CSC263 Winter 2020

Graphs: MST

Lecture 9

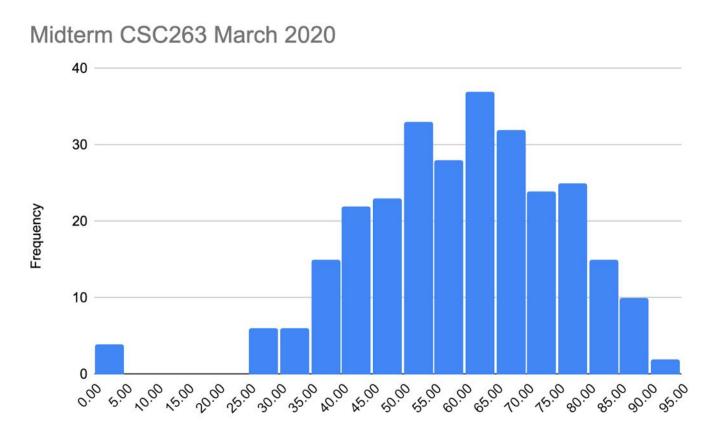
1

Midterm Results

Average 32/54 (60%)

Median 32.5/54

Highest Mark 49.5/54



Midterm Remarking Requests

Remarking request

- Check solutions posted on the forum
- Fill in the remarking request form (posted on the course website)
- Staple it to your test and submit to Sushant by end of next week.
- A subset of the tests have been scanned, so don't commit AO by altering your answer and remark.

Make sure your mark is correct on MarkUs

Observations & Reflections

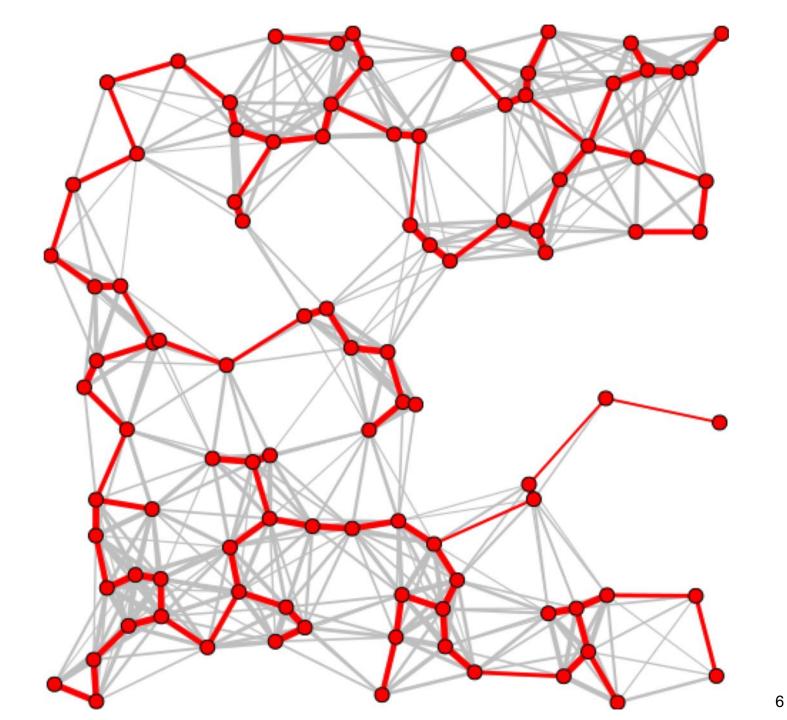
- Q1-3 were essentially from lectures / tutorials. If you didn't do well, you need to change your way of learning for this course.
- Make your mistakes worthwhile. Make sure you understand the problem/solution, and will be able to solve it next time.
- If you're not sure how to improve, feel free to talk to Sushant or Jessica about how to improve your learning for the rest of the semester. It's not too late yet!

Announcement

PS3 will be out by the beginning of next week!

