
Graphs: MST
Lecture 9

CSC263 | Jessica Burgner-Kahrs
1

CSC263 Winter 2020

Midterm Results

Average 32/54 (60%)

Median 32.5/54

Highest Mark 49.5/54

in this Section

CSC263 | Jessica Burgner-Kahrs
2

Midterm Remarking Requests

Remarking request
§ Check solutions posted on the forum
§ Fill in the remarking request form (posted on the course website)
§ Staple it to your test and submit to Sushant by end of next week.
§ A subset of the tests have been scanned, so don’t commit AO by

altering your answer and remark.

Make sure your mark is correct on MarkUs

CSC263 | Jessica Burgner-Kahrs
3

Observations & Reflections

§ Q1-3 were essentially from lectures / tutorials. If you didn’t do
well, you need to change your way of learning for this course.

§ Make your mistakes worthwhile. Make sure you understand
the problem/solution, and will be able to solve it next time.

§ If you’re not sure how to improve, feel free to talk to Sushant or
Jessica about how to improve your learning for the rest of the
semester. It’s not too late yet!

CSC263 | Jessica Burgner-Kahrs
4

Announcement

PS3 will be out by the beginning of next week!

CSC263 | Jessica Burgner-Kahrs
5

MST
Minimum
Spanning
Tree

CSC263 | Jessica Burgner-Kahrs
6

Graph of Interest Today

7

A connected undirected weighted graph

G = (V, E) with weights w(e) for each e ∈ E
8

10 5

5

3

2

12

CSC263 | Jessica Burgner-Kahrs

Minimum Spanning Tree

Minimum it has the smallest total weight

Spanning it covers all vertices in the graph

Tree it is a connected, acyclic subgraph

8
CSC263 | Jessica Burgner-Kahrs

8

10 5

5

3

2

12

9

A Minimum Spanning Tree

may not be unique…

CSC263 | Jessica Burgner-Kahrs

Applications of MST

CSC263 | Jessica Burgner-Kahrs
10

Build a broadband network that connects
all towns and with the minimum cost.

Applications of MST

CSC263 | Jessica Burgner-Kahrs
11

Circuit/network Design
Connect all components with the least amount of wiring.

Other applications

Cluster Analysis

Approximation Algorithms for hard problems

§ e.g. Traveling Salesman

12
CSC263 | Jessica Burgner-Kahrs

CSC263 | Jessica Burgner-Kahrs
13

In order to understand
minimum spanning tree

we need to first understand
tree

CSC263 | Jessica Burgner-Kahrs
14

Tree Graphis a special type of

Tree

15

A tree T with n vertices
has exactly _____ edges.n-1

Adding one edge to T will _____________. create a cycle

Removing one edge from T
will ___________________. disconnect the tree

A tree is a undirected, connected, acyclic graph.

CSC263 | Jessica Burgner-Kahrs

MST Properties

The MST of a connected graph G=(V,E) has

§ |V| vertices (because spanning)

§ |V| - 1 edges (because tree)

16
CSC263 | Jessica Burgner-Kahrs

MST Algorithms

CSC263 | Jessica Burgner-Kahrs
17

18

Idea #1
Start with T = G.E and remove edges until
an MST remains.

Idea #2
Start with empty T, and add edges until an
MST is built.

Which sounds more efficient
in terms of worst-case runtime?

CSC263 | Jessica Burgner-Kahrs

A undirected simple graph G with n vertices
can have at most ___________ edges.

Hint

CSC263 | Jessica Burgner-Kahrs
19

Idea #1

Start with T = G.E and remove edges until an MST remains.

Worst Case

We have to remove |"|2 − " − 1 = O " (edges.

CSC263 | Jessica Burgner-Kahrs
20

Note: Here T is an edge set

Idea #2

Start with empty T, and add edges until an MST is built.

Worst Case
We have to add only O " edges.

Ø MST algorithms that add edges are more efficient than those
removing edges.

