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Midterm Results

Average 32/54 (60%)

Median 32.5/54

Highest Mark 49.5/54

in this Section
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Midterm Remarking Requests

Remarking request
§ Check solutions posted on the forum
§ Fill in the remarking request form (posted on the course website)
§ Staple it to your test and submit to Sushant by end of next week.
§ A subset of the tests have been scanned, so don’t commit AO by 

altering your answer and remark.

Make sure your mark is correct on MarkUs
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Observations & Reflections

§ Q1-3 were essentially from lectures / tutorials. If you didn’t do 
well, you need to change your way of learning for this course.

§ Make your mistakes worthwhile. Make sure you understand 
the problem/solution, and will be able to solve it next time.

§ If you’re not sure how to improve, feel free to talk to Sushant or 
Jessica about how to improve your learning for the rest of the 
semester. It’s not too late yet!
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Announcement

PS3 will be out by the beginning of next week!
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MST
Minimum
Spanning
Tree
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Graph of Interest Today
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A connected undirected weighted graph 

G = (V, E) with weights w(e) for each e ∈ E
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Minimum Spanning Tree

Minimum it has the smallest total weight

Spanning it covers all vertices in the graph

Tree it is a connected, acyclic subgraph

8
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A Minimum Spanning Tree

may not be unique…
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Applications of MST
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Build a broadband network that connects 
all towns and with the minimum cost.



Applications of MST
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Circuit/network Design
Connect all components with the least amount of wiring.



Other applications

Cluster Analysis

Approximation Algorithms for hard problems

§ e.g. Traveling Salesman
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In order to understand 
minimum spanning tree

we need to first understand 
tree
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Tree Graphis a special type of 



Tree
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A tree T with n vertices 
has exactly _____ edges.n-1

Adding one edge to T will  _____________. create a cycle

Removing one edge from T 
will ___________________. disconnect the tree

A tree is a undirected, connected, acyclic graph.
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MST Properties

The MST of a connected graph G=(V,E) has

§ |V| vertices (because spanning)

§ |V| - 1 edges (because tree)

16
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MST Algorithms
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Idea #1
Start with T = G.E and remove edges until 
an MST remains.

Idea #2
Start with empty T, and add edges until an 
MST is built.

Which sounds more efficient 
in terms of worst-case runtime?
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A undirected simple graph G with n vertices 
can have at most ___________ edges.

Hint
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Idea #1

Start with T = G.E and remove edges until an MST remains.

Worst Case

We have to remove |"|2 − " − 1 = O " ( edges.
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Note: Here T is an edge set



Idea #2

Start with empty T, and add edges until an MST is built.

Worst Case
We have to add only O " edges.

Ø MST algorithms that add edges are more efficient than those 
removing edges.
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So, let’s explore more of Idea #2, 
i.e., 

building an MST by adding edges 
one by one

i.e.,
we grow a tree



The Generic Growing Algorithm
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GENERIC-MST(G=(V, E, w)):

T ← ∅
while T is not a spanning tree:

find a “safe” edge e

T ← T ∪ {e}

return T
What is a “safe” edge?

|T| < |V|-1
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“Safe” Edge e for T
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GENERIC-MST(G=(V, E, w)):

T ← ∅
while T is not a spanning tree:

find a “safe” edge e

T ← T ∪ {e}

return T

Assumption
Before adding e, T ⊆ some MST.
Edge e is safe if after adding e, 
still T ⊆ some MST

If we make sure T is always a subset of 
some MST while we grow it, then 
eventually T will become an MST!

(Easily proven by induction)

“Safe” means it keeps the hope
of T growing into an MST.



If we make sure the pieces we put together is always a subset of the real 
picture while we grow it, then eventually it will become the real picture!

Intuition
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The Generic Growing Algorithm
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GENERIC-MST(G=(V, E, w)):

T ← ∅
while T is not a spanning tree:

find a “safe” edge e

T ← T ∪ {e}

return T
How to find a 
“safe” edge?

|T| < |V|-1
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Two Major Algorithms

Prim’s Algorithm Kruskal’s Algorithm

27

They are both based on one Theorem...
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The Theorem

Let G be a connected, undirected, weighted graph, and T be 
a subgraph of G which is a subset of some MST of G. 

