfied once more. On each swap, we choose the
larger of the two children to ensure that the heap property is preserved.

def ExtractMax(PQ):
temp = PQ[1]
PQ[1] = PQ[PQ.size] # Replace the root with the last leaf
PQ.size = PQ.size - 1

Bubble down
i=1
while i * 2 <= PQ.size:
curr_p = PQ[i].priority
left_p = PQ[2+i].priority
right_p = PQ[2*1i + 1].priority # -inf if not exist

heap property is satisfied

if curr_p >= left_p and curr_p >= right_p:
break

left child has higher priority

else if left_p >= right_p:
PQ[i], PQ[2+i] = PQ[2xi], PQ[i]
i=2%1i

right child has higher priority

else:
PQ[i], PQ[2xi + 11 = PQ[2xi + 1], PQ[i]
1 =2+1i+ 1

return temp

What is the running time of this algorithm? All individual lines of code
take constant time, meaning the runtime is determined by the number of
loop iterations.

At each iteration, either the loop stops immediately, or i increases by at
least a factor of 2. This means that the total number of iterations is at most

Rightmost leaf 17 is moved to the root.

17 is swapped with 45 (since 45 is
greater than 30).

No more swaps occur; 17 is greater
than both 16 and 2.

The repeated swapping is colloquially
called the “bubble down” step, refer-
ring to how the last leaf starts at the
top of the heap and makes its way back
down in the loop.

28 DAVID LIU

log n, where n is the number of items in the heap. The worst-case running
time of REMOVE is therefore O(logn).

The implementation of INSERT is similar. We again use the fact that
the number of items in the heap completely determines its structure: in
this case, because a new item is being added, there will be a new leaf
immediately to the right of the current final leaf, and this corresponds to
the next open position in the array after the last item.

So our algorithm simply puts the new item there, and then performs
an inverse of the swapping from last time, comparing the new item with
its parent, and swapping if it has a larger priority. The margin diagrams
show the result of adding 35 to the given heap.

def Insert(PQ, x, priority):
PQ.size = PQ.size + 1
PQ[PQ.size].item = x
PQ[PQ.size].priority = priority

i = PQ.size

while i > 1:
curr_p = PQ[i].priority
parent_p = PQ[1i // 2].priority

if curr_p <= parent_p: # heap property satisfied, break

break

else:
PQLil, PQ[i // 21 = PQL[i // 21, PQ[i]
i=11//2

Again, this loop runs at most log#n iterations, where 7 is the number
of items in the heap. The worst-case running time of this algorithm is
therefore O(logn).

Runtime summary

Let us compare the worst-case running times for the three operations for
the two different implementations we discussed in this chapter. In this
table, n refers to the number of elements in the priority queue.

This table nicely illustrates the tradeoffs generally found in data struc-
ture design and implementation. We can see that heaps beat unsorted
linked lists in two of the three priority queue operations, but are asymp-
totically slower than unsorted linked lists when adding a new element.

A “bubble up” instead of “bubble
down”

35 is swapped twice with its parent (20,
then 30), but does not get swapped with
45-

Operation | Linked list Heap
INSERT 0(1) O(logn)

FINDMaAx Q(n) 0(1)
ExTrRACTMAX 0(n) O(logn)

DATA STRUCTURES AND ANALYSIS 29

Now, this particular case is not much of a choice: that the slowest oper-
ation for heaps runs in ®(logn) time in the worst case is substantially
better than the corresponding ®(n) time for unsorted linked lists, and in
practice heaps are indeed widely used.

The reason for the speed of the heap operations is the two properties —
the heap property and completeness — that are enforced by the heap data
structures. These properties impose a structure on the data that allows
us to more quickly extract the desired information. The cost of these
properties is that they must be maintained whenever the data structure is
mutated. It is not enough to take a new item and add it to the end of the
heap array; it must be “bubbled up” to its correct position to maintain the
heap property, and this is what causes the Insert operation to take longer.

Heapsort and building heaps

In our final section of this chapter, we will look at one interesting applica-
tion of heaps to a fundamental task in computer science: sorting. Given
a heap, we can extract a sorted list of the elements in the heap simply by
repeatedly calling REMOVE and adding the items to a list.

However, to turn this into a true sorting algorithm, we need a way of
converting an input unsorted list into a heap. To do this, we interpret
the list as the level order of a complete binary tree, same as with heaps.
The difference is that this binary tree does not necessarily satisfy the heap
property, and it is our job to fix it.

We can do this by performing the “bubble down” operation on each
node in the tree, starting at the bottom node and working our way up.

def BuildHeap(items):
i = items.size // 2
while i > 0:
BubbleDown(items, i)
i=1i-1

def BubbleDown(heap, i):
while i * 2 <= heap.size:
curr_p = heap[i].priority
left_p = heap[2*i].priority
right_p = heap[2+i + 1].priority # -inf if not exist

heap property is satisfied
if curr_p >= left_p and curr_p >= right_p:
break

Of course, this technically sorts by
priority of the items. In general, given
a list of values to sort, we would treat
these values as priorities for the pur-
pose of priority queue operations.

20

21

22

23

30 DAVID LIU

left child has higher priority
else if left_p >= right_p:
PQ[i], PQ[2xi] = PQ[2xi], PQ[il]
1= 2%1i
right child has higher priority
else:
PQ[i], PQ[2*i + 1] = PQ[2*i + 1], PQ[i]
i=2%1+1

What is the running time of this algorithm? Let n be the length of
items. Then the loop in BuBBLEDOWN iterates at most log n times; since
BusBLEDOWN is called # times, this means that the worst-case running
time is O(nlogn).

However, this is a rather loose analysis: after all, the larger i is, the
fewer iterations the loop runs. And in fact, this is a perfect example of a
situation where the “obvious” upper bound on the worst-case is actually
not tight, as we shall soon see.

To be more precise, we require a better understanding of how long Bus-
BLEDOWN takes to run as a function of i, and not just the length of items.
Let T(n,i) be the maximum number of loop iterations of BupBLEDOWN
for input i and a list of length n. Then the total number of iterations in

n
all n calls to BuBsLEDOWN from BuiLpHear is) _ T(n, 7). So how do we
i=1
compute T(#,i)? The maximum number of iterations is simply the height
h of node i in the complete binary tree with n nodes.

So we can partition the nodes based on their height:

n k
Y T(i,n) = Y _ h-#nodes at height h
i=1 h=1

The final question is, how many nodes are at height & in the tree? To
make the analysis simpler, suppose the tree has height k and n = 2~ — 1
nodes; this causes the binary tree to have a full last level. Consider the
complete binary tree shown at the right (k = 4). There are 8 nodes at
height 1 (the leaves), 4 nodes at height 2, 2 nodes at height 3, and 1 node
at height 4 (the root). In general, the number of nodes at height i1 when
the tree has height k is 2°". Plugging this into the previous expression
for the total number of iterations yields:

Note that T, a runtime function, has
two inputs, reflecting our desire to
incorporate both 7 and 7 in our analysis.

Each iteration goes down one level in
the tree.

DATA STRUCTURES AND ANALYSIS 31

n k
Y T(n,i) =)_ h-#nodes at height h
i=1 h=1

k
h=1
K h
=2k Z o (Zk doesn’t depend on h)
h=1
k h '
:(”+1)227 (n=2"-1)
h=1
2 h
<(n+1) Z o

=
Il
—

= h
It turns out quite remarkably that Z -5 = 2, and so the total number
h=1 2
of iterations is less than 2(n +1).
Bringing this back to our original problem, this means that the total cost
of all the calls to BusBLEDoOwN is O(n), which leads to a total running
time of BuILDHEAP of O(n), i.e., linear in the size of the list.

The Heapsort algorithm

Now let us put our work together with the heapsort algorithm. Our first
step is to take the list and convert it into a heap. Then, we repeatedly
extract the maximum element from the heap, with a bit of a twist to keep
this sort in-place: rather than return it and build a new list, we simply
swap it with the current last leaf, making sure to decrement the heap size
so that the max is never touched again for the remainder of the algorithm.

def Heapsort(items):
BuildHeap(items)

Note that the final running time de-
pends only on the size of the list:
there’s no “i” input to BurLbHEAP,
after all. So what we did was a more
careful analysis of the helper function
BusBLEDOWN, which did involve i,
which we then used in a summation

over all possible values for i.

Repeated build up a sorted list from the back of the list, in place.

sorted_index is the index immediately before the sorted part.

sorted_index = items.size

while sorted_index > 1:
swap items[sorted_index], items[1]
sorted_index = sorted_index - 1

BubbleDown uses items.size, and so won't touch the sorted part.

items.size = sorted_index
BubbleDown(items, 1)

32 DAVID LIU

Let n represent the number of elements in items. The loop maintains
the invariant that all the elements in positions sorted_index + 1 to 7, in-
clusive, are in sorted order, and are bigger than any other items remaining
in the “heap” portion of the list, the items in positions 1 to sorted_index.

Unfortunately, it turns out that even though BuiLDHEAP takes linear
time, the repeated removals of the max element and subsequent BUBBLE-
DowN operations in the loop in total take Q)(nlogn) time in the worst-
case, and so heapsort also has a worst-case running time of Q(nlogn).

This may be somewhat surprising, given that the repeated BUBBLE-
DowN operations operate on smaller and smaller heaps, so it seems like
the analysis should be similar to the analysis of BurLDHEAP. But of course
the devil is in the details — we'll let you explore this in the exercises.

Exercise Break!

2.1 Consider the following variation of BurLbHEAP, which starts bubbling
down from the top rather than the bottom:

1 def BuildHeap(items):

2 i=1

3 while i < items.size:

4 BubbleDown(items, i)
5 i=1+1

(a) Give a good upper bound on the running time of this algorithm.

(b) Is this algorithm also correct? If so, justify why it is correct. Other-
wise, give a counterexample: an input where this algorithm fails to
produce a true heap.

2.2 Analyse the running time of the loop in HEAPSORT. In particular, show
that its worst-case running time is Q(nlog n), where n is the number of
items in the heap.

3 Dictionaries, Round One: AVL Trees

In this chapter and the next, we will look at two data structures that take
very different approaches to implementing the same abstract data type:
the dictionary. A dictionary is a collection of key-value pairs that supports
the following operations:

Dictionary ADT

e SEARCH(D, key): return the value corresponding to a given key in the
dictionary.

e INseRT(D, key, value): insert a new key-value pair into the dictionary.

e DEeLETE(D, key): remove the key-value pair with the given key from the
dictionary.

You have probably seen some basic uses of dictionaries in your prior
programming experience; Python dicts and Java Maps are realizations of
this ADT in these two languages. We use dictionaries as a simple and ef-
ficient tool in our applications for storing associative data with unique key
identifiers, such as mapping student IDs to a list of courses each student
is enrolled in. Dictionaries are also fundamental in the behind-the-scenes
implementation of programming languages themselves, from supporting
identifier lookup during programming compilation or execution, to im-
plementing dynamic dispatch for method lookup during runtime.

One might wonder why we devote two chapters to data structures im-
plementing dictionaries at all, given that we can implement this function-
ality using the various list data structures at our disposal. Of course, the
answer is efficiency: it is not obvious how to use either a linked list or ar-
ray to support all three of these operations in better than ®(n) worst-case
time. In these two chapters, we will examine some new data structures
that do better both in the worst case and on average.

Naive Binary Search Trees

Recall the definition of a binary search tree (BST), which is a binary tree
that satisfies the binary search tree property: for every node, its key is >

Oor even on average

20

21

22

23

24

25

26

34 DAVID LIU

every key in its left subtree, and < every key in its right subtree. An
example of a binary search tree is shown in the figure on the right, with
each key displayed.

We can use binary search trees to implement the Dictionary ADT, as-
suming the keys can be ordered. Here is one naive implementation of the
three functions SEARCH, INSERT, and DELETE for a binary search tree —
you have seen something similar before, so we won’t go into too much
detail here.

The SEARCH algorithm is the simple recursive approach, using the BST
property to decide which side of the BST to recurse on. The INSERT algo-
rithm basically performs a search, stopping only when it reaches an empty
spot in the tree, and inserts a new node. The DELETE algorithm searches
for the given key, then replaces the node with either its predecessor (the
maximum key in the left subtree) or its successor (the minimum key in
the right subtree).

def Search(D, key):

Return the value in <D> corresponding to <key>, or None if key doesn't appear

if D is empty:
return None
else if D.root.key == key:
return D.root.value
else if D.root.key > key:
return Search(D.left, key)
else:
return Search(D.right, key)

def Insert(D, key, value):

if D is empty:
D.root.key = key
D.root.value = value

else if D.root.key >= key:
Insert(D.left, key, value)

else:
Insert(D.right, key, value)

def Delete(D, key):
if D is empty:
pass # do nothing
else if D.root.key == key:

27

28

29

30

31

DATA STRUCTURES AND ANALYSIS 35

D.root = ExtractMax(D.left) or ExtractMin(D.right)
else if D.root.key > key:

Delete(D.left, key)
else:

Delete(D.right, key)

All three of these algorithms are recursive; in each one the cost of
the non-recursive part is ©(1) (simply some comparisons, attribute ac-
cess/modification), and so each has running time proportional to the
number of recursive calls made. Since each recursive call is made on a
tree of height one less than its parent call, in the worst-case the number of
recursive calls is #, the height of the BST. This means that an upper bound
on the worst-case running time of each of these algorithms is O(h).

However, this bound of O(h) does not tell the full story, as we measure
the size of a dictionary by the number of key-value pairs it contains and
not the height of some underlying tree. A binary tree of height 1 can have
anywhere from / to 21 nodes, and so in the worst case, a tree of n
nodes can have height n. This leads to a worst-case running time of O(n)
for all three of these algorithms (and again, you can show that this bound
is tight).

But given that the best case for the height of a tree of n nodes is logn,
it seems as though a tree of n nodes having height anywhere close to n
is quite extreme — perhaps we would be very “unlucky” to get such trees.
As you’ll show in the exercises, the deficiency is not in the BST property
itself, but how we implement insertion and deletion. The simple algo-
rithms we presented above make no effort to keep the height of the tree
small when adding or removing values, leaving it quite possible to end up
with a very linear-looking tree after repeatedly running these operations.
So the question is: can we implement BST insertion and deletion to not only
insert/remove a key, but also keep the tree’s height (relatively) small?

Exercise Break!

3.1 Prove that the worst-case running time of the naive SEARCH, INSERT,
and DELETE algorithms given in the previous section run in time Q(h),
where h is the height of the tree.

3.2 Consider a BST with n nodes and height 7, structured as follows (keys
shown):

We omit the implementations of Ex-
TRACTMAX and ExTRACTMIN. These
functions remove and return the key-
value pair with the highest and lowest
keys from a BST, respectively.

We leave it as an exercise to show that
this bound is in fact tight in all three
cases.

36 DAVID LIU

Suppose we pick a random key between 1 and #, inclusive. Compute
the expected number of key comparisons made by the search algorithm
for this BST and chosen key.

3.3 Repeat the previous question, except now 1 = 2" — 1 for some h, and
the BST is complete (so it has height exactly k).

3.4 Suppose we start with an empty BST, and want to insert the keys 1
through n into the BST.

(a) What is an order we could insert the keys so that the resulting tree
has height n? (Note: there’s more than one right answer.)

(b) Assume n = 2" — 1 for some h. Describe an order we could insert
the keys so that the resulting tree has height .

(c) Given a random permutation of the keys 1 through n, what is the
probability that if the keys are inserted in this order, the resulting tree
has height n?

(d) (Harder) Assume n = 2" — 1 for some h. Given a random permuta-
tion of the keys 1 through 7, what is the probability that if the keys
are inserted in this order, the resulting tree has height h?

AVL Trees

Well, of course we can improve on the naive SEARCH and DELETE — other-
wise we wouldn’t talk about binary trees in CS courses nearly as much as
we do. Let’s focus on insertion first for some intuition. The problem with
the insertion algorithm above is that it always inserts a new key as a leaf of
the BST, without changing the position of any other nodes. This renders
the structure of the BST completely at the mercy of the order in which
items are inserted, as you investigated in the previous set of exercises.

Suppose we took the following “just-in-time” approach. After each
insertion, we compute the size and height of the BST. If its height is too
large (e.g., > V/n), then we do a complete restructuring of the tree to
reduce the height to [logn]. This has the nice property that it enforces

Note that for inserting a new key, there
is only one leaf position it could go into
which satisfies the BST property.

DATA STRUCTURES AND ANALYSIS

some maximum limit on the height of the tree, with the downside that
rebalancing an entire tree does not seem so efficient.

You can think of this approach as attempting to maintain an invariant
on the data structure — the BST height is roughly log n — but only enforcing
this invariant when it is extremely violated. Sometimes, this does in fact
lead to efficient data structures, as we’ll study in Chapter 8. However,
it turns out that in the present case, being stricter with an invariant —
enforcing it at every operation — leads to a faster implementation, and this
is what we will focus on for this chapter.

More concretely, we will modify the INSERT and DELETE algorithms
so that they always perform a check for a particular “balanced” invariant.
If this invariant is violated, they perform some minor local restructuring
of the tree to restore the invariant. Our goal is to make both the check
and restructuring as simple as possible, to not increase the asymptotic
worst-case running times of O(h).

The implementation details for such an approach turn solely on the
choice of invariant we want to preserve. This may sound strange: can’t
we just use the invariant “the height of the tree is < [logn|”? It turns out
that even though this invariant is the optimal in terms of possible height,
it requires too much work to maintain every time we mutate the tree.
Instead, several weaker invariants have been proposed and used in the
decades that BSTs have been studied, and corresponding names coined
for the different data structures. In this course, we will look at one of the
simpler invariants, used in the data structure known as the AVL tree.

The AVL tree invariant

In a full binary tree (2" — 1 nodes stored in a binary tree of height h),
every node has the property that the height of its left subtree is equal to
the height of its right subtree. Even when the binary tree is complete, the
heights of the left and right subtrees of any node differ by at most 1. Our
next definitions describe a slightly looser version of this property.

Definition 3.1 (balance factor). The balance factor of a node in a binary
tree is the height of its right subtree minus the height of its left subtree.

Definition 3.2 (AVL invariant, AVL tree). A node satisfies the AVL invari-
ant if its balance factor is between -1 and 1. A binary tree is AVL-balanced
if all of its nodes satisfy the AVL invariant.