MST

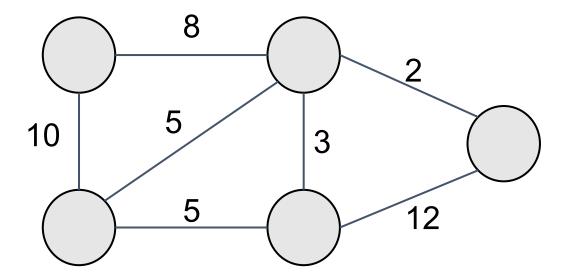
Minimum Spanning Tree



Graph of Interest Today

A connected undirected weighted graph

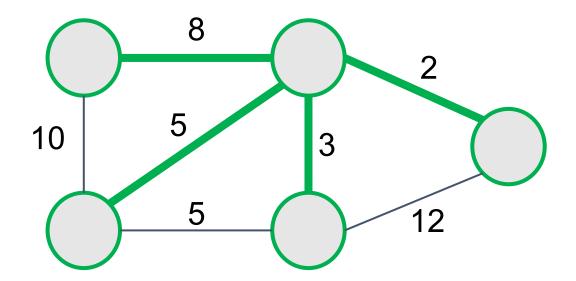
G = (V, E) with weights w(e) for each $e \in E$



Minimum Spanning Tree

Minimumit has the smallest total weightSpanningit covers all vertices in the graphTreeit is a connected, acyclic subgraph

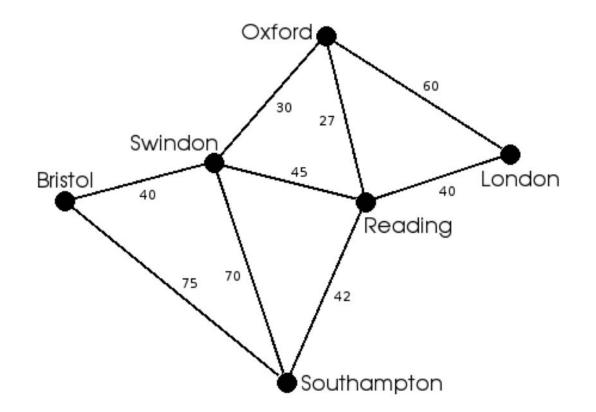
A Minimum Spanning Tree



may not be unique...

Applications of MST

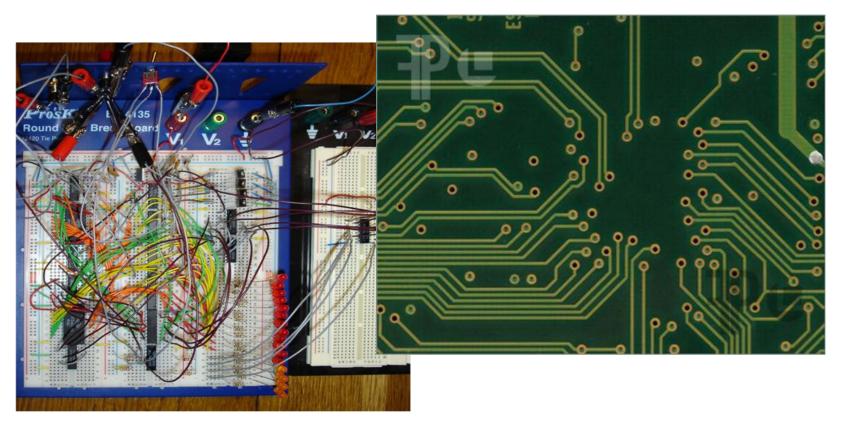
Build a broadband network that connects all towns and with the minimum cost.



Applications of MST

Circuit/network Design

Connect all components with the least amount of wiring.