CSC263 | Jessica Burgner-Kahrs
21

CSC263 | Jessica Burgner-Kahrs
22

So, let’s explore more of Idea #2,
i.e.,

building an MST by adding edges
one by one

i.e.,
we grow a tree

The Generic Growing Algorithm

23

GENERIC-MST(G=(V, E, w)):

T ← ∅
while T is not a spanning tree:

find a “safe” edge e

T ← T ∪ {e}

return T
What is a “safe” edge?

|T| < |V|-1

CSC263 | Jessica Burgner-Kahrs

“Safe” Edge e for T

CSC263 | Jessica Burgner-Kahrs
24

GENERIC-MST(G=(V, E, w)):

T ← ∅
while T is not a spanning tree:

find a “safe” edge e

T ← T ∪ {e}

return T

Assumption
Before adding e, T ⊆ some MST.
Edge e is safe if after adding e,
still T ⊆ some MST

If we make sure T is always a subset of
some MST while we grow it, then
eventually T will become an MST!

(Easily proven by induction)

“Safe” means it keeps the hope
of T growing into an MST.

If we make sure the pieces we put together is always a subset of the real
picture while we grow it, then eventually it will become the real picture!

Intuition

CSC263 | Jessica Burgner-Kahrs
25

The Generic Growing Algorithm

26

GENERIC-MST(G=(V, E, w)):

T ← ∅
while T is not a spanning tree:

find a “safe” edge e

T ← T ∪ {e}

return T
How to find a
“safe” edge?

|T| < |V|-1

CSC263 | Jessica Burgner-Kahrs

Two Major Algorithms

Prim’s Algorithm Kruskal’s Algorithm

27

They are both based on one Theorem...

CSC263 | Jessica Burgner-Kahrs

The Theorem

Let G be a connected, undirected, weighted graph, and T be
a subgraph of G which is a subset of some MST of G.

Let edge e be the minimum weighted edge among all edges
that leave a fixed connected component of T.

Then e is safe for T.

28

Note: Here T includes both vertices and edges

CLRS
Theorem 23.1

CSC263 | Jessica Burgner-Kahrs

a

e

b

d

c

8

10 5

5

3

2

12

Initially, T (green) is a subgraph with no edge,
each vertex is a connected component,
all edges are crossing components,
and the minimum weighted one is ...

(b,c)
is safe

29
CSC263 | Jessica Burgner-Kahrs

a

e

b

d

c

8

10 5

5

3

2

12

Now b and c in one connected component,
each of the other vertices is a component, i.e.,
4 components {b,c},{a},{d},{e}.
All gray edges are crossing components.

(b,c)
is safe 30

a

e

b

d

c

8

10 5

5

3

2

12

Now b, c and d are in one connected
component, a and e each is a component, i.e.
3 components {b,c,d},{a},{e}
(c, d) is NOT crossing components!

(e,d) is also safe

(e,b) is safe

31
CSC263 | Jessica Burgner-Kahrs

a

e

b

d

c

8

10 5

5

3

2

12

Now b, c, d and e are in one connected
component, a is a component, i.e.
2 components {b,c,d,e},{a}
(a, e) and (a, b) are crossing components.

(b,a) is safe

32
CSC263 | Jessica Burgner-Kahrs

a

e

b

d

c

8

10 5

5

3

2

12

MST grown!

33
CSC263 | Jessica Burgner-Kahrs

Two Implementation Challenges

1. How to keep track of the connected components?

2. How to efficiently find the minimum weighted edge?

Prim’s and Kruskal’s basically use

different data structures to do these two things.

34
CSC263 | Jessica Burgner-Kahrs

Overview: Prim’s and Kruskal’s

35

Keep track of
connected

components
Find safe edge

Prim’s one tree plus
isolated vertices

Priority Queue
ADT

Kruskal’s Disjoint Set
ADT

Sort all edges
by weight

CSC263 | Jessica Burgner-Kahrs

CSC263 | Jessica Burgner-Kahrs
36

7 min

Prim’s MST algorithm

CSC263 | Jessica Burgner-Kahrs
37

Prim’s Algorithm: Idea

§ Start from an arbitrary vertex as root
§ Focus on growing one tree, add one edge at a time. The tree is one

component, each of the other (isolated) vertices is a component.
§ Add which edge? Among all edges that are leave the current tree

(edges crossing components), pick one with the minimum weight.

§ How to get that minimum? Store all candidate vertices in a Min-
Priority Queue whose key is the weight of the crossing edge
(incident to tree).