An AVL tree is a binary search tree that is AVL-balanced.

The balance factor of a node lends itself very well to our style of recur-
sive algorithms because it is a local property: it can be checked for a given

Data structures that do this work

37

include red-black trees and 2-3-4 trees.

(0]

e _1
NN

=il

[[

(0] o

2

Each node is labelled by its balance
factor.

38 DAVID LIU

node just by looking at the subtree rooted at that node, without knowing
about the rest of the tree. Moreover, if we modify the implementation of
the binary tree node so that each node maintains its height as an attribute,
then we can check whether a node satisfies the AVL invariant in constant
time!

There are two important questions that come out of this invariant:

e How do we preserve this invariant when inserting and deleting nodes?

e How does this invariant affect the height of an AVL tree?

For the second question, the intuition is that if each node’s subtrees
are almost the same height, then the whole tree is pretty close to being
complete, and so should have small height. We’ll make this more precise
a bit later in this chapter. But first, we turn our attention to the more
algorithmic challenge of modifying the naive BST insertion and deletion
algorithms to preserve the AVL invariant.

Exercise Break!

3.5 Give an O(nlogn) algorithm for taking an arbitrary BST of size n and
modifying it so that its height becomes [logn].

3.6 Investigate the balance factors for nodes in a complete binary tree. How
many nodes have a balance factor of 0? -1? 1?

Rotations

As we discussed earlier, our high-level approach is the following:

(i) Perform an insertion/deletion using the old BST algorithm.

(ii) If any nodes have the balance factor invariant violated, restore the AVL
invariant.

How do we restore the AVL invariant? Before we get into the nitty-
gritty details, we first make the following global observation: inserting or
deleting a node can only change the balance factors of its ancestors. This is be-
cause inserting/deleting a node can only change the height of the subtrees
that contain this node, and these subtrees are exactly the ones whose roots
are ancestors of the node. For simplicity, we’ll spend the remainder of this
section focused on insertion; AVL deletion can be performed in almost
exactly the same way.

Even better, the naive algorithms already traverse exactly the nodes that
are ancestors of the modified node. So it is extremely straightforward to

These can be reframed as, “how much
complexity does this invariant add?”
and “what does this invariant buy us?”

DATA STRUCTURES AND ANALYSIS 39

check and restore the AVL invariant for these nodes; we can simply do so
after the recursive INSERT, DELETE, EXTRACTMAX, or EXTRACTMIN call.
So we go down the tree to search for the correct spot to insert the node,
and then go back up the tree to restore the AVL invariant. Our code looks
like the following (only INSERT is shown; DELETE is similar):

def Insert(D, key, value):
Insert the key-value pair into <D>
Same code as before, omitted

D.balance_factor = D.right.height - D.left.height

if D.balance_factor < -1 or D.balance_factor > 1:
Fix the imbalance for the root node.
fix_imbalance(D)

Update the height attribute
D.height = max(D.left.height, D.right.height) + 1

Let us spell out what fix_imbalance must do. It gets as input a BST
where the root’s balance factor is less than —1 or greater than 1. However,
because of the recursive calls to Insert, we can assume that all the non-root
nodes in D satisfy the AVL invariant, which is a big help: all we need to do
is fix the root.

One other observation is a big help. We can assume that at the begin-
ning of every insertion, the tree is already an AVL tree — that it is balanced.
Since inserting a node can cause a subtree’s height to increase by at most
1, each node’s balance factor can change by at most 1 as well. Thus if the
root does not satisfy the AVL invariant after an insertion, its balance factor
can only be -2 or 2.

These observations together severely limit the “bad cases” that we are
responsible for fixing. In fact, these restrictions make it quite straightfor-
ward to define a small set of simple, constant-time procedures to restruc-
ture the tree to restore the balance factor in these cases. These procedures
are called rotations.

Reminder here about the power of
recursion: we can assume that the
recursive INSERT calls worked properly
on the subtree of D, and in particular
made sure that the subtree containing
the new node is an AVL tree.

40 DAVID LIU

Right rotation

Rotations are best explained through pictures. In the top diagram, vari-
ables x and y are keys, while the triangles A, B, and C represent arbitrary
subtrees (that could consist of many nodes). We assume that all the nodes
except y satisfy the AVL invariant, and that the balance factor of y is -2.

This means that ys left subtree must have height 2 greater than its right
subtree, and so A.height = C.height + 1 or B.height = C.height +1. We
will first consider the case A.height = C.height 4 1.

In this case, we can perform a right rotation to make x the new root,
moving around the three subtrees and y as in the second diagram to pre-
serve the BST property. It is worth checking carefully that this rotation
does indeed restore the invariant.

Lemma 3.1 (Correctness of right rotation). Let x, y, A, B, and C be defined
as in the margin figure. Assume that this tree is a binary search tree, and that x
and every node in A, B, and C satisfy the balance factor invariant. Also assume
that A.height = C.height + 1, and y has a balance factor of -2.

Then applying a right rotation to the tree results in an AVL tree, and in par-
ticular, x and y satisfy the AVL invariant.

Proof. First, observe that whether or not a node satisfies the balance factor
invariant only depends on its descendants. Then, since the right rotation
doesn’t change the internal structure of A, B, and C, all the nodes in these
subtrees still satisfy the AVL invariant after the rotation. So we only need
to show that both x and y satisfy the invariant.

* Node y. The new balance factor of y is C.height — B.height. Since x orig-
inally satisfied the balance factor, we know that B.height > A.height —
1 = C.height. Moreover, since y originally had a balance factor of
—2, we know that B.height < C.height +1. So B.height = C.height

or B.height = C.height 41, and the balance factor is either -1 or o.

e Node x. The new balance factor of x is (1 + max(B.height, C.height)) —
A.height. Our assumption tells us that A.height = C.height 4+ 1, and as
we just observed, either B.height = C.height or B.height = C.height +1,
so the balance factor of x is o or 1.

Left-right rotation

What about the case when B.height = C.height +1 and A.height = C.height?
Well, before we get ahead of ourselves, let’s think about what would hap-
pen if we just applied the same right rotation as before.

This is the power of having a local
property like the balance factor invari-
ant. Even though A, B, and C move
around, their contents don’t change.

DATA STRUCTURES AND ANALYSIS

The diagram looks exactly the same, and in fact the AVL invariant for
y still holds. The problem is now the relationship between A.height and
B.height: because A.height = C.height = B.height — 1, this rotation would
leave x with a balance factor of 2. Not good.

Since in this case B is “too tall,” we will break it down further and
move its subtrees separately. Keep in mind that we're still assuming the
AVL invariant is satisfied for every node except the root y.

By our assumption, A.height = B.height — 1, and so both D and E’s
heights are either A.height or A.height —1. Now we can first perform a
left rotation rooted at x, which is symmetric to the right rotation we saw
above, except the root’s right child becomes the new root.

This brings us to the situation we had in the first case, where the left
subtree of z is at least as tall as the right subtree of z. So we do the same
thing and perform a right rotation rooted at y. Note that we're treating
the entire subtree rooted at x as one component here.

Given that we now have two rotations to reason about instead of one, a
formal proof of correctness is quite helpful.

Lemma 3.2. Let A, C, D, E, x, y, and z be defined as in the diagram. Assume
that x, z, and every node in A, C, D, E satisfy the AVL invariant. Furthermore,
assume the following restrictions on heights, which cause the balance factor of y
to be -2, and for the D — z — E subtree (“B”) to have height C.height + 1.

(i) A.height = C.height

(ii) D.height < C.height and E.height < C.height, and one of them is equal to
C.height.

Then after performing a left rotation at x, then a right rotation at y, the result-
ing tree is an AVL tree. This combined operation is sometimes called a left-right
double rotation.

Proof. As before, because the subtrees A, C, D, and E don’t change their
internal composition, all their nodes still satisfy the AVL invariant after
the transformation. We need to check the balance factor for x, y, and z:

* Node x: by assumption (ii) and the fact that z originally satisfied the
AVL invariant, D.height = C.height or D.height = C.height — 1. So then
the balance factor of x is D.height — A.height, which is either o or -1.
(By (i), A.height = C.height.)

e Node y: as in the above argument, either E.height = C.height or E.height =

C.height — 1. Then the balance factor of y is C.height — E.height, which
is either o or 1.

41

20

21

22

23

24

25

26

42 DAVID LIU

* Node z: since D.height < A.height and E.height < C.height, the balance
factor of z is equal to (C.height + 1) — (A.height 4+ 1). By assumption
(i), A.height = C.height, so the balance factor of z is o.

O

We leave it as an exercise to think about the cases where the right sub-
tree’s height is 2 more than the left subtree’s. The arguments are symmet-
ric; the two relevant rotations are “left” and “right-left” rotations.

AVL tree implementation

We now have a strong lemma telling us that we can rearrange the tree
in constant time to restore the balanced property. This is great for our
insertion and deletion algorithms, which only ever change one node. Here
is our full AVL tree INSERT algorithm:

def Insert(D, key, value):
Insert the key-value pair into <D>
Same code as before, omitted

D.balance_factor = D.right.height - D.left.height

if D.balance_factor < -1 or D.balance_factor > 1:
Fix the imbalance for the root node.
fix_imbalance(D)

Update the height attribute
D.height = max(D.left.height, D.right.height) + 1

def fix_imbalance(D):
Check balance factor and perform rotations
if D.balance_factor == -2:
if D.left.left.height == D.right.height + 1:
right_rotate(D)
else: # D.left.right.height == D.right.height + 1
left_rotate(D.left)
right_rotate(D)
elif D.balance_factor == 2:
left as an exercise; symmetric to above case

You'll notice that we’ve deliberately
left some details to the exercises. In
particular, we want you to think about
the symmetric actions for detecting and
fixing an imbalance.

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

DATA STRUCTURES AND ANALYSIS

def right_rotate(D):
Using some temporary variables to match up with the diagram
= D.root
= D.left.root
= D.left.left
= D.left.right
= D.right

0O W > X <

.root = x

.left = A

Assume access to constructor AVLTree(root, left, right)
.right = AVLTree(y, B, ()

O # O ©O

def left_rotate(D):
Left as an exercise

Theorem 3.3 (AVL Tree Correctness). The above AVL Tree insertion algorithm
is correct. That is, it results in a binary tree that satisfies the binary search tree
property and is balanced, with one extra node added, and with the height and
balance_factor attributes set properly.

Proof. Since insertion starts with the naive algorithm, we know that it
correctly changes the contents of the tree. We need only to check that
fix_imbalance results in a balanced BST.

Right before fix_imbalance is called in either function, we know that D
still satisfies the BST property, and that its subtrees are AVL trees (since we
assume that the recursive calls correctly restore this property). Moreover,
because at most one node has changed in the BST, the balance factor of
the root is between -2 and 2.

The correctness of fix_imbalance when the root’s balance factor is -2 is
directly implied by the previous two lemmas. The other case is symmetric,
and was left as an exercise. Then we are done, since after fix_imbalance
returns, the tree is an AVL tree — all its nodes satisfy the AVL invariant. O

Analysis of AVL Algorithms

In the preceding sections, we put in quite a bit of effort in ensuring that
the AVL invariant is preserved for every node in the tree. Now, it is time
to reap the benefits of this additional restriction on the structure of the
tree in our running time analysis of the modified INSERT and DELETE
algorithms.

43

44 DAVID LIU

First, a simple lemma that should look familiar, as it is the basis of most
recursive tree algorithm analyses.

Lemma 3.4. The worst-case running time of AVL tree insertion and deletion is
O(h), the same as for the naive insertion and deletion algorithms.

Proof. We simply observe that the new implementation consists of the old
one, plus the new updates of height and balance_factor attributes, and
at most two rotations. This adds a constant-time overhead per recursive
call, and as before, there are O(h) recursive calls made. So the total run-
ning time is still O(h). O

So far, the analysis is exactly the same as for naive BSTs. Here is where
we diverge to success. As we observed at the beginning of this section,
BSTs can be extremely imbalanced, and have height equal to the number
of nodes in the tree. This is obviously not true for AVL trees, which
cannot have all their nodes on (say) the left subtree. But AVL trees are not
perfectly balanced, either, since each node’s two subtree heights can differ
by 1. So the question is, is restricting the balance factor for each node to
the range {—1,0,1} good enough to get a strong bound on the height of
the AVL tree? The answer is a satisfying yes.

Lemma 3.5 (AVL Tree Height). An AVL tree with n nodes has height at most
1.4411og n (for large enough n).

Proof. It turns out to be easier to answer a question that is inverse to the
statement in the theorem: what is N (%), the minimum number of nodes in
an AVL tree of height h? Our goal is to get a tight bound (or exact formula)
for N(h). Some playing around quickly yields the following small values:
N(0)=0,N(1)=1,N(2) =2,N(3) =4, N4) =7.

Not much of a pattern so far, though drawing pictures is suggestive:
an AVL tree of height & with minimum size must have a subtree that
is an AVL tree of height 1 — 1, and another subtree that is an AVL tree
of height I — 2, and both of its subtrees must have minimum size. Here
we’re implicitly using the fact that being balanced, and hence an AVL tree,
is a recursive property: the subtrees of an AVL tree are themselves AVL
trees. This gives the following recurrence:

0, h=0
N(h) =41, h=1
Nh—-1)+Nh-2)+1, h>2

This looks almost, but not quite, the same as the Fibonacci sequence.

A bit of trial-and-error or more sophisticated techniques for solving re-
currences (beyond the scope of this course) reveal that N(h) = fy., — 1,

Don’t forget that we’ve only proved

a O(h) upper bound in these notes —
you're responsible for proving a lower
bound yourself!

;
o~
o

DATA STRUCTURES AND ANALYSIS 45

where f; is the i-th Fibonacci number. Since we do have a closed form
expression for the Fibonacci numbers in terms of the golden ratio ¢ =

! +2\@, we get the following bound on N (h):
N(h) > fu
Lo
> —¢" -1
e

Recall now the definition of N(): the minimum number of nodes in an
AVL tree of height h. So then if we have n nodes in an AVL tree of height
h, we know that

N(h) <n
i(p’ulgn

V5
1 4
—o"<n+1
VAl

1
log,, (\[5(;)]7) < log,(n+1)
1
log, <\/§) +h <log,(n+1)

h <log,(n+1) —log, <\}5>

h < 1.4405log(n +1) — log, <15>

h < 1.4405log(n + 1) + 1.68

O

Putting the previous two lemmas together, we can conclude that AVL
insertion, deletion, and search all have logarithmic running time in the
worst-case.

Theorem 3.6 (AVL Tree Runtime). AVL tree insertion, deletion, and search
have worst-case running time ©(logn), where n is the number of nodes in the
tree.

Exercise Break!

3.7 Show that you can use an AVL tree to implement a priority queue.
What is an upper bound on the worst-case running time of the three
priority queue operations in this case?

46 DAVID LIU

4 Dictionaries, Round Two: Hash Tables

We now look at a completely different approach for implementing dic-
tionaries. To get warmed up, consider the following scenario: all of the
key-value pairs we wish to store have keys that are numbers o through
K —1. In this case, we can store these pairs inside an array of length
K, and achieve constant time search, insertion, and deletion simply by
storing each value at the array index corresponding to its key!

This technique is known as direct addressing, and works well when
the number of possible keys (and hence total number of pairs) is small.
However, array addressing is only constant time if the entire array has
been allocated in memory. Thus as K grows larger, even if the running
time of the dictionary operations stays constant, the space required grows
linearly in K. In this chapter, we will study a generalized version of direct
addressing known as hashing, which allows us to store key-value pairs
when the keys aren’t necessarily numbers, and using much less space
than the number of all possible keys.

Hash functions

Let U represent the set of all possible keys we would like to store. In
general, we do not restrict ourselves to just numeric keys, and so U might
be a set of strings, floating-point numbers, or other custom data types that
we define based on our application. Like direct addressing, we wish to
store these keys in an array, but here we’ll let the size of the array be a
separate variable m. We won’t assume anything about the relationship
between m and |U| right now, though you might already have some ideas
about that.

Definition 4.1 (hash function, hash table). A hash function is a function
h:U—{0,1,...,m—1}. You should think of this as a function that takes
a key and computes the array slot where the key is to be placed.

A hash table is a data structure containing an array of length m and a
hash function.

This size constraint is infeasible in
many real-world applications of dictio-
naries.

48 DAVID LIU

def Search(hash_table, key):
hash = h(key)
return hash_table[hash]

def Insert(hash_table, key, value):
hash = h(key)
hash_table[hash] = value

def Delete(hash_table, key):
hash = h(key)
hash_table[hash] = None

Of course, this is not the end of the story. Even though this imple-
mentation is certainly efficient — all three operations run in ®(1) time — it
actually is not guaranteed to be correct.

Remember that we have not made any assumptions about the relation-
ship between m, the size of the hash table, and |U|, the total possible
number of keys; nor have we said anything about what / actually does.
Our current implementation makes the assumption that there are no col-
lisions in the hash function; i.e., that each key gets mapped to a unique
array slot. Consider what happens when you try to use the above algo-
rithm to insert two key-value pairs whose hashed keys are the same index
i: the first value is stored at index i, but then the second value overwrites
it.

Now, if m > |U]|, i.e, there are at least as many array slots as possible
keys, then there always exists a hash function & which has no collisions.
Such hash functions are called perfect hash functions, earning the su-
perlative name because they enable the above naive hash table implemen-
tation to be correct. However, this assumption is often not realistic, as we
typically expect the number of possible keys to be extremely large, and
the array to not take up too much space. More concretely, if m < |U], then
at least one collision is guaranteed to occur, causing the above implemen-
tation to fail. The remainder of this chapter will be devoted to discussing
two strategies for handling collisions.

Closed addressing (“chaining”)

With closed addressing, each array element no longer stores a value asso-
ciated with a particular key, but rather a pointer to a linked list of key-value
pairs. Thus, collisions are sidestepped completely by simply inserting
both the key and value into the linked list at the appropriate array index.

Of course, even when we know that a
perfect hash function exists for a given
U and m, it is sometimes non-trivial to
find and compute it. Consider the case
when U is a set of 10000 names — can
you efficiently implement a perfect hash
function without storing a sorted list of
the names?

this approach is also called “chaining”

Why is it necessary to store both the
key and the value?