Let edge e be the minimum weighted edge among all edges 
that leave a fixed connected component of T.

Then e is safe for T. 

28

Note: Here T includes both vertices and edges

CLRS 
Theorem 23.1
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Initially, T (green) is a subgraph with no edge,
each vertex is a connected component,
all edges are crossing components,
and the minimum weighted one is ...

(b,c)
is safe
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Now b and c in one connected component, 
each of the other vertices is a component, i.e., 
4 components {b,c},{a},{d},{e}. 
All gray edges are crossing components.

(b,c) 
is safe 30
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Now b, c and d are in one connected 
component, a and e each is a component, i.e.
3 components {b,c,d},{a},{e}
(c, d) is NOT crossing components!

(e,d) is also safe

(e,b) is safe

31
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Now b, c, d and e are in one connected 
component, a is a component, i.e. 
2 components {b,c,d,e},{a}
(a, e) and (a, b) are crossing components.

(b,a) is safe

32
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MST grown!
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Two Implementation Challenges

1. How to keep track of the connected components?

2. How to efficiently find the minimum weighted edge?

Prim’s and Kruskal’s basically use 

different data structures to do these two things.

34
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Overview: Prim’s and Kruskal’s
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Keep track of 
connected 

components
Find safe edge

Prim’s one tree plus 
isolated vertices 

Priority Queue 
ADT

Kruskal’s Disjoint Set 
ADT

Sort all edges 
by weight
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7 min



Prim’s MST algorithm
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Prim’s Algorithm: Idea

§ Start from an arbitrary vertex as root
§ Focus on growing one tree, add one edge at a time. The tree is one 

component, each of the other (isolated) vertices is a component.
§ Add which edge? Among all edges that are leave the current tree 

(edges crossing components), pick one with the minimum weight.

§ How to get that minimum? Store all candidate vertices in a Min-
Priority Queue whose key is the weight of the crossing edge 
(incident to tree).

38
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PRIM-MST(G=(V, E, w)):
1   T ← {}
2   for all v in V:
3      key[v] ← ∞
4      pi[v] ← NIL
5   Initialize priority queue Q with all v in V
6   Pick arbitrary vertex r as root
7   key[r] ← 0
8   while Q is not empty:
9      u ← EXTRACT-MIN(Q)

10      if pi[u] != NIL:
11         T ← T ∪ {(pi[u], u)}
12      for each neighbour v of u:
13         if v in Q and w(u, v) < key[v]:
14            DECREASE-KEY(Q, v, w(u, v))
15            pi[v] ← u

u is the end point of the “safe” 
edge leaving the current tree

add u to the tree using its safe edge
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PRIM-MST(G=(V, E, w)):
1   T ← {}
2   for all v in V:
3      key[v] ← ∞
4      pi[v] ← NIL
5   Initialize priority queue Q with all v in V
6   Pick arbitrary vertex r as root
7   key[r] ← 0
8   while Q is not empty:
9      u ← EXTRACT-MIN(Q)

10      if pi[u] != NIL:
11         T ← T ∪ {(pi[u], u)}
12      for each neighbour v of u:
13         if v in Q and w(u, v) < key[v]:
14            DECREASE-KEY(Q, v, w(u, v))
15            pi[v] ← u

key[v] keeps the “shortest distance” 
between v and the current tree

pi[v] keeps who, in the tree, is v 
connected to via lightest edge.

u is the next vertex to add to 
current tree

add edge, pi[u] is lightest 
vertex to connect to, “safe”

all u’s neighbours’ distances to the 
current tree need update CSC263 | Jessica Burgner-Kahrs
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Example
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Pick “a” as root Q key pi

a 0 NIL

b ∞ NIL

c ∞ NIL

d ∞ NIL

e ∞ NILNext, ExtractMin !
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Q key pi

b ∞ NIL

c ∞ NIL

d ∞ NIL

e ∞ NIL
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42

ExtractMin (#1)
then update neighbours’ keys
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→8

→3

a: 0, NIL

→a

→a



Q key pi

b 8 a

c ∞ NIL

d ∞ NIL
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ExtractMin (#2)
then update neighbours’ keys
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→5

e: 3, a

→e

→5 →e



Q key pi

c ∞ NIL

d 5 e

ExtractMin (#3)
then update neighbours’ keys
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b: 5, e

→2 →b

Could also have extracted d 
since its key is also 5 (min)
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Q key pi

d 5 e
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ExtractMin (#4)
then update neighbours’ keys
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c: 2, b



Q key pi

ExtractMin (#4)
then update neighbours’ keys
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d: 5, e

d

MST grown!