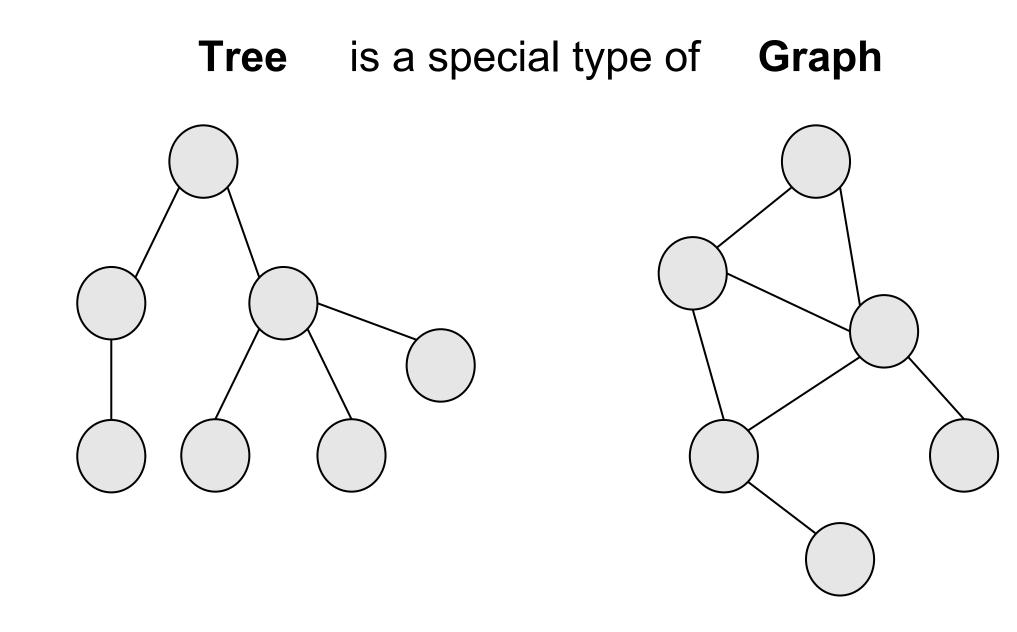
Other applications

Cluster Analysis

Approximation Algorithms for hard problems

e.g. Traveling Salesman

In order to understand minimum spanning tree we need to first understand tree

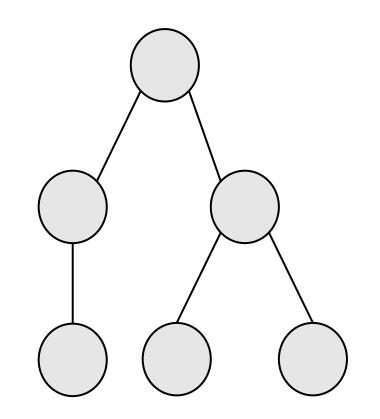


A tree is a undirected, connected, acyclic graph.

A tree **T** with **n** vertices has **exactly** <u>**n-1**</u> edges.

Removing one edge from T will **disconnect the tree**

Adding one edge to T will create a cycle



MST Properties

The MST of a connected graph G=(V,E) has

- |V| vertices (because spanning)
- |V| 1 edges (because tree)

MST Algorithms

Start with **T** = **G**.**E** and remove edges until an MST remains.

Idea #2

Start with **empty T**, and add edges until an MST is built.

CSC263 | Jessica Burgner-Kahrs

Hint

A undirected simple graph G with **n** vertices can have at most ______ edges.

$$\binom{n}{2} = \frac{n(n-1)}{2} \in \mathcal{O}(n^2)$$

Note: Here T is an edge set

Start with **T** = **G**.**E** and remove edges until an MST remains.

Worst Case

We have to remove $\binom{|V|}{2} - (|V| - 1) = O(|V|^2)$ edges.

Start with **empty T**, and add edges until an MST is built.

Worst Case

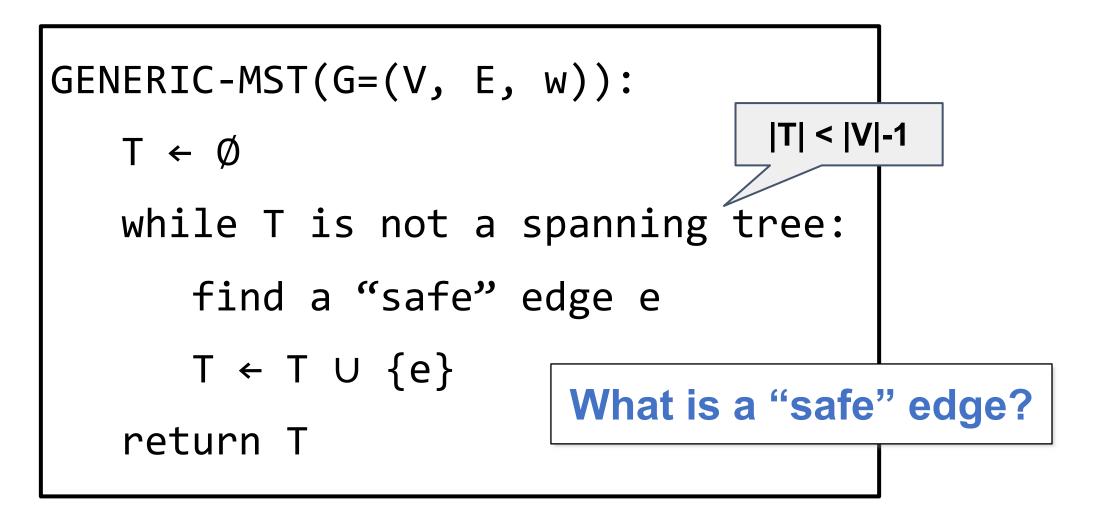
We have to add only O(|V|) edges.