DATA STRUCTURES AND ANALYSIS 49

Search and deletion are just slightly more complex, requiring a traversal
of the linked list to find the correct key-value pair.

def Search(hash_table, key):
hash = h(key)
linked_list = hash_table[hash]
if linked_list contains key:
return corresponding value from linked_list
else:
return None

def Insert(hash_table, key, value):
hash = h(key)
linked_1list = hash_table[hash]
insert key, value at the head of linked_list

def Delete(hash_table, key):
hash = h(key)
linked_1list = hash_table[hash]
delete key from linked_list

This implementation maintains the invariant that for every key k stored
in the table, it must appear in the linked list at position /(k). From this
observation, we can see that these algorithms are correct. In addition,
these algorithms only consider the linked list at one particular array index,
saving lots of time.

Or perhaps not. What if all of the keys get mapped to the same index?
In this case, the worst case of search and deletion reduces to the worst-
case search and deletion from a linked list, which is ®(n), where n is
the number of pairs stored in the hash table. Can we simply pick a hash
function that guarantees that this extreme case won’t happen? Not if we
allow the set of keys to be much larger than the size of the array: for any
hash function &, there exists an index i such that at least |U|/m keys get
mapped to i by h.

So while the worst-case running time for INSERT is ©(1), the worst
case performance for Search and Delete seems very bad: no better than
simply using a linked list, and much worse than the AVL trees we saw
in the previous section. However, it turns out that if we pick good hash
functions, hash tables with closed addressing are much better than both
of these data structures on average.

This type of counting argument is ex-
tremely common in algorithm analysis.
If you have a set of numbers whose
average is x, then one of the numbers
must have value > x.

Insertions happen at the front of the
linked list

50 DAVID LIU

Average-case analysis for closed addressing

We will focus on analysing the SEARCH algorithm, whose running time
of course depends on the lengths of the linked lists in the hash table.
Remember that whenever we want to talk about average case, we need to
define a distribution of inputs for the operation. We’ll assume here that
all possible keys are equally likely to be searched for; in other words, we’ll
use the uniform distribution on U, and assume n random keys are already
contained in the hash table.

However, because the lengths of the linked lists depend on the number
of collisions in our hash function, just knowing the key distribution isn’t
enough - for all we know, our hash function could map all keys to the
same index! So we will make an additional assumption known as the
simple uniform hashing assumption, which is that our hash function h
satisfies the property that for all 0 < i < m, the probability that h(k) = i

is ot when k is chosen uniformly at random from U. That is, choosing a
random key doesn’t favour one particular index over any other. We will
measure running time here as the number of keys compared against the
search input, plus the time for computing the hash function.

First, assume that the key k being searched for is not in the hash table.
In this case, the algorithm first computes h(k), and then must traverse the
entire linked list stored at index h (k). We’'ll assume that the first step takes
constant time, and we know that the second step takes time proportional
to the length of the linked list at index h(k). Let T be the running time
of SEaArRCH on input key k. Then T = 14 the length of the linked list
stored at h1(k), which is equal to the number of the n keys that hash to that
particular index. We let L be a random variable representing the number
of keys hashed to h(k). So, T = 1+ L, and E[T] = 1+ E[L]. But, by
the simple uniform hashing assumption, the probability that each of the n
randomly chosen keys already in the hash table have a hash value of i(k)

is l, and so E[L] = L
m m
The average number of keys checked by SEARCH when the key is not in

n
the hash table is therefore 1 + pond The average-case running time is then

01+ ﬁ). Remember what these variables mean: # is the number of keys
already stored in the hash table, and m is the number of spots in the array.
This running time tells us that if the number of keys in the hash table is
any constant multiple of the size of the array, then doing a search when
the key is not in the hash table is a constant-time operation on average.

What about when the search is successful, i.e., when we search for a

key that is already in the hash table? Consider searching for k;, the i-th
key inserted into the hash table. How many keys are checked during this

DELETE is basically the same.

More on this later

This is the well-known expected value
for a hypergeometric distribution.

DATA STRUCTURES AND ANALYSIS

search? Since items are inserted at the front of the linked list, the number
of keys searched is equal to the number of keys inserted after k; into the
same index as k;, plus one for examining k; itself. Since n — i keys are

inserted after k;, by the simple uniform hashing assumption the expected
n—i

number of keys inserted into h(k;) after k; is . So then to compute
the average running time, we add the cost of computing the hash function

(just 1 step) plus the average of searching for each k;:

E[T] =1+ %) expected number of keys visited by search for k;
=1

n

1

1En 1& 6
:2 —_— — — — P
+nlzzlm nlzzlm
:2+£71'n(n 1)
m n 2m
_2+£_n+1
m 2m
n 1
=24
+2m 2m
n
—o(1+2)

The average-case running time for DELETE is the same, since once a
key has been found in an array, it is only a constant-time step to remove
that node from the linked list.

Because the ratio % between the number of keys stored and the number
of spots in the array comes up frequently in hashing analysis, we give it a
special name.

Definition 4.2 (load factor). The load factor of a hash table is the ratio of
the number of keys stored to the size of the table. We use the notation

n
N = et where n is the number of keys, and m the number of slots.

So we can say that the average-case running time of SEARCH and DELETE

are O(1+a).

Exercise Break!

4.1 Suppose that we use an AVL tree instead of a linked list to store the
key-value pairs that are hashed to the same index.

(a) What is the worst-case running time of a search when the hash table
has n key-value pairs?

51

52 DAVID LIU

(b) What is the average-case running time of an unsuccessful search when
the hash table has n key-value pairs?

Open addressing

The other strategy used to resolve collisions is to require each array ele-
ment to contain only one key, but to allow keys to be mapped to alternate
indices when their original spot is already occupied. This saves the space
overhead required for storing extra references in the linked lists of closed
addressing, but the cost is that the load factor « must always be less than 1,
i.e., the number of keys stored in the hash table cannot exceed the length
of the array.

In this type of hashing, we have a parameterized hash function & that
takes two arguments, a key and a positive integer. The “first” hash value h:UxN—{0,...,m—1}
for a key k is h(k,0), and if this spot is occupied, the next index chosen is
h(k,1), and then h(k,2), etc.

For simplicity, we have omitted a

def Insert(hash_table, key, value): bounds check i < m. This would be
necessary in practice to ensure that

i=0 this code does not enter into an infinite
while hash_table[h(key, i)] is not None: loop.
i=1+1

hash_table[h(key, i)].key = key
hash_table[h(key, i)].value = value

Searching for an item requires examining not just one spot, but many
spots. Essentially, when searching for a key k, we visit the same sequence
of indices h(k,0), h(k,1), etc. until either we find the key, or reach a None
value.

def Search(hash_table, key):

i=0
while hash_table[h(key, i)] is not None and hash_table[h(key, i)].key !'= key:
i=1+1

if hash_table[h(key, i)].key == key:
return hash_table[h(key, i)].value
else:
return None

DATA STRUCTURES AND ANALYSIS 53

Deletion seems straightforward — simply search for the given key, then
replace the item stored in the array with None, right? Not exactly. Suppose
we insert a key k into the hash table, but the spot h(k,0) is occupied, and
so this key is stored at index h(k,1) instead. Then suppose we delete
the pair that was stored at /1(k,0). Any subsequent search for k will start
at h(k,0), find it empty, and so return None, not bothering to continue
checking h(k,1).

So instead, after we delete an item, we replace it with a special value
Deleted, rather than simply None. This way, the SEARCH algorithm will
not halt when it reaches an index that belonged to a deleted key.

def Delete(hash_table, key):
i=0

We leave it as an exercise to modify the
INSERT algorithm so that it stores keys
in Deleted positions as well.

while hash_table[h(key, i)] is not None and hash_table[h(key, i)].key !'= key:

i=1+1

if hash_table[h(key, i)].key == key:
hash_table[h(key, i)] = Deleted

It remains to discuss how to implement different parameterized hash
functions and to study the properties of the probe sequences [h(k,0), h(k, 1),
...] generated by these different strategies. After all, since all three dic-
tionary operations require traversing one of these probe sequences until
reaching an empty spot, a natural question to ask is how the probe se-
quences for different keys overlap with each other, and how these overlaps
affect the efficiency of open addressing.

Linear probing

The simplest implementation of open addressing is to start at a given hash
value, and then keep adding some fixed offset to the index until an empty
spot is found.

Definition 4.3 (Linear probing). Given a hash function hash : U — {0, ...,
m — 1} and number b € {1,...,m — 1}, we can define the parameterized
hash function & for linear probing as follows:

h(k,i) = hash(k) +bi (mod m).

The corresponding linear probing sequence for key k is hash(k,0), hash(k, 1),

hash(k,2), ...
When d = 1, the probe sequence is simply hash(k), hash(k) +1, ...

Recall that (mod m) takes the remain-
der when divided by m.

54 DAVID LIU

Unfortunately, this strategy suffers from a fundamental problem of clus-
tering, in which contiguous blocks of occupied locations are created, caus-
ing further insertions of keys into any of these locations to take a long
time. For example, suppose d = 1, and that three keys are inserted, all
with the hash value 10. These will occupy indices 10, 11, and 12 in the
hash table. But now any new key with hash value 11 will require 2 spots
to be checked and rejected because they are full. The collision-handling
for 10 has now ensured that hash values 11 and 12 will also have colli-
sions, increasing the runtime for any operation that visits these indices.
Moreover, the effect is cumulative: a collision with any index in a cluster
causes an extra element to be added at the end of the cluster, growing it
in size by one. You'll study the effects of clustering more precisely in an
exercise.

Quadratic probing

The main problem with linear probing is that the hash values in the mid-
dle of a cluster will follow the exact same search pattern as a hash value
at the beginning of the cluster. As such, more and more keys are absorbed
into this long search pattern as clusters grow. We can solve this prob-
lem using quadratic probing, which causes the offset between consecutive
indices in the probe sequence to increase as the probe sequence is visited.

Definition 4.4 (Quadratic probing). Given a hash function hash : U —
{0,...,m — 1} and numbers b,c € {0,...,m — 1}, we can define the pa-
rameterized hash function / for quadratic probing as follows:

h(k,i) = hash(k) + bi + ci®> (mod m).

Even if a key’s hash value is in the middle of a cluster, it is able to
“escape” the cluster much more quickly than using linear probing. How-
ever, a form of clustering still occurs: if many items have the same initial
hash value, they still follow the exact same probe sequence. For example,
if four keys are hashed to the same index, the fourth key inserted must
examine (and pass) the three indices occupied by the first three keys.

Double hashing

To resolve this problem — a collision in the original hash function causing
identical probe sequences — we change how the offset is calculated so that
it depends on the key being hashed in a particularly clever way.

Definition 4.5 (Double hashing). Given two hash functions hashy, hash; :
u— {0, .., m— 1}, we can define the parameterized hash function for

DATA STRUCTURES AND ANALYSIS 55

double hashing / as follows:
h(k,i) = hashy(k) +i- hashy(k) (mod m).

While both linear and quadratic probing have at most m different probe
sequences (one for each distinct starting index), double hashing has at
most m? different probe sequences, one for each pair of values (hashy (k), hasha (k)).
Under such a scheme, it is far less likely for large clusters to form: not only
would keys have to have the same initial hash value (using hash;), but they
would also have to have the same offset (using hash,).

Running time of open addressing

To round out this chapter, we’ll briefly discuss some of the performance
characteristics of open addressing. First, we observe that there are m!
possible probe sequences (i.e., the order in which hash table indices are
visited). A typical simplifying assumption is that the probability of get-
ting any one of these sequences is 1/m!, which is not true for any of the
probe sequences studied here — even double hashing has only m? possible
sequences — but can be a useful approximation.

However, under this assumption, the average number of indices searched

. So for example, if the

1
of all three dictionary operations is at most 1

table is 90% full (so & = 0.9), the average number of indices searched
would be just 10, which isn’t bad at all!

Exercise Break!

4.2 Suppose we use linear probing with d = 1, and our hash table has n
keys stored in the array indices 0 through n — 1.

(a) What is the maximum number of array indices checked when a new
key (distinct from the ones already stored) is searched for in this
hash table?

(b) What is the probability that this maximum number of array indices
occurs? Use the simple uniform hashing assumption.

(c) What is the average running time of SEARCH for this array?

5 Randomized Algorithms

So far, when we have used probability theory to help analyse our algo-
rithms we have always done so in the context of average-case analysis: de-
fine a probability distribution over the set of possible inputs of a fixed
size, and then calculate the expected running time of the algorithm over
this set of inputs.

This type of analysis is a way of refining our understanding of how
quickly an algorithm runs, beyond simply the worst and best possible
inputs, we look at the spread (or distribution) of running times across
all different inputs. It allows us to say things like “Quicksort may have
a worst-case running time of ®(n?), but on average its performance is
©(nlogn), which is the same as mergesort.”

However, average-case analysis has one important limitation: the im-
portance of the asymptotic bound is directly correlated with the “plausi-
bility” of the probability distribution used to perform the analysis. We can
say, for example, that the average running time of quicksort is @ (nlogn)
when the input is a random, uniformly-chosen permutation of n items;
but if the input is instead randomly chosen among only the permutations
which have almost all items sorted, the “average” running time might
be ©(1n%). We might assume that the keys inserted into a hash table are
equally likely to be hashed to any of the m array spots, but if they're all
hashed to the same spot, searching for keys not already in the hash table
will always take @ (1) time.

In practice, an algorithm can have an adversarial relationship with the
entity feeding it inputs. Not only is there no guarantee that the inputs will
have a distribution close to the one we used in our analysis; a malicious
user could conceivably hand-pick a series of inputs designed to realize
the worst-case running time. That the algorithm has good average-case
performance means nothing in the face of an onslaught of particularly
bad inputs.

In this chapter, we will discuss one particularly powerful algorithm
design technique which can (sometimes) be used to defend against this
problem. Rather than assume the randomness exists external to the algo-

This assumes naive quicksort, which
chooses the first element as the pivot.

58 DAVID LIU

rithm in the choice of inputs, this technique makes no assumptions about
the input whatsoever, but instead moves the randomness to be inside the
algorithm itself. The key idea is to allow our algorithms to make random
choices, a departure from the deterministic algorithms — ones that must
follow a fixed sequence of steps — that we have studied so far. Such algo-
rithms, which make random choices as part of their natural execution, are
known as randomized algorithms.

Randomized quicksort

Let us return to quicksort from our first chapter, which we know has poor
worst-case performance on pre-sorted lists. Because our implementation
always chooses the first list element as the pivot, a pre-sorted list always
results in maximally uneven partition sizes. We were able to “fix” this
problem in our average-case analysis with the insight that in a random
permutation, any of the n input numbers is equally likely to be chosen as
a pivot in any of the recursive calls to quicksort.

So if we allow our algorithm to make random choices, we can turn
any input into a “random” input simply by preprocessing it, and then
applying the regular quicksort function:

def randomized_quicksort(A):
randomly permute A
quicksort(A)

Hubh, this is so simple it almost feels like cheating. The only difference
is the application of a random permutation to the input. The correctness
of this algorithm is clear: because permuting a list doesn’t change its
contents, the exact same items will be sorted, so the output will be the
same. What is more interesting is talking about the running time of this
algorithm.

One important point to note is that for randomized algorithms, the be-
haviour of the algorithm depends not only on its input, but also the random
choices it makes. Thus running a randomized algorithm multiple times on
the same input can lead to different behaviours on each run. In the case of
randomized quicksort, we know that the result — A is sorted — is always
the same. What can change is its running time; after all, it is possible to
get as input a “good” input for the original quicksort (sorts in @(nlogn)
time), but then after applying the random permutation the list becomes
sorted, which is the worst input for quicksort.

In other words, randomly applying a permutation to the input list can
cause the running time to increase, decrease, or stay roughly the same.

You'll recall our argument was a tad
more subtle and relied on indicator
variables, but this idea that the pivot
was equally likely to be any number
did play a central role.

This isn’t entirely true if the list con-
tains duplicates, but there are ways of
fixing this if we need to.

DATA STRUCTURES AND ANALYSIS 59

So how do we draw conclusions about the running time of randomized
quicksort if we can’t even be certain how long it takes on a single input?
Probability, of course!

More precisely, for a fixed input A to randomized quicksort with length
n, we can define the random variable T4 to be the running time of the
algorithm. The main difference between this random variable and the
T we used in the average-case analysis of Chapter 1 is that now we are
considering the probability distribution that the algorithm uses to make
its random choices, and not a probability distribution over inputs. In the
case of randomized quicksort, we would say that the T4 random variable
has as its probability space the set of random permutations of {1,...,n}
that the randomized_quicksort algorithm could pick from in its first step.

With this random variable defined, we can now talk about the expected
running time of randomized quicksort on the input A, E[T,]. First, while
we won't prove it here, it is possible to randomly permute A in O(n) time.
Applying a random permutation on A results in the standard quicksort
running on a random permutation of {1,...,n} as its input, and so the
analysis from Chapter 1 applies, and E[T4] = ©(nlogn).

Warning: students often confuse this type of analysis with the average-
case analysis we did earlier in the course. For average-case analysis, we
have a completely deterministic algorithm and a probability distribution
over a set of inputs, and are calculating the expected running time across
this set of inputs. For the analysis in the present chapter, we have a ran-
domized algorithm and a single input, and are calculating the expected
running time across the possible random choices made by the algorithm
itself.

The work we have done so far is just for one particular input. Let us
extend this now to be able to say something about the overall running
time of the algorithm. We define the worst-case expected running time
of a randomized algorithm to be a function

ET(n) = max{E[Ty] | x is an input of size n}.

For randomized quicksort, all lists of size n have the same asymptotic
expected running time, and so we conclude that randomized quicksort
has a worst-case expected running time of ®(nlogn).

You might hear the phrase “worst-case expected” and think this is a
bit vague: it’s not the “absolute” maximum running time, or even an
“average” maximum. So what is this really telling us? The right way to
think about worst-case expected running time is from the perspective of
a malicious user who is trying to feed our algorithm bad inputs. With
regular quicksort, it is possible to give the algorithm an input for which
the running time is guaranteed to be ®(n*). However, this is not the case

See Section 5.3 of CLRS for details.

You can think about average-case
analysis as putting the randomness
external to the algorithm, and random-
ized algorithm analysis as keeping the
randomness internal to the algorithm.