38
CSC263 | Jessica Burgner-Kahrs

PRIM-MST(G=(V, E, w)):
1 T ← {}
2 for all v in V:
3 key[v] ← ∞
4 pi[v] ← NIL
5 Initialize priority queue Q with all v in V
6 Pick arbitrary vertex r as root
7 key[r] ← 0
8 while Q is not empty:
9 u ← EXTRACT-MIN(Q)

10 if pi[u] != NIL:
11 T ← T ∪ {(pi[u], u)}
12 for each neighbour v of u:
13 if v in Q and w(u, v) < key[v]:
14 DECREASE-KEY(Q, v, w(u, v))
15 pi[v] ← u

u is the end point of the “safe”
edge leaving the current tree

add u to the tree using its safe edge

39CSC263 | Jessica Burgner-Kahrs

PRIM-MST(G=(V, E, w)):
1 T ← {}
2 for all v in V:
3 key[v] ← ∞
4 pi[v] ← NIL
5 Initialize priority queue Q with all v in V
6 Pick arbitrary vertex r as root
7 key[r] ← 0
8 while Q is not empty:
9 u ← EXTRACT-MIN(Q)

10 if pi[u] != NIL:
11 T ← T ∪ {(pi[u], u)}
12 for each neighbour v of u:
13 if v in Q and w(u, v) < key[v]:
14 DECREASE-KEY(Q, v, w(u, v))
15 pi[v] ← u

key[v] keeps the “shortest distance”
between v and the current tree

pi[v] keeps who, in the tree, is v
connected to via lightest edge.

u is the next vertex to add to
current tree

add edge, pi[u] is lightest
vertex to connect to, “safe”

all u’s neighbours’ distances to the
current tree need update CSC263 | Jessica Burgner-Kahrs

40

Example

41

a

e

b

d

c

8

3 5

5

10

2

12

Pick “a” as root Q key pi

a 0 NIL

b ∞ NIL

c ∞ NIL

d ∞ NIL

e ∞ NILNext, ExtractMin !
CSC263 | Jessica Burgner-Kahrs

Q key pi

b ∞ NIL

c ∞ NIL

d ∞ NIL

e ∞ NIL
CSC263 | Jessica Burgner-Kahrs

42

ExtractMin (#1)
then update neighbours’ keys

a

e

b

d

c

8

3 5

5

10

2

12

→8

→3

a: 0, NIL

→a

→a

Q key pi

b 8 a

c ∞ NIL

d ∞ NIL

CSC263 | Jessica Burgner-Kahrs
43

ExtractMin (#2)
then update neighbours’ keys

a

e

b

d

c

8

3 5

5

10

2

12

→5

e: 3, a

→e

→5 →e

Q key pi

c ∞ NIL

d 5 e

ExtractMin (#3)
then update neighbours’ keys

a

e

b

d

c

8

3 5

5

10

2

12

b: 5, e

→2 →b

Could also have extracted d
since its key is also 5 (min)

44CSC263 | Jessica Burgner-Kahrs

Q key pi

d 5 e

CSC263 | Jessica Burgner-Kahrs
45

ExtractMin (#4)
then update neighbours’ keys

a

e

b

d

c

8

3 5

5

10

2

12

c: 2, b

Q key pi

ExtractMin (#4)
then update neighbours’ keys

a

e

b

d

c

8

3 5

5

10

2

12

d: 5, e

d

MST grown!

Q is empty now.

46CSC263 | Jessica Burgner-Kahrs

Correctness of Prim’s

47

The added edge is always a “safe” edge, i.e., the minimum
weight edge leaving the current tree (because ExtractMin).

a

e

b

d

c

8

3 5

5

10

2

12d

CLRS
Theorem 23.1

CSC263 | Jessica Burgner-Kahrs

Runtime Analysis: Prim’s

§ Assume we use binary min heap to implement priority
queue.
§ Each ExtractMin takes O(lg |V|)
§ In total O(|V|) ExtractMins
§ Total for all ExtractMin calls O(|V| lg |V|)

48
CSC263 | Jessica Burgner-Kahrs

Runtime Analysis: Prim’s

Total so far: O(|V| lg |V|)

§ We look at each of the |E| edges once

§ Worst case: Each leads to a DecreaseKey

§ DecreaseKey costs O(lg |V|) time

§ Total work for all DecreaseKeys is O(|E| lg |V|)

CSC263 | Jessica Burgner-Kahrs
49

Runtime Analysis: Prim’s

Total: O(|V| lg |V|) + O(|E| lg |V|)
= O((|V|+|E|)log |V|)

This is O(|E| log |V|) in a connected graph.