MST algorithms that add edges are more efficient than those removing edges.

So, let's explore more of **Idea #2**, i.e., building an MST by **adding** edges one by one

i.e., we **grow** a tree

The Generic Growing Algorithm



"Safe" Edge e for T

"Safe" means it keeps the **hope** of T growing into an MST.

```
GENERIC-MST(G=(V, E, w)):
T ← Ø
while T is not a spanning tree:
  find a "safe" edge e
  T ← T ∪ {e}
return T
```

Assumption

Before adding e, $T \subseteq$ **some MST**. Edge **e** is safe if **after** adding **e**, still $T \subseteq$ **some MST**

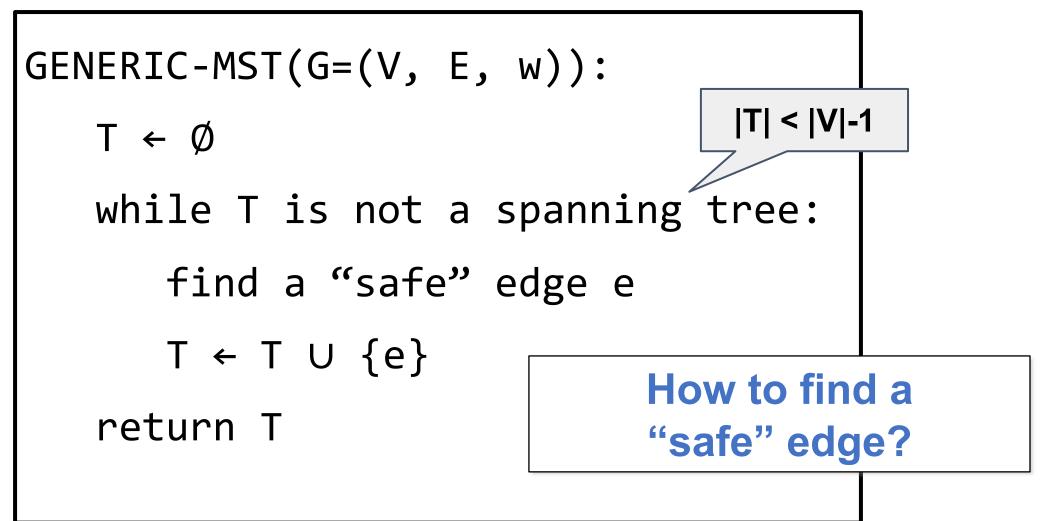
If we make sure T is always a subset of some MST while we grow it, then eventually T will become an MST!

(Easily proven by induction)

Intuition

If we make sure the pieces we put together is always a subset of the real picture while we grow it, then eventually it will become the real picture!

The Generic Growing Algorithm



Two Major Algorithms

Prim's Algorithm

Kruskal's Algorithm

They are both based on one Theorem...

The Theorem

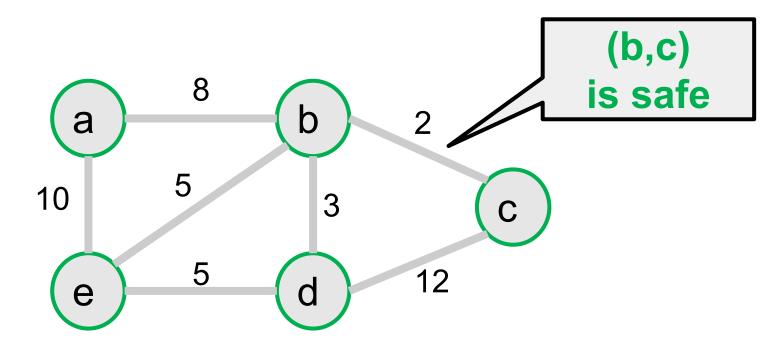
Let **G** be a connected, undirected, weighted graph, and **T** be a **subgraph** of G which is a **subset** of some MST of **G**.