60 DAVID LIU

for randomized quicksort. Here, no matter what input the user picks, if
the algorithm is run many times on this input, the average running time
will be ©(nlogn). Individual runs of randomized quicksort might take
longer, but in the long run our adversary can’t make our algorithm take
more than ©(nlogn) per execution.

Universal Hashing

Now, let us turn to a well-known example of a randomized algorithm:
universal hashing. Recall that the simple uniform hashing assumption from
the previous chapter says that for any array index 0 < i < m, the proba-

bility of choosing a key that hashes to i is % This assumption made the
analysis tractable for us, and in particular ensured a ©(1 + «) average-case
running time for the hash table operations. But as we observed, for any
hash function we choose, a simple counting argument tells us that at least
|U|/m keys must be hashed to the same index. So if any subset of size n
of these keys is inserted, any search for a different key that hashes to this
same index will take ®(n) time.

To cause this worst-case behaviour in practice, a malicious user would
study the hash function used and determine such a set of colliding keys.
You might be tempted, then, to keep your hash function a secret so that
no one can figure out these collisions. But a reliance on such an approach
only goes so far as how able you (and your colleagues) are in keeping this
secret.

But let us take from this the insight that a malicious user needs to
know which hash function is being used in order to purposefully generate
large numbers of collisions. Rather than keep the hash function a secret,
we simply use a set of hash functions, and allow our algorithm to pick
randomly which one to actually use, without making its choice public.
To “normal” users, the hash table behaves exactly as expected, regardless
of which hash function is used. In other words, the interface of the hash
table has not changed. But even if a malicious user knows the whole set of
hash functions, she does not know which one is actually being used by the
hash table, and in principle cannot determine how to generate collisions.

Of course, if we picked a poor set of hash functions, it might be possible
that each one has a huge number of collisions, or that the same keys collide
for all or most of the functions. So we certainly need some restriction on
the hash functions that can go into this set; we make this idea precise in
the following definition.

Definition 5.1 (Universal hash family). Let U be a set of keys, and m € Z™
be the size of the hash table. Let H be a set of hash functions, where each
h € Hisa function h : U — {0,...,m —1}. We call H a universal hash

DATA STRUCTURES AND ANALYSIS 61

family if and only if for all pairs of distinct keys ki, kp € U,

1
Pricp[h(ki) = h(ko)] < —-

Our algorithm is now quite simple. When a new hash table is created,
it picks a hash function uniformly at random from a universal hash family,
and uses this to do its hashing. This type of hashing is called universal
hashing, and is a randomized implementation of hashing commonly used

in practice.

Analysis of universal hashing

Consider a universal hashing scheme that uses closed addressing (chain-
ing). We will consider the worst-case expected running time of an unsuc-
cessful search for a key k in a hash table storing n keys. Note that this
analysis is related to, but distinct from, the analysis we did in the previ-
ous chapter. Both are probabilistic, of course, but their probability spaces
are different (choosing keys vs. choosing hash functions), and the proba-
bility assumptions we are allowed to make are also different, albeit quite
similar.

Let i € H be the hash function used by the hash table (chosen uni-
formly at random). We want to consider how many of the n keys already
in the hash table were inserted into the index h(k), since these keys are
the ones that must be examined in a search for k.

For each inserted key k;, let X; be the indicator random variable that is
1 if h(k;) = h(k), and o otherwise. We want to compute the expected sum
of these random variables, which we can do nicely using the techniques
that we’ve seen before. Again, keep in mind that expected values and
probabilities are over choice of hash function h, not over choice of keys.

I
-
o
s}

Il
—_

-
25

Il
-

es

I
1=
=J
-
=
—~
Ren
~
I
=
—~
=
=

Il
—

(universal hash family)

IN
=
SRS

Il
-

=

Note that we have made no assumptions about the keys in the hash
table, nor about k itself: the only property we used was the universal hash
family property, which gave us the upper bound on the probability that
the two hash values h(k;) and h(k) were equal. Because this analysis is true

Note that the probability space is now
the choice of hash functions, and not
choice of keys. This inequality must be
true for every pair of keys!

62 DAVID LIU

for all possible inputs, we conclude that the worst-case expected running
time of an unsuccessful search with universal hashing is O(1 + &), where
the 1 comes from computing the hash value of k, as before. A similar
analysis reaches the same asymptotic bound for a successful search.

Constructing a universal hash family

Let us round off our two-chapter discussion of hashing by looking at one
particular construction of a universal hash family.

We assume that U = {0,1,...,2° — 1} is the set of natural numbers
that can be stored in a machine word (so typically w = 32 or w = 64), and
that m = 2M is a power of two. For every odd number 4, 0 < a < 2V, and
number (not necessarily odd) b, 0 < b < 29=M we define the following
hash function:

hop(k) = (ak+b mod 2%) // 2v~M,

Note that these functions are very easy to implement; the first computa-
tion ak +b mod 2% is simply unsigned integer arithmetic, and the second
operation is a bit shift, taking the M most significant bits.

While we won’t go into the proof here, it turns out that the set of func-
tions {,}, for the defined ranges on a and b, is a universal hash family.

Exercise Break!

5.1 Prove that the number of hash functions in a universal hash family
must be > m.

5.2 Consider the hash function

hio(k) = (k mod 2%) // 2v~M,

zwa

Find a set of inputs of size that all have the same hash value.

Why didn’t we immediately conclude
O(1+a)?

This question underlines the fact
that an individual hash function in
a universal family still has a lot of
collisions.

6 Graphs

In this chapter, we will study the graph abstract data type, which is one
of the most versatile and fundamental in computer science. You have
already studied trees, which can be used to model hierarchical data like
members of a family or a classification of living things. Graphs are a
generalization of trees that can represent arbitrary (binary) relationships
between various objects. Some common examples of graphs in practice are
modelling geographic and spatial relationships; activity between members
of a social network; requirements and dependencies in a complex system
like the development of a space shuttle. By the end of this chapter, you will
be able to define the graph ADT and compare different implementations
of this data type; and perform and analyse algorithms which traverse
graphs.

Fundamental graph definitions

As we hinted at in the introduction, a graph is an abstraction of the con-
cept of a set of objects and the relationships between them. In the simplest
case, we define a vertex (also called node) v to be a single object, and an
edge to be a tuple e = (v1,vy).

Definition 6.1 (graph, undirected/directed). A graph is a tuple of two sets
G = (V,E), where V is a set of vertices, and E is a set of edges on those
vertices.

An undirected graph is a graph where order does not matter in the
edge tuples: (v1,v7) is equal to (vp,v1). A directed graph is a graph
where the tuple order does matter; (v1,v2) and (vy, v1) represent different
edges. In this chapter, if neither type of graph is specified, our default will
be an undirected graph.

There are two obvious measures of a graph’s size: the number of ver-
tices and the number of edges. When analysing the running time of graph
algorithms later in this chapter, it will be important to keep in mind how
we are defining “size.”

There are generalizations of graphs that
model relationships between more than
two objects at a time, but we won’t go
into that here.

If you go on to take CSC373, you
will build on this knowledge to write
and analyse more complex graph
algorithms.

This is deliberately abstract to be able
to account for a variety of contexts. For
example, in a social network, you can
think of vertices as people, and edges as
“friendships” or “connections.”

We think of an edge in an undirected
graph as being between two vertices, and
an edge in a directed graph as being
from a source vertex to a target vertex.

64 DAVID LIU

Before moving on, let’s see some pictures to illustrate some simple
graphs. In each diagram, the vertices are the circles, and the edges are
the lines connecting pairs of circles. Vertices can be labelled or unlabelled,
depending on the graph context.

It is clear that there can be a large variation in the characteristics of
graphs: the number of edges, how many vertices are connected to each
other, how many edges each vertex has, etc. For our purposes, we will
need only a few more definitions to describe some simple graph proper-
ties.

Definition 6.2 (adjacent, neighbour). Two vertices are adjacent if there is
an edge between them. In this case, we also say that the two vertices are
neighbours.

Definition 6.3 (path, length, distance). A path between vertices u and w
is a sequence of edges (vo,v1), (v1,v2),..., (Vk_1,0x), where u = vy and
w = vy, and all the v; are distinct.This follows the English meaning of the
term “path,” where you start at vertex u, take an edge to get to a new
vertex v1, take another edge to get to another new vertex v, and keep
following edges until arriving at vy.

The length of the path is the number of edges in the path. For exam-
ple, two adjacent vertices are connected by a path of length one, and the
previous notation describes a path of length k. The distance between two
vertices is the length of the shortest path between the two vertices. The
distance between a vertex and itself is always o.

Paths are fundamental to graphs because they allow us to take basic re-
lationships (edges) and derive more complex ones. Suppose, for example,
we are representing all the people of the world, with edges representing
“A and B personally know each other.” The famous example from social
networks is the idea of Six Degrees of Separation, which says that on this
graph, any two people have a path of length at most 6 between them.
Given an arbitrary graph, one might wonder what the maximum path
length is between any two vertices — or even whether there is a path at all!

Definition 6.4 (connected). We say that a graph is connected if for every
pair of vertices in the graph, there is a path between them. Otherwise, we
say the graph is unconnected.

Graph theory is a fascinating branch of
mathematics that studies properties of
graphs such as these, and ones which
are far more complex.

DATA STRUCTURES AND ANALYSIS 65

Implementing graphs

So far, we have discussed graphs as a mathematical abstraction. Our next
step is to decide how to represent graphs in a program. To be a bit more
concrete, we define a Graph ADT with two simple operations: obtaining
a list of all vertices in the graph, and checking whether two given vertices
are adjacent.

Graph ADT

e VERTICES(G): Return a list of all the vertices of G.

* CHECKADJACENT(G, u,v): Return whether vertices u and v are adjacent
in G.

In this section, we'll consider two implementations of this ADT: ad-
jacency lists, which generalize our reference-based tree implementations,
and an array-based implementation known as an adjacency matrix.

Adjacency lists

The first approach is one that should be familiar, because it is essentially
what we do to implement trees. We use a vertex data type that has a label
attribute to identify the vertex, and a list of references to its neighbours.
This latter attribute is known as an adjacency list, from which this imple-
mentation gets its name. Since the vertices keep track of the edge data, a
second graph data type stores only a collection the vertices in the graph.
To illustrate this approach, we show how one could implement a function
that checks whether two vertices in a graph are adjacent. Note that this
operation takes labels, and must use them to look up the corresponding
vertices in the graph.

def CheckAdjacent(G, i, j):
Access the vertices attribute and perform lookup by labels

u G.vertices[i]

v = G.vertices[j]

for vertex in u.neighbours:
Note: this assumes labels are unique
if vertex.label == v.label:

return True

return False

What is the running time of this algorithm? We assume that looking
up the two vertices in graph.vertices takes constant time, so the running

In our default undirected case, this
means that two adjacent vertices each
store a reference to the other in their
respective adjacency lists.

A common implementation stores the
vertices in an array, and labels each
vertex with its array index. If we need
to support arbitrary unique identifiers,
any dictionary implementation (e.g., a
hash table) can be used as well.

This is true if an array is used; we’ll
leave it as an exercise to think about
other implementations of this attribute.

66 DAVID LIU

time is determined by the number of loop iterations (since the body of the
loop always takes constant time). What is an upper bound on the number
of iterations? Well, if there are n vertices in the graph, then u can have
at most n — 1 neighbours (if it has edges going to every other vertex). It
might be tempting to say O(#n) at this point. But remember that there are
two measures of the size of the graph. If the graph has m edges in total,
then m is also an upper bound on the number of neighbours that u can
have. So the number of loop iterations is O(min(m, n)).

For a lower bound, suppose we consider a vertex u that is adjacent to
min(m, n — 2) vertices, and let v be a vertex that is not adjacent to u. Then
performing this algorithm will cause all min(m,n — 2) iterations of the
loop to occur, resulting in a running time of Q(min(m, n)).

Adjacency matrices

The previous approach was vertex-focused: each vertex is represented
as a separate entity in the program, with edges stored implicitly as the
references in the adjacency lists. It is also possible to represent the edges
directly in what we call an adjacency matrix. Suppose there are n vertices
in some graph, each with a label between o and n — 1. We use an n-by-n
two-dimensional boolean array, where the ij-entry of the array is true if
there is an edge between vertex i and vertex j.

Using this approach, determining adjacency in a graph runs in constant
time, since it is just an array lookup:

def CheckAdjacent(G, i, j):
return G.adjacency[i][]j]

Implementation space usage

The adjacency matrix approach seems conceptually simpler and easier to
implement than the adjacency list approach. However, it does have a
relatively high space cost, since it must use computer memory to store not
only the edges, but also the “non-edges.” This representation must store
a full |V|-by-|V| matrix, with a space cost of @(|V|?).

In the adjacency list implementation, the graph itself stores an array of
size O(|V]), and each vertex stores its label and references to its neigh-
bours. We cannot count the number of references for an individual vertex
because that can vary dramatically among vertices in an individual graph.
But we do have a nice way of calculating the fotal number of references
stored across all vertices.

In the undirected case this matrix is
symmetric across its diagonal, while in
the directed case that’s not guaranteed.

DATA STRUCTURES AND ANALYSIS 67

Definition 6.5 (degree). The degree of a vertex is the number of its neigh-
bours. For a vertex v, we will usually denote its degree by d.

Lemma 6.1 (handshake lemma). The sum of the degrees of all vertices is equal
to twice the number of edges. Or,

Y d, =2|E|.

veV

Proof. Each edge e = (u,v) is counted twice in the degree sum: once for
u, and once for v. O

So this means the total cost of storing the references in our adjacency
list data structure is @(|E|), for a total space cost of O(|V| + |E|) (adding
a |V| term for storing the labels). Note that this is the cost for storing all
the vertices, not just a single vertex. Adding up the cost for the graph data
structure and all the vertices gives a total space cost of O(|V| + |E|).

At first glance, it may seem that |V|? and |V| + |E| are incomparable.
However, observe that the maximum number of possible edges is @(|V|?),
which arises in the case when every vertex is adjacent to every other ver-
tex. So in asymptotic terms, |V| 4 |E| = O(|V|?), but this bound is not
tight: if there are very few (e.g., O(|V|)) edges then adjacency lists will be
much more space efficient than the adjacency matrix.

Graph traversals: breadth-first search

We are now ready to do our first real algorithm on graphs. Consider the
central problem of exploring a graph by traversing its edges (rather than
relying on direct access of references or array indices). For example, we
might want to take a social network, and print out the names of everyone
who is connected to a particular person. We would like to be able to
start from a given vertex in a graph, and then visit its neighbours, the
neighbours of its neighbours, etc. until we have visited every vertex that
is connected to it. Moreover, we’d like to do so efficiently.

For the next two sections, we will study two approaches for perform-
ing such an exploration in a principled way. The first approach is called
breadth-first search (BFS). The basic idea is to take a starting vertex s,
visit its neighbours, then visit the neighbours of its neighbours, then the
neighbours of its neighbours of its neighbours, proceeding until all of the
vertices have been explored. The trick is doing so without repeatedly vis-
iting the same vertex. To formalize this in an algorithm, we need a way to
keep track of which vertices have already been visited, and which vertex
should be visited next.

This lemma gets its name from the
real-life example of meeting people at a
party. Suppose a bunch of people are at
a party always shake hands when they
meet someone new. After greetings are
done, if you ask each person how many
new people they met and add them up,
the sum is equal to twice the number of
handshakes that occurred.

If we assume that the graph is con-
nected, then such an exploration visits
every vertex in the graph.

68 DAVID LIU

To do this, we use a queue as an auxiliary container of pending vertices
to be visited. A enqueued attribute is used to keep track of which vertices
have been visited already. This algorithm enqueues the starting vertex,
and then repeatedly dequeues a vertex and enqueues its neighbours that
haven’t yet been enqueued.

def BFS(graph, s):
queue = new empty queue
initialize all vertices in the graph to not enqueued

queue.enqueue(s)
s.enqueued = True
while queue is not empty:
v = queue.dequeue()
Visit(v) # do something with v, like print out its label

for each neighbour u of v:
if not u.enqueued:
queue.enqueue(u)
u.enqueued = True

To illustrate this algorithm, suppose we run it on the graph to the right
starting at vertex A. We’ll also assume the neighbours are always accessed
in alphabetical order. We mark in black when the vertices are visited (i.e.,
dequeued and passed to the VisiT function).

1. First, A is enqueued. We show this by marking it gray in the diagram.
2. Ais dequeued, and its neighbours B and D are stored in the queue.

3. B is visited next, causing its neighbours C and E to be stored in the
queue. Note that A is also B’s neighbour, but it has already been en-
queued, and so is not added again.

4. The next vertex to be dequeued is D — remember that we're storing
vertices in a queue, and D was added before C and E. Since D doesn’t
have any unvisited neighbours, nothing is added to the queue.

5. The remaining vertices are removed from the queue in the order C then
E.

So the order in which these vertices are visited is A, B, D, C, E.

Correctness of BFS

Now that we have the algorithm in place, we need to do the two standard
things: show that this algorithm is correct, and analyse its running time.

DATA STRUCTURES AND ANALYSIS

But what does it mean for breadth-first search to be correct? The in-
troductory remarks in this section give some idea, but we need to make
this a little more precise. Remember that we had two goals: to visit every
vertex in the graph, and to visit all the neighbours of the starting vertex,
then all of the neighbours of the neighbours, then all of the neighbours of
the neighbours of the neighbours, etc. We can capture this latter idea by
recalling our definition of distance between vertices. We can then rephrase
the “breadth-first” part of the search to say that we want to visit all ver-
tices at distance 1 from the starting vertex, then the vertices at distance 2,
then distance 3, etc.

Theorem 6.2 (Correctness of BFS). Let v be the starting vertex chosen by the
BFS algorithm. Then for every vertex w connected to v, the following statements
hold:

(1) w is visited.

(2) Let d be the distance between v and w. Then w is visited after every vertex at
distance at most d — 1 from v.

Proof. We will proceed by induction on the distance between a vertex and
v. More formally, let P(n) be the statement that (1) and (2) are true for all
vertices with distance n from v.

Base case (P(0)). The only vertex at distance o from v is v itself. Then
(1) is true because v is certainly visited — it is added to the queue at the
beginning of the algorithm. (2) is vacuously true because there aren’t even
two distinct vertices to consider.