Q is empty now.
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Correctness of Prim’s
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The added edge is always a “safe” edge, i.e., the minimum
weight edge leaving the current tree (because ExtractMin).
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CLRS 
Theorem 23.1
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Runtime Analysis: Prim’s

§ Assume we use binary min heap to implement priority 
queue.
§ Each ExtractMin takes O(lg |V|)
§ In total O(|V|) ExtractMins
§ Total for all ExtractMin calls O(|V| lg |V|)

48
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Runtime Analysis: Prim’s

Total so far: O(|V| lg |V|)

§ We look at each of the |E| edges once

§ Worst case: Each leads to a DecreaseKey

§ DecreaseKey costs O(lg |V|) time

§ Total work for all DecreaseKeys is O(|E| lg |V|) 
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Runtime Analysis: Prim’s

Total:   O(|V| lg |V|) + O(|E| lg |V|) 
= O((|V|+|E|)log |V|) 

This is O(|E| log |V|) in a connected graph.
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In a connected graph G = (V, E)

|V| is in O(|E|) because…
|E| has to be at least |V|-1

Also, log |E| is in O(log |V|) because …
E is at most V²,
so log E is at most log V² = 2 log V, which is 
in O(log V)
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Kruskal’s MST algorithm
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Kruskal’s Algorithm: Idea

§ Sort all edges according to weight, then start adding to 
MST from the lightest one.

§ Constraint: Added edge must NOT cause a cycle
§ In other words, the two endpoints of the edge must 

belong to two different trees (components).
§ Unlike Prim, Kruskal allows multiple tree components to 

exist and progressively combines them into larger trees

53
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Pseudocode
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KRUSKAL-MST(G(V, E, w)):

1   T ← {}

2   sort edges so that w(e1)≤w(e2)≤...≤w(em)

3   for i ← 1 to m:

4      # let (ui, vi) = ei

5      if ui and vi in different components:

6         T ← T ∪ {ei}

m = |E|
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Example
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Add (b, c), the lightest edge
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Add (a, e), the 2nd lightest
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Add (b, e), the 3rd lightest
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No! a, b are in the same component
Add (d, e) instead

Add (a, b), the 4th lightest ...
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Add (d, e) ...
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MST grown!
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Correctness of Kruskal’s
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The added edge is always a “safe” edge, 
because it is the minimum weight edge 
among all edges that cross components
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CLRS 
Theorem 23.1
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Runtime ...
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KRUSKAL-MST(G(V, E, w)):

1   T ← {}

2   sort edges so that w(e1)≤w(e2)≤...≤w(em)

3   for i ← 1 to m:

4      # let (ui, vi) = ei

5      if ui and vi in different components:

6         T ← T ∪ {ei}

m = |E|

How exactly do we do this two lines?

sorting takes O(E log E)
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We need the Disjoint Set ADT

which stores a collections of nonempty disjoint sets 
S1, S2, …, Sk, each has a “representative”.

and supports the following operations

MakeSet(x) create a new set {x}

FindSet(x) return the representative of the set that x belongs to

Union(x,y) union the two sets that contain x and y, if different

63
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Real Pseudocode

64

KRUSKAL-MST(G(V, E, w)):
1   T ← {}
2   sort edges so that w(e1)≤w(e2)≤...≤w(em)
3   for each v in V:
4      MakeSet(v)
5   for i ← 1 to m:
6      # let (ui, vi) = ei
7      if FindSet(ui) != FindSet(vi):
8         Union(ui, vi)
9         T ← T ∪ {ei}

m = |E|
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Next week

Disjoint Set

65
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