CSC263 | Jessica Burgner-Kahrs
50

In a connected graph G = (V, E)

|V| is in O(|E|) because…
|E| has to be at least |V|-1

Also, log |E| is in O(log |V|) because …
E is at most V²,
so log E is at most log V² = 2 log V, which is
in O(log V)

CSC263 | Jessica Burgner-Kahrs
51

Kruskal’s MST algorithm

CSC263 | Jessica Burgner-Kahrs
52

Kruskal’s Algorithm: Idea

§ Sort all edges according to weight, then start adding to
MST from the lightest one.

§ Constraint: Added edge must NOT cause a cycle
§ In other words, the two endpoints of the edge must

belong to two different trees (components).
§ Unlike Prim, Kruskal allows multiple tree components to

exist and progressively combines them into larger trees

53
CSC263 | Jessica Burgner-Kahrs

Pseudocode

54

KRUSKAL-MST(G(V, E, w)):

1 T ← {}

2 sort edges so that w(e1)≤w(e2)≤...≤w(em)

3 for i ← 1 to m:

4 # let (ui, vi) = ei

5 if ui and vi in different components:

6 T ← T ∪ {ei}

m = |E|

CSC263 | Jessica Burgner-Kahrs

Example

55

a

e

b

d

c

6

3 5

9

10

2

12

CSC263 | Jessica Burgner-Kahrs

Add (b, c), the lightest edge

56

a

e

b

d

c

6

3 5

9

10

2

12

CSC263 | Jessica Burgner-Kahrs

Add (a, e), the 2nd lightest

57

a

e

b

d

c

6

3 5

9

10

2

12

CSC263 | Jessica Burgner-Kahrs

Add (b, e), the 3rd lightest

58

a

e

b

d

c

6

3 5

9

10

2

12

CSC263 | Jessica Burgner-Kahrs

a

e

b

d

c

6

3 5

9

10

2

12

No! a, b are in the same component
Add (d, e) instead

Add (a, b), the 4th lightest ...

59
CSC263 | Jessica Burgner-Kahrs

a

e

b

d

c

6

3 5

9

10

2

12

Add (d, e) ...

60

MST grown!

CSC263 | Jessica Burgner-Kahrs

Correctness of Kruskal’s

61

The added edge is always a “safe” edge,
because it is the minimum weight edge
among all edges that cross components

a

e

b

d

c

6

3 5

9

10

2

12

CLRS
Theorem 23.1

CSC263 | Jessica Burgner-Kahrs

Runtime ...

62

KRUSKAL-MST(G(V, E, w)):

1 T ← {}

2 sort edges so that w(e1)≤w(e2)≤...≤w(em)

3 for i ← 1 to m:

4 # let (ui, vi) = ei

5 if ui and vi in different components:

6 T ← T ∪ {ei}

m = |E|

How exactly do we do this two lines?

sorting takes O(E log E)

CSC263 | Jessica Burgner-Kahrs

We need the Disjoint Set ADT

which stores a collections of nonempty disjoint sets
S1, S2, …, Sk, each has a “representative”.

and supports the following operations

MakeSet(x) create a new set {x}

FindSet(x) return the representative of the set that x belongs to

Union(x,y) union the two sets that contain x and y, if different

63
CSC263 | Jessica Burgner-Kahrs

Real Pseudocode

64

KRUSKAL-MST(G(V, E, w)):
1 T ← {}
2 sort edges so that w(e1)≤w(e2)≤...≤w(em)
3 for each v in V:
4 MakeSet(v)
5 for i ← 1 to m:
6 # let (ui, vi) = ei
7 if FindSet(ui) != FindSet(vi):
8 Union(ui, vi)
9 T ← T ∪ {ei}

m = |E|

CSC263 | Jessica Burgner-Kahrs

Next week

Disjoint Set

65
CSC263 | Jessica Burgner-Kahrs