Inductive step. Let k > 0, and assume P(k) holds. That is, assume all
vertices at distance k from v are visited, and visited after all vertices at
distance at most k — 1. If there are no vertices at distance k + 1 from v,
then P(k + 1) is vacuously true and we are done.

Otherwise, let w be a vertex that is at distance k 4- 1 from v. Then by the
definition of distance, w must have a neighbour w' at distance k from v (v’
is the vertex immediately before w on the path of length k between v and
w). By the induction hypothesis, w' is visited. When a vertex is visited, all
of its neighbours are enqueued into the queue unless they have already
been enqueued. So w is enqueued. Because the loop does not terminate
until the queue is empty, this ensures that w at some point becomes the
current vertex, and hence is visited. This proves that statement (1) holds
for w.

What about (2)? We need to show that w is visited after every vertex at
distance at most k from v. Let u be a vertex at distance d from v, where
d < k. Note thatd = 0 or d > 1. We'll only do the d > 1 case here, and
leave the other case as an exercise.

By “visit” here we mean that the
function Vi1s1T is called on the vertex.

e distance k from v
° distance k + 1 from v

69

70 DAVID LIU

By the induction hypothesis, we know that every vertex at distance < d
is visited before u. In particular, u has a neighbour u’ at distance d — 1
from v that is visited before u. Also, w must have a neighbour w' at
distance k from v. Now, 1’ is visited before w’, since w’ is at distance k
from v, and 1’ is at distance d — 1 < k — 1 from v. Then the neighbours of
1’ , which include u, must be enqueued before the neighbours of w’, which
include w. So u is added to the queue before w, and hence is dequeued
and visited before w. O

Analysis of BFS

Now let us analyse the running time of this algorithm. The creation of the
new queue takes constant time, but the initialization of all vertices to “not
enqueued” takes @(|V|) time.

The analysis of the loops is a little tricky because it is not immediately
obvious how many times each loop runs. Let us start with the outer
loop, which only terminates when queue is empty. We will do this a bit
formally to illustrate the extremely powerful idea that determining the
runtime of an algorithm often involves understanding the subtleties of
what the algorithm really does.

Proposition 6.3. No vertex is added to the queue more than once.

Proof. Every time a vertex is added to the queue, it is always marked as
‘enqueued.” Only vertices that are not enqueued are ever added to the
queue — the starting vertex is initially unvisited, and there is an explicit
check inside the inner loop before enqueuing new vertices. So every vertex
is added to the queue at most once. O

Proposition 6.4. The outer loop runs at most |V| times.

Proof. This follows immediately from the previous proposition, and the
fact that at each iteration, only one item is dequeued. O

Unfortunately, having an upper bound on the number of loop iterations
does not immediately give us an upper bound on the program runtime,
even if we assume that VISIT runs in constant time. The running time of
each loop iteration depends on the number of times the inner loop runs,
which in turn depends on the current vertex.

To tackle the inner loop, you might notice that this is essentially the
same as the space cost analysis for adjacency lists — the inner loop iterates
once per neighbour of the current vertex. Because we know that v takes
on the value of each vertex at most once, the total number of iterations of
the inner loop across all vertices is bounded above by the total number of

This claim uses the induction hypothe-
sis as well.

If you read through the proof carefully,
it is only in the last sentence that we
use the fact that we’re storing the
vertices in a queue and not some other
collection data type!

DATA STRUCTURES AND ANALYSIS 71

“neighbours” for each vertex. By the Handshake Lemma, this is exactly
2-|E|.

Putting this together yields an upper bound on the worst-case running
time of O(|V|+ |E|). Is this bound tight? You may think it’s “obvious,”
but keep in mind that actually the lower bound doesn’t follow from the
arguments we’ve made in this section. The initialization of the vertex
enqueued attributes certainly takes Q}(|V]) time, but how do we get a bet-
ter lower bound involving |E| using the loops? After all, the first proposi-
tion says that each vertex is added at most once. It is conceivable that no
vertices other than the start are added at all, meaning the loop would only
run just once.

This is where our careful analysis of the correctness of the algorithm
saves us. It tells us that every vertex that is connected to the starting
vertex is added to the queue and visited. For a lower bound on the worst-
case running time, we need a family of inputs (one for each size) that
run in time Q(|V|+ |E|). Note that the size measure here includes both
the number of vertices and the number of edges. So what kind of input
should we pick? Well, consider a graph G in which all edges are part of the
same connected component of the graph, and then doing a breadth-first
search starting at one of the vertices in this component.

Then by Theorem 6.2, we know that all vertices in this component are
visited, and the inner loop runs a total of 2 - |E| times (since all edges are
between vertices in this component). This, combined with the Q(|V|) time
for initialization, results in an Q(|V| + |E|) running time for this family,
and hence a lower bound on the worst-case running time of BFS.

Exercise Break!

6.1 Build on our BFS algorithm to visit every vertex in a graph, even if the
graph is not connected. Hint: you'll need to use a breadth-first search
more than once.

6.2 Our analysis of BFS assumed that VIsIT runs in constant time. Let’s
try to make this a bit more general: suppose that VIisIT runs in time
O(f(|V])), where f : N — R™ is some cost function. What is the
running time of BFS in this case?

Graph traversals: depth-first search

We have just finished studying breadth-first search, a graph traversal algo-
rithm that prioritizes visiting vertices that are close to the starting vertex.

By “connected component” we mean a
group of vertices that are all connected
to each other.

72 DAVID LIU

A dual approach is called depth-first search (DFS), which prioritizes visit-
ing as many vertices as possible before backtracking to “choose a different
neighbour.” We give a recursive implementation of DFS below. The key
idea is that a recursive DFS_helper call on a vertex v fully explores the part
of the graph reachable from v without revisiting any previously-visited
vertices.

def DFS(graph, s):

initialize all vertices in the graph to not started or finished

DFS_helper(graph, s)

def DFS_helper(graph, v):
v.started = True
Visit(v) # do something with v, like print out its label

for each neighbour u of v:
if not u.started:

DFS_helper(graph, u)

v.finished = True

The other major change that we make is that now we have two at-
tributes, started and finished, tracking the status of each vertex through-
out the search. You may notice that the finished attribute is not used by
the algorithm itself; however, it does play a helpful role in analysing the
behaviour of DFS. At any point during the run of DFS, each vertex has
one of three possible states:

¢ Not started: has not been visited by the search.

e Started but not finished: has been visited by the search, but some ver-
tices reachable from this vertex without revisiting other started vertices
still need to be visited.

e Started and finished: it has been visited by the search, and all vertices
reachable from this vertex without revisiting other started vertices have
been visited.

Because recursive functions make

great use of the function call stack, this
implementation is a natural dual of our
queue-based BFS algorithm.

The finished attribute will also be
helpful in one of the applications of
depth-first search discussed later in this
chapter.

DATA STRUCTURES AND ANALYSIS

Let us trace through this algorithm on the same graph from the pre-
vious section, again starting at vertex A. In the diagram, white vertices
have not been started, gray vertices have been started but not finished,
and black vertices have been started and finished.

1. First, A is visited. It is marked as started, but is not yet finished.
2. Then B is visited (A’s first neighbour). It is marked as started.

3. Then C is visited (B’s first neighbour). It is marked as started. Note
that A is not visited again, since it has already been marked as started.

4. Then E is visited (C’s first neighbour). It is marked as started.

5. Since E has no neighbours that haven’t been started, it is marked as
finished, and the recursive call terminates.

6. Similarly, C and B are marked as finished, and their respective recursive
calls terminate, in that order.

7. Control returns to the original search with start A. D is visited (A’s
second neighbour). It is marked as started.

8. Since D does not have any unvisited neighbours, it is marked as fin-
ished. And finally, A is marked as finished as well.

The order in which DFS visits the vertices is A, B, C, E, D.

A note about DFS correctness and runtime

Using a similar analysis as breadth-first search, we are able to prove the
following “weak” notion of correctness for depth-first search.

Theorem 6.5 (Weak correctness of DFS). Let v be the starting vertex given as
input to the DFS algorithm. Then for every vertex w that is connected to v, the
following statement holds:

(1) w is visited.

It is harder to capture the intuitive notion of “depth-first” because there
isn’t an obvious notion of distance to measure. We can, however, formalize
the properties of the attributes started and finished we asserted (without
proof!) in the previous section.

Theorem 6.6 (Properties of DFS). Suppose DFS_helper is called on a vertex
v, and let w be any vertex in the graph that satisfies the following two properties
at the beginning of the function call:

1. w is not started.

08
‘G
)

‘9
)

73

74 DAVID LIU

2. There is a path between v and w consisting of only vertices that have not been
started.

Then w is both started and finished by the time DFS_helper(v) returns.

Finally, using a very similar analysis as BFS, we can obtain the following
tight bound on the worst-case running time of DFS.

Theorem 6.7 (DFS runtime). The worst-case running time of depth-first search
is O(|V| + |E|).

We will leave the proofs of these last two theorems as exercises.

Exercise Break!

6.1 Prove Theorem 6.6.

6.2 Prove Theorem 6.7.

Applications of graph traversals

In this section, we’ll look at two applications of breadth-first and depth-
first search that have wide-ranging uses in computer science: detecting
cycles in a graph, and determining the shortest path between two vertices.

Detecting cycles (undirected graphs)

Definition 6.6 (cycle). A cycle in a graph is a sequence of distinct edges
(vo,v1), (v1,v2), ..., (Un_1,0n), (4, vg) that start and end at the same
vertex.

Cycles encode a natural “redundancy” in a graph: it is possible to re-
move any edge in a cycle without disconnecting its vertices (just take the
long way around the cycle), and so it is often useful to know whether a
graph has a cycle, or whether it does not. It turns out that determining
whether a graph has a cycle or not can be done through a simple mod-
ification of either breadth-first or depth-first search, though we will only
show the DFS version here.

Recall that depth-first search sets two attributes started and finished
for each vertex, which are used to track the status of the vertex in the
search. Intuitively, we can use these to detect cycles by checking whether
we have reached an already-visited node when performing a search. Be-
low, we give a modified version of DFS that reports when it detects a cycle,
with two main changes to the implementation:

That is, a cycle is a path that starts and
ends at the same vertex.

DATA STRUCTURES AND ANALYSIS

¢ Each vertex other than the starting vertex stores its parent vertex, which
is the neighbour that caused the vertex to be visited

¢ The inner loop contains a check for started neighbours that are not the
parent of the current vertex; as we’ll show later, this is a valid check for
a cycle.

The caveat for our (quite simple) implementation is that it only works
when the graph is connected; we leave it as an exercise to decide how to
modify it to always report a cycle, even when the graph is not connected.

def DetectCycle(graph):

initialize all vertices in the graph to not started or finished

s = pick starting vertex
DFS_helper(graph, s)

def DFS_helper(graph, v):
v.started = True

for each neighbour u of v:
if not u.started:
u.parent = v # NEW: store parent attribute
DFS_helper(graph, u)
else:
NEW: check for cycle and report
if u != v.parent:
report that there is a cycle

v.finished = True

Before we prove the correctness of this algorithm, observe that it is an
extremely minor modification of the standard DFS algorithm, and clearly
runs in O(|V| + |E|) time. Indeed, one reason cycle detection is a classic
application of DFS and BES is that the code changes necessary to solve
this problem add only a constant factor running time overhead to the
basic search algorithms. You could say that the search algorithm does all
the hard work, and cycle detection is thrown in for free.

Of course, one should at least be a little skeptical that minor modifi-
cations can be made to an algorithm to solve a different problem. Let us
now prove that this algorithm is indeed correct. You may find it helpful
to review Theorem 6.6 before continuing.

Theorem 6.8 (Cycle Detection with DFS correctness). The modified DFS
algorithm reports that a cycle exists if and only if the input graph has a cycle.

75

76 DAVID LIU

Proof. Let us do the forward direction: assume that the algorithm reports
a cycle. We want to prove that the input graph has a cycle.

Let u and v represent the values of the variables u and v when the cycle
is reported (on line 16). We will claim that # and v are part of a cycle.
Note that u and v are neighbours, so all we need to do is show that there
is a path from u to v that doesn’t use this edge.

First, since u is started, it must have been visited before v. Let s be the
starting vertex of the DFS. Because both u and v have been visited, they
are both connected to s.

Moreover, because v is the current vertex, this means that u cannot be
finished, since all of the neighbours of u must finish before u. So then
u must be on the path between v and s. Moreover, because it is not the
parent of v, the segment of this path between 1 and v contains at least one
other vertex, and does not contain the edge (u,v).

Now the backwards direction: assume the input graph has a cycle. We
want to show that a cycle is reported by this algorithm. Let u be the first
vertex in the cycle that is visited by the DFS, and let w be the next vertex
in the cycle that is visited.

Though there may be other vertices visited by the search between 1 and
w, we will ignore those, looking only at the vertices on the cycle. When w
is visited, it and u are the only vertices on the cycle that have been visited.
In particular, this means that u has at least one neighbour in the cycle that
hasn’t been visited. Let v be a neighbour of u that has not yet been visited.
Then because there is a path between w and v consisting of vertices that
are not started, v must be visited before the DFS_helper call ends.

Now consider what happens when DFS_helper is called on v. We know
that u is a neighbour of v, that it is started, and that it is not the parent of
v (since the DFS_helper call on w hasn’t ended yet). Then the conditions
are all met for the algorithm to report the cycle. O

Detecting cycles (directed graphs)

Before moving onto our next example, let us take a brief detour into the
world of directed graphs. Recall that a directed graph is one where each
edge has a direction: the tuple (u,v) represents an edge from u to v, and
is treated as different from the edge (v, 1) from v to u.

Cycle detection in directed graphs has several applications; here is just
one example. Consider a directed graph where each vertex is a course
offered by the University of Toronto, and an edge (u,v) represents the
relationship “u is a prerequisite of v.” Then a cycle of three directed edges
with vertex sequence v1, vy, v3,v1 would represent the relationships “vq is
a prerequisite of vy, vy is a prerequisite of v3, and v3 is a prerequisite of

We can “close” the path with the (u,v)
edge to form the cycle.

This is true even if w and u are neigh-
bours, since u has two neighbours on
the cycle.

DATA STRUCTURES AND ANALYSIS

v1.” But this is nonsensical: none of the three courses v1, vy, or v3 could
ever be taken. Detecting cycles in a prerequisite graph is a vital step to
ensuring the correctness of this graph.

It turns out that essentially the same algorithm works in both the undi-
rected and directed graph case, with one minor modification in the check
for a cycle. Before we write the algorithm, we note the following changes
in terminology in the directed case:

* A neighbour of v is another vertex u such that there is an edge from v to
u.

¢ A directed cycle can have length 2: if there are two vertices u and v such
that there is an edge from u to v and one from v to u, these two vertices
form a cycle.

def DetectCycleDirected(graph):

initialize all vertices in the graph to not started or finished

s = pick starting vertex
DFS_helper(graph, s)

def DFS_helper(graph, v):
v.started = True

for each neighbour u of v:
if not u.started:
DFS_helper(graph, u)
else:
NEW: check for directed cycle and report
if not u.finished:
report that there is a cycle

v.finished = True

We won't prove the correctness of this algorithm here, as the proof is
quite similar to that of the undirected case. It truly is a testament to the
flexibility of DFS that such minor modifications can have such interesting
consequences.

Shortest Path

Let us now turn our attention to a second application of these searches.
Recall that BFS visits vertices in order of their distance from the starting
vertex. From this information alone, however, we cannot determine pre-
cisely how far away a given vertex is from the start. However, if we adapt

Recall that this was a special case we
had to check for with the “parent”
attribute in the undirected case.

77

78 DAVID LIU

the “storing parent” idea to the breadth-first search algorithm, it turns out
that we can not only get the distance between the starting vertex and an
arbitrary vertex visited by the search, but also the most direct route as well.

More concretely, suppose we are given a graph and two vertices v and
u, and want to find a shortest path between them. Our algorithm is quite
straightforward:

1. Perform a BFS starting at v, storing the parent of each vertex. Here,
parent has the same meaning as DFS: the parent of a vertex w is the
vertex which, when visited by BFS, causes w to be added to the queue.

2. Return the path formed by starting at u, and following the parent vertex
references until v is reached.

Let us formally prove that this algorithm is correct.

Theorem 6.9. Let v be the starting vertex of a BFS on a given graph, and u
be any vertex that is connected to v, and d be the distance between u and v.Let
ug = u, uy be the parent of ug, and in general for all 1 < i < d, u; the parent of
u;_1. Then we claim that uy; = v, i.e., the path of vertices ug, u1, . . ., uy of length
d does in fact reach v, making this path one of the shortest possible length.

Proof. We prove this by induction on 4, the distance from u to v.

Base case: d = 0. In this case, u must equal v. Then, 1y = u = v, and
so the theorem holds in this case. Note that the “shortest path” consists
of just the single vertex v, and has length o.

Inductive step: suppose the statement holds for some distance d > 0;
that is, for every vertex at distance d from v, the path obtained by starting
at that vertex and following the parent links d times correctly ends at v.
Let u be a vertex at distance 4 + 1 from v. We want to prove that the same
is true for u (following the parent d + 1 times joins u to v).

Because u is connected to v, it must be visited by the BFS starting at v,
and so has a parent. Let u’ be the parent of u. We claim that #’ must have
distance d from v.

First, u’ cannot be at distance < d from v, because otherwise 1 would
be at distance < d + 1 from v. But also u’ cannot be at distance > d + 1
from v, because then it wouldn’t be the parent of u. Why not? u must have
a neighbour of distance d from v, and by the BFS correctness theorem, this
neighbour would be visited before u’ if 1’ were at a greater distance than
d from v. But the parent of u is the first of its neighbours to be visited by
BFS, so #' must be visited before any other of u’s neighbours.

So, u’ is at distance d from v. By the induction hypothesis, the sequence
of parents ug = u', uy, ..., uy is a path of length d that ends at v. But then
the sequence of parents starting at u of length d + 1 is wu,ug,uy,...,ug,
which also ends at v. O

Note that there could be multiple paths
of the same minimum length between
u and v, and we're only looking for one
of them.

What can we conclude if u’s parent
attribute is unset after the BFS?

DATA STRUCTURES AND ANALYSIS

So with this slight modification to breadth-first search, we are able to
compute the shortest path between any two vertices in a graph. This
has many applications in computer science, including computing efficient
routes for transmitting physical goods and electronic data in a network
and the analysis of dependency graphs of large-scale systems.

Weighted graphs

The story of shortest paths does not end here. Often in real-world appli-
cations of graphs, not all edges — relationships — are made equal. For
example, suppose we have a map of cities and roads between them. When
trying to find the shortest path between two cities, we do not care about
the number of roads that must be taken, but rather the total length across
all the roads. But so far, our graphs can only represent the fact that two
cities are connected by a road, and not how long each road is. To solve this
more general problem, we need to augment our representation of graphs
to add such “metadata” to each edge in a graph.

Definition 6.7 (weighted graph, edge weight). A weighted graph is a
graph G = (V,E), where each edge now is a triple (v1,vp, w), where
v1,02 € V are vertices as before, and w € R is a real number called the
weight of the edge. Given an edge e, we will use the notation w, to refer
to its weight.

We will refer to our previous graphs with no weights as unweighted
graphs, and that is our default (just like undirected graphs are our default).

The weighted shortest path problem for a weighted graph does not min-
imize the number of edges in a path, but instead minimizes the sum of
the weights along the edges of a path. This is a more complex situation
that cannot be solved by breadth-first search, and beyond the scope of this
course. But fear not: you'll study algorithms for solving this problem in
CSC373.

Minimum spanning trees

Now that we have introduced weighted graphs, we will study one more
fundamental weighted graph problem in this chapter. Suppose we have
a connected weighted graph, and want to remove some edges from the
graph but keep the graph connected. You can think of this as taking a set
of roads connecting cities, and removing some the roads while still making
sure that it is possible to get from any city to any other city. Essentially,

Fun fact: you can think of an un-
weighted graphs as a weighted graph
where each edge has weight 1.

79

80 DAVID LIU

we want to remove “redundant” edges, the ones whose removal does not
disconnect the graph.

How do we know if such redundant edges exist? It turns out (though
we will not prove it here) that if a connected graph has a cycle, then
removing any edge from that cycle keeps the graph connected. Moreover,
if the graph has no cycles, then it does not have any redundant edges.
This property — not having any cycles — is important enough to warrant a
definition.

Definition 6.8 (tree). A tree is a connected graph that has no cycles.

So you can view our goal as taking a connected graph, and identifying
a subset of the edges to keep, which results in a tree on the vertices of the
original graph.

It turns out that the unweighted case is not very interesting, because
all trees obey a simple relationship between their number of edges and
vertices: every tree with n vertices has exactly n — 1 edges. So finding such
a tree can be done quite easily by repeatedly finding cycles and choosing
to keep all but one of the edges.

However, the weighted case is more challenging, and is the problem of
study in this section.

Definition 6.9 (minimum spanning tree). The Minimum Spanning Tree
Problem takes as input a connected weighted graph G = (V,E), and
outputs a set of edges E’ such that the graph (V,E’) is a tree, and which

minimizes the sum of the weights Z w,. We call such the resulting tree
ecE’
a minimum spanning tree (MST) of G.

Prim’s algorithm

The first algorithm we will study for solving this problem is known as
Prim’s algorithm. The basic idea of this algorithm is quite straightfor-
ward: pick a starting vertex for the tree, and then repeatedly add new
vertices to the tree, each time selecting an edge with minimum weight
that connects the current tree to a new vertex.

We won’t prove this here, but please
take a course on graph theory if you
interested in exploring more properties
like this in greater detail.

Warning: one difference between this
definition of tree and the trees you are
used to seeing as data structures is that
the latter are rooted, meaning we give
one vertex special status as the root of
the tree. This is not the case for trees in
general.

As with shortest paths, there might be
more than one minimum spanning tree
of G. We just want to find one.

DATA STRUCTURES AND ANALYSIS 81

def PrimMST(G):
v = pick starting vertex from G.vertices
TV = {v} # MST vertices
TE = {} # MST edges

while TV != G.vertices:

extensions = { (u, v) in G.edges where exactly one of u, v are in TV }

e = edge in extensions having minimum weight
TV = TV + endpoints of e
TE = TE + {e}

return TE

This algorithm is quite remarkable for two reasons. The first is that
it works regardless of which starting vertex is chosen; in other words,
there is no such thing as the “best” starting vertex for this algorithm.
The second is that it works without ever backtracking and discarding an
already-selected edge to choose a different one. Let us spend some time
studying the algorithm to prove that it is indeed correct.

Theorem 6.10 (Correctness of Prim’s algorithm). Let G = (V,E) be a con-
nected, weighted graph. Then Prim’s algorithm returns a set of edges E' such that
(V,E) is a minimum spanning tree for G.

Proof. The proof of correctness of Prim’s algorithm is an interesting one,
because it relies on two loop invariants, one of which is straightforward,
but the other of which is very neat and unexpected if you haven’t seen
anything like it before. Here are our two invariants (remember that these
are true at the beginning and end of every iteration of the loop):

(1) The graph (TV, TE) is a tree.

(2) The tree (TV, TE) can be extended by only adding some edges and ver-
tices to a minimum spanning tree of G.

Before we prove that these invariants are correct, let’s see why they
imply the correctness of Prim’s algorithm. When the loop terminates, both
of these invariants hold, so the graph (TV, TE) is a tree and can be extended
to an MST for the input graph. However, when the loop terminates, its
condition is false, and so TV contains all the vertices in the graph. This
means that (TV, TE) must be an MST for the input graph, since no more
vertices/edges can be added to extend it into one.

We will omit the proof of the first invariant, which is rather straight-
forward. The second one is significantly more interesting, and harder to

This algorithm doesn’t “make mistakes”
when choosing edges.

Remember: trees are connected and
have no cycles.

This is like saying that TE is a subset of
a possible solution to this problem.

High level: every time a vertex is
added, an edge connecting that ver-

tex to the current tree is also added.
Adding this edge doesn’t create a cycle.

82 DAVID LIU

reason about. Fix a loop iteration. Let (Vj,Eq) be the tree at the begin-
ning of the loop body, and (V3, E;) be the tree at the end of the loop body.
We assume that (V7, E1) can be extended to an MST (V, E’) for the input,
where E; C E’. Our goal is to show that (V5, E;) can still be extended to
an MST for the input (but not necessarily the same one).

What the loop body does is add one vertex v to V; and one edge e =
(v, u,w,) to E1, where u is already in Vj, and w, is the weight of this edge.
So we have V, = V; U {v} and E; = E; U {e}.

Case 1: ¢ € E'. In this case, E; C E/, so the tree (V3,E;) can also be
extended to the same MST as (V4, E1), so the statement holds.

Case 2: e ¢ E'. This is tougher because this means E; cannot simply
be extended to E’; we need to find a different minimum spanning tree
(V,E") that contains E,.

Let us study the minimum spanning tree (V,E’) more carefully. Con-
sider the partition of vertices V4, V\Vj, in this MST. Let u and v be the
endpoints of e; then they must be connected in the MST, and so there is
a path between them. Let ¢’ € E’ be an edge on this path that connects a
vertex from Vj to a vertex from V\V;. Since e ¢ E’, this means that ¢’ # e.

Now consider what happens in the loop body. Since ¢’ connects a vertex
in Vj to a vertex not in Vj, it is put into the set extensions. We also know
that e was selected as the minimum-weight edge from extensions, and so
Wy 2> We.

Now define the edge set E” to be the same as E’, except with ¢’ removed
and e added. The resulting graph (V,E") is still connected, and doesn’t
contain any cycles — it is a tree. Moreover, the total weight of its edges is
less than or equal to that of E, since wy > w,. Then the graph (V,E") is
also a minimum spanning tree of the input graph, and E C E”. O

The idea of replacing ¢’ by e in the initial MST to form a new MST is
a very nice one. Intuitively, we argued that at the loop iteration where
we “should” have chosen ¢’ to go into the MST, choosing e instead was
still just as good, and also leads to a correct solution. It is precisely this
argument, “every choice leads to a correct solution”, that allows Prim’s al-
gorithm to never backtrack, undoing a choice to make a different one. This
has significant efficiency implications, as we’ll study in the next section.

Analysis of Prim’s algorithm

What is the running time of Prim’s algorithm? Let n be the number of
vertices in the graph, and m be the number of edges. We know that the
outer loop always runs exactly n times. Each iteration adds one new vertex
to the set TV; the loop terminates only when TV contains all n vertices. But

This assumption is precisely the loop
invariant being true at the beginning of
the loop body.

Note that their weights could be equal.

In fact, because E’ forms a minimum
spanning tree, the total weight of
E” can’t be smaller than E’, so their
weights are equal.

DATA STRUCTURES AND ANALYSIS

what happens inside the loop body?

This is actually where the choice of data structures is important. Note
that we have two sets here, a set of vertices and a set of edges. We'll first
use an array to represent these sets, so looking up a particular item or
adding a new item takes constant time.

How do we compute extensions, the edges that have one endpoint in
TV and one endpoint not in TV? We can loop through all the edges, each
time checking its endpoints; this takes ®(m) time. What about computing
the minimum weight edge? This is linear in the size of extensions, and
so in the worst case is O (m).

This leads to a total running time of ®(mn), which is not great (recall
that BFS and DFS both took time linear in the two quantities, ®(n + m)).
The key inefficiency here is that the inner computations of finding “ex-
tension” edges and finding the minimum weight edge both do a lot of
repeated work in different iterations of the outer loop. After all, from one
iteration to the next, the extensions only change slightly, since the set TV
only changes by one vertex.

So rather than recompute extensions at every iteration, we maintain a
heap of edges that extends the current tree (TV, TE), where the “priority”
of an edge is simply its weight. This is quite nice because the operation we
want to perform on extensions, find the edge with the minimum weight,
is well-suited to what heaps can give us.

Suppose that we pre-sort the edges in nondecreasing order. Then, when
each edge is checked, it must have the minimum weight of all the remain-
ing edges. Since we only care about getting the remaining edge with the
minimum weight, this is a perfect time for a heap:

def PrimMST(G):
v = pick starting vertex from G.vertices
TV {v} # MST vertices
TE {} # MST edges
extensions = new heap # treat weights as priority

for each edge on v:
Insert(extensions, edge)

while TV != G.vertices:
e = ExtractMin(extensions)
if both endpoints of e are in TV:
continue # go onto the next iteration

u = endpoint of e not in TV

Using adjacency lists, this statement
is certainly true, but requires a bit of
thought. We leave this as an exercise.

83

84 DAVID LIU

TV TV + {u}
TE TE + {e}
for each edge on u:

if other endpoint of edge is not in TV:
Insert(extensions, edge)

return (TV, TE)

We will do an informal running time analysis of this algorithm. First,
we note that each edge is added to the heap at most once, and so the total
number of calls to Insert is O(|E|). This means that the cost of all the
heap operations (both Insert and ExtractMax) take O(|E|log |E|) in total.

At each iteration, the endpoints of the extracted edge must be checked
for membership in TV. A naive implementation of this would search ev-
ery element of TV, for a worst-case running time of ©(|V|). This can be
improved by two methods: store an attribute for each vertex indicating
whether it is currently in TV or not, or use an AVL tree or hash table to
store the set to support asymptotically faster lookup. We will assume that
we're using the first approach, which reduces the check to a constant-time
operation.

Since all the other operations take constant time, the running time is
O(|E|log |E| + |V|) = O(|E|log |E|), since |E| > |V| —1 for a connected
graph. It turns out that with a bit more effort, we can get this down to
O(|V]log|V|) — see CLRS, section 23.2 for details.

Kruskal’s algorithm

As a bridge between this chapter and our next major topic of discussion,
we will look at another algorithm for solving the minimum spanning tree
problem. You might wonder why we need another algorithm at all: didn’t
we just spend a lot of time developing an algorithm that seems to work
perfectly well? But of course, there are plenty of reasons to study more
than one algorithm for solving a given problem, much as there is for
studying more than one implementation of a given ADT: generation of
new ideas or insights into problem structure; improving running time ef-
ficiency; different possible directions of generalization. In this particular
case, we have a pedagogical reason for introducing this algorithm here as
well, as motivation for the final abstract data type we will study in this
course.

The second algorithm for solving the minimum spanning tree problem
is known as Kruskal’s algorithm. It is quite similar to Prim’s algorithm,
in that it incrementally builds up an MST by selecting “good” edges one

Exercise: why is each edge added at
most once?

DATA STRUCTURES AND ANALYSIS 85

at a time. Rather than build up a single connected component of vertices,
however, it simply sorts edges by weight, and always picks the smallest-
weight edge that doesn’t create a cycle with the edges already selected.

def KruskalMST(G):
TE = {}
sort G.edges in non-decreasing order of weights

for e in G.edges: # starting with the smallest weight edge
if TE + {e} does not have a cycle:

TE = TE + {e}

return TE

We will omit the proof of correctness of Kruskal’s algorithm, although it
is quite remarkable that this algorithm works correctly given its simplicity.

The running time of this algorithm is more interesting. The sorting
of edges takes O(|E|log |E|) in the worst-case and the outer loop runs at
most |E| times. The really interesting part of the algorithm comes from
checking whether adding a new edge e to TE creates a cycle or not. A
natural approach is to use what we learned earlier in this chapter and
perform either a depth-first or breadth-first search starting from one of
the endpoints of the chosen edge, using only the edges in TE + {e}. This
is rather inefficient, since the O(|V| + |E|) running time of the search is
repeated O(|E|) times, for a total running time of O(|E|log |E| + |E|(|V|+
[ED) = O(E| - [V + [E?).

However, there is a much smarter way of checking whether adding
a given edge creates a cycle or not, by keeping track of the connected
components of the vertices defined by the edges in TE. At the beginning of
Kruskal's algorithm, we can view each vertex as being its own component,
since TE is empty. When the first edge is added, its two endpoints are
merged into the same component. As more and more edges are added,
components merge together, until eventually there is only one component,
the minimum spanning tree.

How does this help us check whether adding an edge creates a cycle or
not? We look at the two endpoints of the new edge: if they are in the same
connected component, then adding the edge creates a cycle; otherwise,
adding an edge doesn’t create a cycle, and causes the two components of
its endpoints to be merged.

Well, this is at least the obvious upper
bound calculation. We leave it as an
exercise to prove a tight lower bound on
the worst-case running time.

86 DAVID LIU

def KruskalMST(G):
TE = {}
sort G.edges in non-decreasing order of weights
set each vertex to be its own connected component

for e in G.edges: # starting with the smallest weight edge
if the endpoints of e are not in the same connected component:
TE = TE + {e}
merge the connected components containing the endpoints of e

return TE

The running time of the algorithm now depends on how quickly we
can maintain these components while performing these three operations:

* create a new component for each vertex
* determine whether two vertices are in the same component

* merge two components together

As we will see in the following two chapters, the answer is: “we can
support all three of these operations very efficiently, if we consider the
operations in bulk rather than one at a time.” But before we formalize the
abstract data type to support these operations and study some implemen-
tations of this data type, we need to really understand what it means to
“consider the operations in bulk.” This is a type of runtime analysis dis-
tinct from worst-case, average-case, and even worst-case expected running
times, and is the topic of the next chapter.

7 Amortized Analysis

In this chapter, we will study another form of algorithm analysis that
offers a new type of refinement of worst-case analysis. To set the stage
for this technique, let us return to the context of hash tables from Chapter
4. Recall that in hashing with open addressing, keys are stored directly
in the table itself, with collisions being resolved by iterating through a
probe sequence of possible indices until an unoccupied spot is found. In
our consideration of this technique, we had an underlying assumption
that there would be space for every new key-value pair inserted (and that
you'd find such a space with a sufficiently long probe sequence). This
implied that the array used to store the pairs was bigger than the number
of pairs stored. In general, however, we do not know a priori how many
pairs are going to be stored in the hash table, and so it is impossible to
predict how large an array to use.

One can get around this problem by storing the hash table with a data
structure that uses dynamically-allocated memory like a linked list or AVL
tree, but then we lose the constant-time addressing feature that we get
from storing items in a contiguous block of memory. In this chapter, we
will study a variant of arrays called dynamic arrays, which we use to
implement a resizable collection of items that supports constant-time ad-
dressing and “efficient” insertion of new items. We put efficient in quota-
tion marks here because our standard measures of efficiency either won't
apply or won't be impressive. Instead, we will define and justify a new
type of running time analysis known as amortized analysis under which
dynamic arrays are excellent .

Dynamic arrays

The idea of a dynamic array is to keep the fundamental array property of
storing items in a contiguous memory block, but allow the array to expand
when the existing array is full. One might think that this expansion is
easy, as we can always increase the size of an array by giving it ownership
of some memory blocks after its current endpoint. But of course that

88 DAVID LIU

memory might be already allocated for a different use, and if it is then the
existing array cannot simply be expanded.

Instead, we will do the only thing we can, and allocate a separate and
bigger block of memory for the array, copying over all existing elements,
and then inserting the new element. We show below one basic implemen-
tation of this approach, where A has three attributes: array, a reference to
the actual array itself; allocated, the total number of spots allocated for
array; and size, the number of filled spots in array. For this implemen-
tation, we choose an “expansion factor” of two, meaning that each time
the array is expanded, the memory block allocated doubles in size.

def insert(A, x):
Check whether current array is full
if A.size == A.allocated:
new_array = new array of length (A.allocated * 2)
copy all elements of A.array into new_array
A.array = new_array
A.allocated = A.allocated * 2

insert the new element into the first empty spot
A.array[A.size] = x
A.size = A.size + 1

Worst-case running time of dynamic arrays

For the purposes of analysing the running time of this data structure, we
will only count the number of array accesses made. This actually allows
us to compute an exact number for the cost, which will be useful in the
following sections.

For now, suppose we have a dynamic array where all n allocated spots
are full. We note that the final two steps involve just one array access
(inserting the new item x), while the code executed in the if block has
exactly 2n accesses: accessing each of the n items in the old array and
copying each item to the new array.

So we have a worst-case running time of 2n + 1 = O(n) array accesses.
This upper bound does not seem very impressive: AVL trees were able to
support insertion in worst-case ®(log n) time, for instance. So why should
we bother with dynamic arrays at all? The intuition is that this linear
worst-case insertion is not a truly representative measure of the efficiency
of this algorithm, since it only occurs when the array is full. Furthermore,
if we assume the array length starts at 1 and doubles each time the array
expands, then the array lengths are always powers of 2. This means that

This “different use” might even be
external to our program altogether!

While this does cause us to ignore the
cost of the other operations, all of them
are constant time, and so focusing on
the number of array accesses won't
affect our asymptotic analysis.

DATA STRUCTURES AND ANALYSIS 89

2n 4+ 1 array accesses can only ever occur when n is a power of 2; the rest
of the time, insertion accesses only a single element! A bit more formally,
if T(n) is the number of array accesses when inserting into a dynamic
array with n items, then

2n+1, if nisa power of 2
T(n) = nreap
1, otherwise

So while it is true that T(n) = O(n), it is not true that T(n) = ©(n).

Are average-case or worst-case expected analyses any better here? Well,
remember that these forms of analysis are only relevant if we treat the
input data as random, or if the algorithm itself has some randomness.
This algorithm certainly doesn’t have any randomness in it, and there
isn’t a realistic input distribution (over a finite set of inputs) we can use
here, as the whole point of this application is to be able to handle insertion
into arrays of any length. So what do we do instead?

Amortized analysis

Before we give a formal definition of amortized analysis, let us expand
on one important detail from our informal discussion in the previous sec-
tion. We observed that dynamic array insertion was only very rarely slow
(when the number of items is a power of two, meaning that the array is
full), with any other insertion being extremely fast. But even more is true:
the only way to reach the “bad” state of inserting into a full array is by
first performing a series of (mostly fast) insertions.

Consider inserting an item into a full array of allocated length 21 =
1024. Since 1024 is a power of two, we know that this will take 2049 array
accesses. However, to even reach such a state, we must have first taken
an array of length 512, expanded it to an array of length 1024, and then

performed 511 insertions to fill up the expanded array. And these 511 Remember that the expansion is caused
when a new item is inserted, so the ex-
panded array starts with 513 elements
So we can contextualize the “inefficient” insertion into the full 1024- in it.

insertions would each have taken just one array access each!

length array by noting that it must have been preceded by 511 extremely
efficient insertions, which doesn’t sound so bad.

More formally, an amortized analysis of a data structure computes the
maximum possible average cost per operation in a sequence of operations, start-

ing from some initial base state. Unlike both worst- and average-case anal- You can ignore the “maximum possi-
ble” for now, since for dynamic arrays

. we only have one possible operation
but rather the total cost of a sequence of operations performed on a data — insertion — and hence one possible

yses, we are not concerned here with studying one individual operation,

structure, and relating this to the number of operations performed. There sequence of operations.
are two different ways of thinking about the amortized cost of a set of

90 DAVID LIU

operations:

e The average cost of an operation when multiple operations are per-
formed in a row. Note that this is a different use of “average” than
average-case analysis, which considers an operation as an isolated event,
but allows for consideration of multiple inputs.

* The total cost of a sequence of M operations as a function of M. Note
that a sequence of M constant-time operations must have a total run-
ning time of ®@(M), so expressions that look “linear” aren’t directly ref-
erencing the worst-case running time of a single operation, but rather
the rate of growth of the runtime of the entire sequence.

Aggregate method

The first method we’ll use to perform an amortized analysis is called the
aggregate method, so named because we simply compute the total cost of
a sequence of operations, and then divide by the number of operations to
find the average cost per operation.

Let’s make this a bit more concrete with dynamic arrays. Suppose we
start with an empty dynamic array (size o, allocated space 1), and then
perform a sequence of M insertion operations on it. What is the total cost
of this sequence of operations? We might naively think of the worst-case
expression 2n + 1 for the insertion on an array of size n, but as we dis-
cussed earlier, this vastly overestimates the cost for most of the insertions.
Since each insertion increases the size of the array by 1, we have a simple
expression of the total cost:

Recall that T(k) is 1 when k isn’t a power of two, and 2k + 1 when it is.
Define T'(k) = T(k) — 1, so that we can write

M-1 M-1 M-1
Y Tk)= Y (1+T'(k) =M+ Y T'(k).
k=0 k=0 k=0

Now, most of the T’ (k) terms are o, and in fact we can simply count
the terms that aren’t o by explicitly using the powers of two from 2° to
2ll08(M=1)] g6 then

We're still counting only array accesses
here.

DATA STRUCTURES AND ANALYSIS O1

M-1 M-1

Y T(k)y=M+) T(k

k=0 k=0
[log(M—1)] , ,
=M+). T(2) (substituting k = 2')
i=0
[log(M—1)] ,
=M+) 2.2
i=0

d
=M+2. (zUog(M—l)JJrl _ 1) (2 9i _ pd+1 _ 1)
i=0
=M —2+4.2llog(M-1)]

The last term there looks a little intimidating, but note that the floor
doesn’t change the value of the exponent much, and that the power and
the log roughly cancel each other out:

logtM—1)—1< |log(M—1)] <log(M—1)
olog(M—1)-1 < 7 llog(M-1)] < log(M—1)

%(M—l) pllogM=D)] < p1—1q

IN

2(M—1)+(M—2)§Mi1T(k) <4(M-1)+M-2
3m—4<) T(k) <5m—6
k=0

So the total cost is between roughly 3m and 5m. This might sound You may find it strange that the key
variable is the number of operations,

linear, but remember that we are considering a sequence of M operations, . !
not the size of the data structure like

and so the key point is that the average cost per operation in a sequence usual. In amortized analysis, the size
is actually between 3 and 5, which is constant! So we conclude that the of the data structure is usually tied

. implicitly to the number of operations
amortized cost of dynamic array insertion is (1), formalizing our earlier performed.

intuition that the inefficient insertions are balanced out by the much more
frequent fast insertions.

Accounting (banker’s) method

Now let us perform the analysis again through a different technique known
as the accounting method, also known as the banker’s method. As be-

fore, our setup is to consider a sequence of M insertion operations on our

dynamic array. In this approach, we do not try to compute the total cost of

these insertions directly, but instead associate with each operation a charge,

which is simply a positive number, with the property that the total value of
the M charges is greater than or equal to the total cost of the M operations.

92 DAVID LIU

You can think of cost vs. charge in terms of a recurring payment system.
The cost is the amount of money you have to pay at a given time, and the
charge is the amount you actually pay. At any point in time the total
amount you've paid must be greater than or equal to the total amount
you had to pay, but for an individual payment you can overpay (pay more
than is owed) to reduce the amount you need to pay in the future.

In the simplest case, the charge is chosen to be the same for each op-
eration, say some value ¢, in which case the total charge is cM. Let T(M)
be the total cost of the M operations in the sequence. If we assume that
T(M) < cM, then T(M)/M < ¢, and so the average cost per operation is
at most ¢. In other words, the chosen charge c is an upper bound on the
amortized cost of the operation.

The motivation for this technique is that in some cases it is difficult to
compute the total cost of a sequence of M operations, but more straight-
forward to compute a charge value and argue that the charges are enough
to cover the total cost of the operations. This style of argument tends to
be quite local in nature: the charges are usually associated with particular
elements or components of the data structure, and they cover the costs
associated only with those elements. Let us make this more concrete by
studying one charge assignment for dynamic array insertion.

Charging scheme for dynamic array insertion. Each insertion gets a
charge of five, subject to the following rules.

¢ The i-th insertion associates five “credits” with index i.

® One credit is immediately used (and removed) to pay for the insertion
at index i.

e Let 2¥ be the smallest power of two that is > i. When the 2¥_th insertion
occurs, the remaining four credits associated with index i are used.

What we want to argue is that the “credits” here represent the differ-
ence between the charge and cost of the insertion sequence. The number
of credits for an index never drops below zero: the first rule ensures that
for each index 1 < i < M, five credits are added; and the second and
third rules together consume these five credits (note that each rule is only
applied once per index 7).

So if we can prove that the total number of credits represents the differ-
ence between the charge and cost of the insertion sequence, then we can
conclude that the total charge is always greater than or equal to the total
cost. Because the charge is 5 per operation, this leads to an amortized cost
of O(1), the same result as we obtained from the aggregate method.

As we hinted at above, we need to argue that each credit represents a
single array access. So for each insertion, we need to argue that the above

Warning: this is just a rule of thumb
when it comes to assigning charges,
and not every accounting argument
follows this style.

Think of a credit as representing one
array access operation.

Credits are part of the analysis, not

the actual data structure. There isn’t
anything like a credits attribute in the
program!

DATA STRUCTURES AND ANALYSIS O3

rules ensure that the number of credits removed is at least the number of
array accesses that are performed for that insertion. Let’s do it.

Lemma 7.1 (Credit analysis for dynamic array insertion). Let 1 < i < m.
Then the number of credits removed for insertion i is equal to the number of array
accesses at index i.

Proof. There are two cases: when i is not a power of two, and when i is a
power of two.

Case 1: i is not a power of two. Then there’s only one array access, and
this is paid for by removing one credit from index i.

Case 2: i is a power of two. There are 2i + 1 array accesses. There is one
credit removed from index i, leaving 2i accesses to be accounted for.

There are four credits removed for each index j such that i is the small-
est power of two greater than or equal to j. How many such j are there?
Let i = 2F. The next smallest power of two is 2k=1 — i/2. Then the pos-
sible values for j are {i/2+1,i/2+2,...,i}; there are i/2 such choices.

So then there are i/2 -4 = 2i credits removed, accounting for the re-
maining array accesses. O

This method often proves more flexible, but also more challenging, than
the aggregate method. We must not only come up with a charging scheme
for the operation, but also then analyse this scheme to ensure that the
total charge added is always greater than or equal to the total cost of the
operations. As we saw, this is not the same as arguing that the charge is
greater than the cost for an individual operation; some operations might
have a far higher cost than charge, but have the excess cost be paid for
by previous surplus charges. Creative charging schemes take advantage
of this by keeping charges high enough to cover the cost of any future
operation, while still being low enough to obtain a good bound on the
amortized cost of each operation.

Exercise Break!

7.1 Consider a modified implementation of dynamic array INSERT that in-
creases the amount of allocated space by a multiplicative factor of ¢ > 1.
That is, the amount of allocated space after expansion is ¢ times the
space before the expansion. Find the aggregate cost of M operations
using this sequence.

7.2 How would you modify the banker’s method argument to analyse this
modified array?

Note that this includes index i itself; so
if i is a power of two, then index i gets
5 credits, and then immediately all of
them are used.

94 DAVID LIU

7.3 Consider a modified implementation of dynamic array INSERT that in-
creases the amount of allocated space by an additive factor of ¢ > 1.
That is, the amount of allocated space is c greater than the space be-
fore the expansion. Find the aggregate cost of M operations using this
sequence.

8 Disjoint Sets

Our discussion of Kruskal’s algorithm at the end of Chapter 6 led to the
desire for a new data type that essentially represents partitions of a set
of objects, and supports membership tests (which partition has this ele-
ment?) and merging partitions. We will formalize this in the Disjoint
Set ADT. This ADT consists of a collection of sets Sy, ..., S, that are dis-
joint (every element appears in exactly one set), and where each set has
a fixed representative element (a member of the set that serves as the set’s
identifier).

Disjoint Set ADT

e MAaKESET(DS, v): Take a single item v and create a new set {v}. The
new item is the representative element of the new set.

¢ FIND(DS, x): Find the unique set that contains x, and return the repre-
sentative element of that set (which may or may not be x).

e Un1oN(DS, x,y): Take two items and merge the sets that contain these
items. The new representative might be one of the two representatives
of the original sets, one of x or y, or something completely different.

The remainder of this chapter will be concerned with how we can effi-
ciently implement this ADT.

Initial attempts

One obvious approach is to store each set as a linked list, and to pick as
the representative element the last element in the linked list. Let us try to
implement the Disjoint Set ADT using linked lists: the data structure it-
self will contain an collection of linked lists, where each individual linked
list represents a set. Each node in the linked list represents an element
in a set. Given any element, it is possible to simply follow the references
from that element to the end of its list. We assume that the inputs to
FIND and UNION are references to the node of a linked list. This is an
implementation-specific detail that is consistent across all of the imple-

96 DAVID LIU

mentations we’ll look at in this chapter, but it is not necessarily intuitive,
so please do keep it in mind.

def MakeSet (DS, v):
node = new Node with value v

DS.add(node) # This registers the node as the head of a new linked list

return node

def Find (DS, x):
curr = x

Traverse the linked list starting at node x until reaching the last node.

while curr.next is not null:
curr = curr.next
return curr

def Union(DS, x, y):
hmmm

Unfortunately, the UNION operation is challenging to implement, be-
cause you cannot merge two linked lists together without knowing the
head of at least one of them, and in this case x and y can certainly be
nodes in the middle of the list.

While we can solve this problem using more sophisticated variants of
linked lists like doubly-linked lists or circular linked lists, we will do
something that is at once simpler and stranger: attach the end of one
list to the end of the other.

def Union(DS, x, y):
endl Find (DS, x)
end2 Find (DS, vy)

endl and end2 are the last nodes in their respective linked lists

if endl '= end2:
endl.next = end2

But wait, you say — if you do this, the result is no longer a linked
list, since there are two different nodes pointing to end2. And indeed, the
combined structure is no longer a linked list — it’s a tree! Of course, the
links are the reverse of the tree-based data structures we have seen so far:
instead of a node having references to each of its children, now each node
only has one reference, which is to its parent.

DATA STRUCTURES AND ANALYSIS 97

Below is a complete implementation of the Disjoint Set ADT using a
collection of trees. You'll quickly find that this is basically the implemen-
tation we have already given, except with some renaming to better reflect
the tree-ness of the implementation. Also, it will be helpful to keep in
mind that the representative elements are now the root of each tree.

Renaming to reflect the fact that we're using trees, not linked lists

def MakeSet (DS, v):
node = new Node with value v

DS.add(node) # This registers the node as the root of a new tree

return node

def Find(DS, x):
curr = x
while curr.parent is not null:
curr = curr.parent
return curr

def Union(DS, x, y):
rootl = Find (DS, Xx)
root2 = Find(DS, y)

rootl and root2 are the roots of their respective trees
if root2 != root2
rootl.parent = root2

Runtime analysis

Now, let us briefly analyse the running time of the operations for this
tree-based disjoint set implementation. The MAKESET operation clearly
takes ©(1) time, while both FIND and UNION take time proportional to
the distance from the inputs to the root of their respective trees. In the
worst case, this is @(h), where h is the maximum height of any tree in the
collection.

Of course, as with general trees, it is possible for the heights to be pro-
portional to 7, the total number of items stored in all of the sets, leading
to a worst-case running time of @(n).

Heuristics for tree-based disjoint sets

It is quite discouraging that our initial tree-based implementation of dis-
joint sets has worst-case running time that is linear in the total number of

Remember that the disjoint set collec-
tion can contain multiple trees, each
with their own height. The running
time of FIND and UNION depends on
the trees that are involved.

98 DAVID LIU

items stored. After all, we could come up with a linear time implementa-
tion of disjoint sets that simply stores pairs (item, set representative)
in a list, and loop over the list for FIND and UNION.

However, just as we improved our BST implementation of dictionaries
by imposing more structure on the tree itself, we will now investigate
two heuristics used to reduce the height of the trees for our disjoint set
implementation.

Union-by-rank

One idea we borrow from AVL trees is the idea of enforcing some local
property of nodes to try to make the whole tree roughly balanced. While
we do not have to enforce the binary search tree property here, we are
limited in two other ways:

¢ We do not want to have to traverse a full tree every time we perform a
UNION.

¢ Nodes only have references to their parent, but not their children (child
references turn out to be unnecessary).

Rather than have nodes keep track of their height or balance factor, we
will store an attribute called rank, which has the following definition:

Definition 8.1 (rank (disjoint sets)). The rank of a node in a disjoint set
tree is defined recursively as follows:

e The rank of a leaf is o.

¢ The rank of an internal node is one plus the maximum rank of its chil-
dren.

It is no coincidence that this definition is closely related to the recursive
definition of tree height you may have seen before. You may wonder, then,
why we don’t just use height. Indeed, we could for this section; but for
the second heuristic we'll study, we want an attribute that never decreases,
even when a tree’s height decreases. And so for consistency, we use the
same attribute for both heuristics.

With this notion of rank in hand, we no longer arbitrarily choose the
merged tree root in a UNION; instead, we always use the root with the
larger rank. The intuition is that if we merge a bigger tree and a smaller
tree, we can make the smaller tree a subtree of the bigger tree without
changing the bigger tree’s height. We call this modification of the basic
UNION algorithm the union-by-rank heuristic.

20

21

22

23

24

DATA STRUCTURES AND ANALYSIS Q9

Union-by-rank
def MakeSet (DS, v):
node = new Node with value v

DS.add(node) # This registers the node as the root of a new tree

node.rank = 0 # set the rank
return node

def Union(DS, x, y):
rootl = Find (DS, x)
root2 = Find (DS, y)

if rootl == root2:
return

rootl and root2 are the roots of their respective trees
Choose the one with the larger rank as the new root.

Only need to increment a rank when the two root ranks are equal.

if rootl.rank > root2.rank:
root2.parent = rootl

else if rootl.rank < root2.rank:
rootl.parent = root2

else:
rootl.parent = root2
root2.rank = root2.rank + 1

Let us make our previous intuition about attaching the “smaller” tree
to the “bigger” one more precise in the following two lemmas.

Lemma 8.1 (Rank for disjoint sets). Let T be a tree generated by a series of
MAKXESET and UNION operations using the union-by-rank heuristic. Let r be
the rank of the root of T, and n be the number of nodes in T. Then 2" < n.

Proof. We will prove that the property 2" < n is an invariant that is pre-
served by every MAKESET and UNION operation.

For MAKESET, the new tree that is created has one node, and its root
has rank o. The theorem holds in this case, since 20 =1 < 1.

For UNION, suppose we take the union of two trees T; and T,, with
sizes n1 and ny and ranks 7 and r, respectively. We assume that 2" < 14
and 22 < n,. Let n = ny + np be the number of nodes in the union tree,
and r be the rank of the root of the union tree. We want to prove that
2" < n.

Case 1: 71 > 7. In this case, r = rq, since the root of T; is chosen as
the root of the union tree, and its rank doesn’t change. So then 2" = 2"1 <

Observe that the rank of a node only
ever increases by 1, and only if it is
merged with a node of the same rank.
In all other cases, UNION does not
increase rank.

100 DAVID LIU

n1 < n, so the property still holds. The same argument works for the case
that v, < r1 as well, by switching the 1’s and 2’s.

Case 2: 71 = 1. In this case, the root of T is selected to be the new
root, and its rank is increased by one: r = r{ + 1. Then since 2'! < n; and
22 < np, we get 21 +2"2 < ny 4 ny = n. Since 1y =1y, 2" + 272 = 2t —
2’, and the property holds. O

We'll leave it as an exercise to prove the second lemma, which says that
the rank really is a good approximation of the height of the tree.

Lemma 8.2. Let T be a tree generated by a series of MAKESET and UNION
operations using the union-by-rank heuristic, and let v be the rank of its root.
Then the height of T is equal to r + 1.

With these two lemmas, we can prove the following much-improved
bound on the worst-case running time of our disjoint set operations when
we use the union-by-rank heuristic.

Theorem 8.3 (Worst-case running time using union-by-rank). The worst-
case running time of FIND and UNION for the disjoint set implementation using
union-by-rank is ©(logn), where n is the number of items stored in the sets.

Proof. Note that the manipulations involving the new rank attribute in
the implementation are all constant time, and so don’t affect the asymp-
totic running time of these algorithms. So, by our previous argument, the
worst-case running time of these two operations is still ®@(h), where h is
the maximum height of a tree in the disjoint set data structure. Now we
show that i = O(log n), where n is the total number of items stored in the
sets.

Let T be a tree in the data structure with height k, r be the rank of
the root of this tree, and 1’ be the size of this tree. By our previous two
lemmas, we have the chain of inequalities

h=r+1<logn +1<logn+1.

It follows immediately that 1 = O(logn). We leave the lower bound as an
exercise. O

Obviously, n' < n.

DATA STRUCTURES AND ANALYSIS 101

Exercise Break!

8.1 Prove that the worst-case running time of a FIND or UNION operation
when using union-by-rank is Q)(logn), where n is the number of items
stored in the sets.

8.2 Suppose we have a disjoint set collection consisting of n items, with
each item in its own disjoint set.

Then, suppose we perform k UNION operations using the union-by-
rank heuristic, where k < n, followed by one FIND operation. Give a
tight asymptotic bound on the worst-case running time of this FIND
operation, in terms of k (and possibly).

Path compression

Our previous heuristic involved some optimization on the UNION oper-
ation to get a better bound on the height of the trees in the disjoint set
collection. Such mutating operations are a natural place for optimization:
given that we are modifying the structure of the sets, it is natural to think
about how to best do this. In this section, we will investigate a different
heuristic, which performs a mutation operation in a previously read-only
operation, FIND. This draws inspiration from the common query opti-
mization of caching, in which the result of a query are saved to make
future repetitions of the same query faster. When we perform a FIND op-
eration on a node x, we will explicitly store the resulting set representative
by restructuring the tree so that performing a FIND on that same node in
the future is guaranteed to run in constant time.

When a FIND operation takes a long time, it is because the input node
is quite far from the root of the tree, and all of the node’s ancestors must
be traversed. The key insight is that unlike most other tree operations we
have looked at in this course, there is no reason to preserve the structure of the
tree during a FIND operation. Because each node in a tree only cares about
its set representative, there is no reason a node shouldn’t just point directly
to it, other than the fact that set representatives change during UNTONS.
So the path compression heuristic is the following: after the set represen-
tative is found, all of the nodes traversed have their parent attribute set
to this set representative. In purely tree terms, the tree is restructured so
that the node and all of its ancestors are made direct children of the root.

Think of “query” here as a generic term
for any computation that returns a
value, like FIND.

Hopefully it is clear why this is called
“path compression.” The (potentially
long) path traversed from input node to
root is split up, with each node on the
path now “compressed” by becoming a
child of the root.

1

2

102 DAVID LIU

Path compression
def Find(DS, x):
root = x
After this loop, root is the root of the tree containing Xx.
while root.parent is not null:
root = root.parent

Path compression: set all ancestors of x to be children of root.

curr = x
while curr.parent is not null:
next_curr = curr.parent
curr.parent = root

curr = next_curr

Running time analysis for path compression

Despite all this fanfare about path compression, it is important to realize
that this heuristic does not improve the speed of a FIND operation that has
a long path — this operation still takes time proportional to the length of
the path, and the worst-case running time is still ®(n), where n is the
number of items in the sets. This is true of caching in general: the first
time a query is run, there is no speedup due to previous computations,
because there are no previous computations!

What path compression does guarantee is that any subsequent FIND
operations on any nodes along the compressed path will take constant
time. Whenever you hear a phrase like “operation makes future opera-
tions faster,” you should think about amortized analysis: even if the initial
operation is slow, perhaps its running time cost can be amortized across
multiple (faster) FIND operations. And it turns out that with the path
compression heuristic, the amortized running time of FIND operations has
a substantial improvement over the worst-case ®(n) bound. We will only
perform a special case of the full analysis here. You'll find that this is
sufficient to get the general idea, while being able to ignore some extra
parameters that come with the most generalized version.

One reminder before we go into the proof. This proof uses the notion
of node rank from the previous section, with one important clarification:
node rank is only updated during a merge operation, and only if the
node is the new root of the union tree. This is quite important because
path compression can cause tree height to decrease, so keep in mind that
rank is not the same as height, and does not change for any node during
Finp. There are four important properties of node rank to keep in mind

Keep in mind that we don’t have the
union-by-rank guarantee here, so
the maximum height of a tree is the
number of items in the disjoint sets.

DATA STRUCTURES AND ANALYSIS 103

(we leave proofs as exercises):

¢ The rank of a node is always between o and n — 1.

* Ranks are strictly increasing as you go up a tree; the rank of a node is
always less than the rank of its parent.

e The rank of a node only ever increases, and only during a UNION op-
eration.

® Let x be a node. The rank of the parent of x only ever increases — not
only when a UNION operation causes the parent node of x to increase
in rank, but also when a FIND operation causes x to get a different
parent node.

Theorem 8.4 (Amortized analysis of path compression (special case)).
Suppose we use a disjoint set implementation that uses the path compression
heuristic. Let n be a power of two, and consider a sequence of n MAKESET
operations, followed by any number of UNION operations mixed with n FIND
operations.

Then the total cost of all n FIND operations is O(nlogn). Or in other words,
the amortized cost of an individual FIND operation is O(logn).

Proof. We will use the aggregate method to perform the amortized analy-
sis here, but in a more advanced way: rather than computing the cost of
each FIND operation separately and adding them up, we will attempt to
add up all the costs at once, without knowing the value of any individual
cost.

The key insight is that for any individual FIND operation, its running
time is proportional to the number of edges traversed from the input node
up to the root. In this proof, we will call the path traversed by a FIND
operation a find path. So we define the collection of edges F in the n find
paths, allowing for duplicates in F because the same edge can belong to
multiple find paths. To analyse this, we consider the collection of edges F
that are traversed by any one of the n Find operations. Then the total cost
of the sequence of n FIND operations is simply |F|, and the amortized
cost of an individual FIND operation is | F|/n.

The second key idea is to partition F based on the differential rank of
the endpoints of each edge. For each 1 < i < log#, define the set

Fi={(x,y) € F| 27! < rank(y) — rank(x) < 2'}.

Note that the final set, Fj,g,, contains an upper bound on the rank dif-

ference of 2!°8" = 1, so each edge belongs to exactly one of these sets. So
|F| =)Y_|Fi|, and our task is now to bound the sizes of each F;. What
can we say about the size of an F;? It turns out that we can say quite a
bit, if we do some careful counting.

The notation (x,y) indicates an edge
traversed from node x to its parent y.
So rank(y) > rank(x).

104 DAVID LIU

First, we divide each F; into two subgroups based on the relative po-
sitions of the edges in their find paths. We say that an edge ¢ € F; is a
last edge if it is the edge in F; closest to the set representative of its tree.
Otherwise, we say that the edge ¢ is a middle edge. We let £; and M, be
the set of last and middle edges from F;, respectively.

This is a little abstract, so let’s make it more concrete. Suppose we have
a find path that contains three edges e, e, e3 from F; (plus possibly many
other edges). Suppose e3 is closest to the root of the tree. Then e3 is a last
edge, and e; and e; are middle edges. In general, if multiple edges from
Fi appear on the same find path, exactly one of them will be a last edge,
and all the others will be middle edges.

Since each edge in F; is either a last or middle edge, | F;| = |£;| + | M,].
Rather than computing the size of F;, we want to compute the sizes of
L; and M. Since there are a total of n FIND operations in the sequence,
there are n find paths. Each find path can have at most one last edge for
each rank difference, so |£;| < n.

Now let us count the size of | M;|. We'll do this by looking at individual
nodes. Consider a middle edge e € M;, which goes from node x to its
parent y. At the time of the FIND operation that this edge is traversed, we
know the following things:

e There is another edge ¢’ € F; that is closer than e to the root of the tree
(since e is a middle edge).

¢ yis not the set representative of the tree (since it can’t be the root).

Let z be the set representative for this tree; so s is distinct from x and y.
Since the nodes visited on the path from y to z have increasing rank, and ¢’
separates y and z along this path, we know that rank(z) — rank(y) > 2:-1.

Furthermore, due to path compression, after this FIND operation is
complete, z becomes the new parent of x. Here is the third big idea. The
actual node change itself doesn’t matter to our proof; what does matter is
that from the point of view of x, its parent’s rank has increased by at least
21,

Why is this such a big deal? We can use this to prove the following
claim.

Proposition 8.5. Let x be a node. There are at most two edges in M; that start
at x.

Proof. Suppose for a contradiction that there are three edges (x, 1), (x,2),
(x,y3) € M,. Also, assume that by the time a FIND operation visits the
edge (x,y3), previous FIND operations have already visited (x,y;) and

Don’t worry, we aren’t going to subdi-
vide any further! Geez.

O=0—O

(<)
N

O,

Checkpoint: this inequality only uses
the fact that the edge ¢’ € F; is between
w and s. We haven't yet used the fact
that e is also in F;.

Remember, no node actually changed
its rank. It's just that the parent of x
changed to one with a bigger rank.

DATA STRUCTURES AND ANALYSIS 105

(x,12). The previous observation tells us that the rank of the parent of x
must have increased by at least 2 -2/ ~1 = 27, i.e., rank(y3) > rank(y;) + 2\

This is finally where we use the fact that these edges are in M;! This tells
us that rank(y) > rank(x) +2'~1, and so we get rank(y3) > rank(x) 42 +
2/~1. But the fact that (x,y3) € M; means that rank(ys3) < rank(x) +2, a
contradiction. O

Since the above claim is true for any node x, this means that each of the
n nodes in the disjoint sets can be the starting point for at most two edges
in M;. This implies that | M;| < 2n.

Putting this all together yields a bound on the size of F:

logn
171 =) 17l
i=1

logn
=) L]+ M|
i=1
logn
<Y n+2n
i=1

= 3nlogn

In other words, the total number of edges visited by the n FIND oper-
ations is O(nlogn), and this is the aggregate cost of the n FIND opera-
tions. 0

Combining the heuristics: a tale of incremental analyses

We have seen that both union-by-rank and path compression can each
be used to improve the efficiency of the FIND operation. We have per-
formed the analysis on them separately, but what happens when we apply
both heuristics at once? This is not merely an academic matter: we have
seen that it is extremely straightforward to implement each one, and be-
cause union-by-rank involves a change to UNION and path compression
involves a change to FIND, it is very easy to combine them in a single
implementation.

The challenge here is performing the running time analysis on the com-
bined heuristics. We can make some simple observations:

e The worst-case bound of ®(logn) for FIND from union-by-rank still
applies, since it is possible to do a bunch of UN10ONs, and then a single
FIND on a leaf when the tree has height ®(logn).

It is actually quite remarkable that the
size of each | M;| doesn’t depend on i
itself.

106 DAVID LIU

* The amortized analysis we did for path compression still holds, since
all the key properties of rank that we used still hold.

In other words, the two analyses that we performed for the two heuris-
tics still apply when we combine them. The only lingering question is the
amortized cost of a FIND operation, for which we only proved an upper
bound in the previous section. Given that our analysis for path compres-
sion alone had to accommodate for a node of rank 7, while union-by-rank
ensured that a node’s rank is at most log n, there may be hope for a better
amortized cost.

And indeed, there is. What follows is a tour of the major results in
the history of this disjoint set implementation, going from its humble be-
ginnings to the precise analysis we take for granted today. It is truly a
remarkable story of an algorithm whose ease of implementation belied
the full subtlety of its running time analysis.

The first known appearance of this disjoint set implementation, which
combined both union-by-rank and path compression, was in a paper by
Bernard A. Galler and Michael J. Fischer in 1964. However, the authors
of this paper did not perform a precise analysis of their algorithm, and in
fact the question of how efficient this was, really, took almost two decades
to resolve.

In 1972, Fischer proved that the amortized cost of each FIND operation
is O(loglogn), already a drastic improvement over the O(logn) bound
we proved in the previous section. The next year, John Hopcroft and
Jeffrey Ullman published a further improvement, showing the amortized
cost of FIND to be O(log™ 1), where log* n is the iterated logarithm function,
defined recursively as follows:

0, ifn<1

log*n =
1+log*(logn), otherwise

In English, this function outputs the number of times the logarithm
must be applied to a number to get a result < 1. To give some context
about how slow-growing this function is, we show in a table the largest
value of n to get the first few natural numbers as output.

Largest n | log* n
1 o
2 1
4 2
16 3
65536 4
65536 5

You should be able to modify our proof
to get an amortized cost of O(loglogn)
for the rank bound that union-by-rank
gives us.

If m is the largest number such that
log" m = k, then n = 2™ is the largest
number such that log™n =k + 1.

DATA STRUCTURES AND ANALYSIS

While this running time is so close to constant that it seems like this
should have been the end of it, investigation of this function did not stop
at the Hopcroft-Ullman result. In 1975, just two years later, Robert En-
dre Tarjan published his paper “Efficiency of a Good But Not Linear Set
Union Algorithm.” His main result was that the amortized cost of each
FIND operation is ®(a(n)), where a(n) is the inverse Ackermann function,
a function that grows even more slowly than the iterated logarithm.

And even more impressive than getting a better upper bound was that
Tarjan was able to show a matching lower bound, i.e., give a sequence of
operations so that the amortized cost of the FIND operations when using
both union-by-rank and path compression is Q(«a(#n)). This showed that
no one else would be able to come along and give a better upper bound
for the amortized cost of these operations, and the question was settled
— almost. At the end of the paper, Tarjan wrote the following (emphasis
added):

This is probably the first and maybe the only existing example of a simple
algorithm with a very complicated running time. The lower bound given in
Theorem 16 is general enough to apply to many variations of the algorithm,
although it is an open problem whether there is a linear-time algorithm for
the online set union problem. On the basis of Theorem 16, I conjecture that
there is no linear-time method, and that the algorithm considered here is
optimal to within a constant factor.

In other words, having completed his analysis of the disjoint set data
structure using both union-by-rank and path compression, Tarjan pro-
posed that no other heuristics would improve the asymptotic amortized
cost of FIND, nor would any other completely different algorithm.

And in 1989 (!), Michael Fredman and Michael Saks proved that this
was true: any implementation of disjoint sets would have an amortized
cost for FIND of Q(«(n)). This is quite a remarkable statement to prove,
as it establishes some kind of universal truth over all possible implemen-
tations of disjoint sets — even ones that haven’t been invented yet! Rather
than analyse a single algorithm or single data structure, they defined a
notion of innate hardness for the disjoint set ADT itself that would con-
strain any possible implementation. This idea, that one can talk about
all possible implementations of an abstract data type, or all possible al-
gorithms solving a problem, is truly one of the most fundamental — and
most challenging — pillars of theoretical computer science.

Exercise Break!

8.3 The idea of using an attribute to store the rank of each node is a power-
ful one, and can be extended to storing all sorts of metadata about each

107

For context, the estimated number of
atoms in the universe is roughly 2272,

For comparison to the iterated loga-

rithm, a(

265536
22

)

108 DAVID LIU

8.4

8.5

set.

Use an augmented version of the tree-based disjoint set data structure
to support the following two operations, using only linear additional
space:

e Max(DS5, x): Return the maximum value in the set containing x

¢ MIN(DS, y): Return the minimum value in the set containing y

What is the running time of these two operations?

Why is it harder to augment this data structure to store the median
value of each set? More generally, can you characterize the kinds of
queries that are “easy” to support using an augmented disjoint set data
structure?

We have seen in Chapter 6 how to use depth-first search (or breadth-
first search) to detect cycles in a graph.

Consider the following dynamic version of this problem: we are given
n vertices, and originally have no edges between them. Then edges are
added, one at a time. Each time an edge is added, we want to report if
that edge forms a cycle in the graph.

(a) Suppose that each time an edge is added, we perform a depth-first
search starting at one of its endpoints. What is the amortized cost
per edge addition in this case?

(b) Give an algorithm to support this cycle detection using disjoint sets,
and analyse the amortized cost per edge addition in this case.

	Introduction and analysing running time
	How do we measure running time?
	Three different symbols
	Worst-case analysis
	Average-case analysis
	Quicksort is fast on average

	Priority Queues and Heaps
	Abstract data type vs. data structure
	The Priority Queue ADT
	Heaps
	Heapsort and building heaps

	Dictionaries, Round One: AVL Trees
	Naïve Binary Search Trees
	AVL Trees
	Rotations
	AVL tree implementation
	Analysis of AVL Algorithms

	Dictionaries, Round Two: Hash Tables
	Hash functions
	Closed addressing (``chaining'')
	Open addressing

	Randomized Algorithms
	Randomized quicksort
	Universal Hashing

	Graphs
	Fundamental graph definitions
	Implementing graphs
	Graph traversals: breadth-first search
	Graph traversals: depth-first search
	Applications of graph traversals
	Weighted graphs
	Minimum spanning trees

	Amortized Analysis
	Dynamic arrays
	Amortized analysis

	Disjoint Sets
	Initial attempts
	Heuristics for tree-based disjoint sets
	Combining the heuristics: a tale of incremental analyses