Let edge **e** be the **minimum** weighted edge among all edges that **leave** a fixed **connected component** of T.

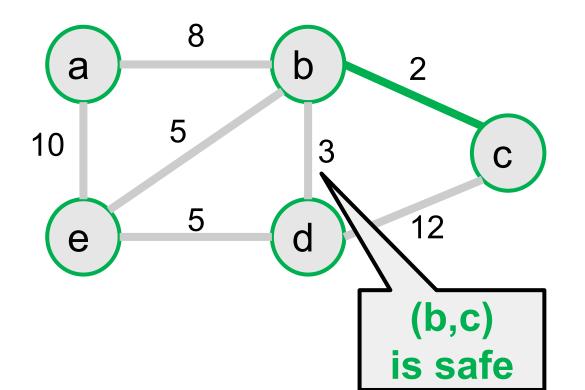
Then **e** is **safe** for **T**.

Note: Here T includes both vertices and edges

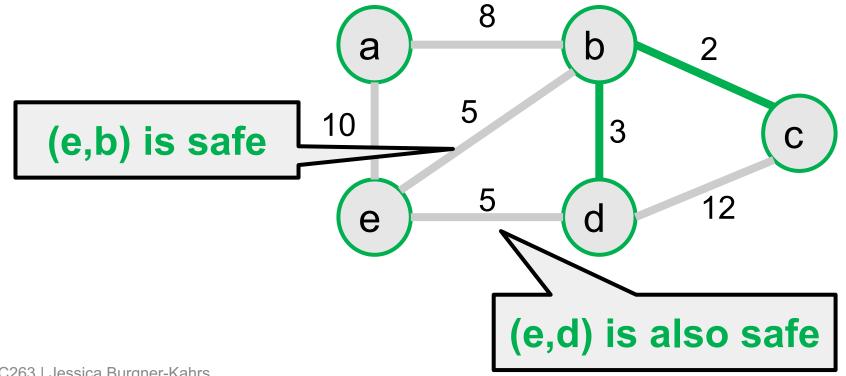
Initially, **T** (green) is a subgraph with no edge, each vertex is a connected component, all edges are crossing components, and the minimum weighted one is ...



Now **b** and **c** in one connected component, each of the other vertices is a component, i.e., 4 components {b,c},{a},{d},{e}. All gray edges are crossing components.

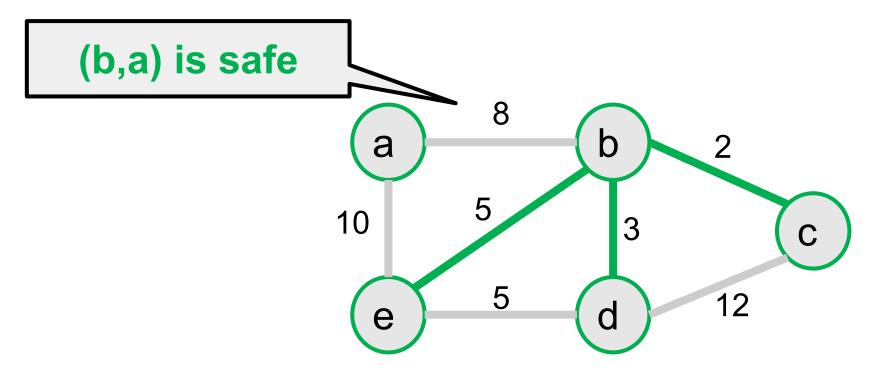


Now **b**, **c** and **d** are in one connected component, a and e each is a component, i.e. 3 components {b,c,d},{a},{e} (c, d) is **NOT** crossing components!

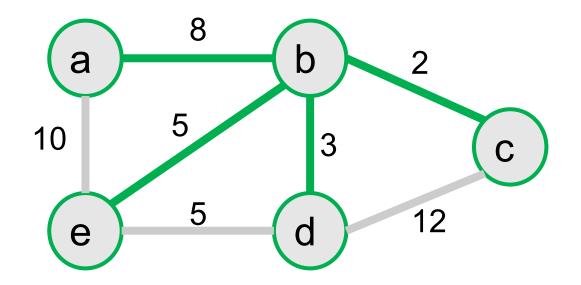


Now **b**, **c**, **d** and **e** are in one connected component, **a** is a component, i.e. 2 components {b,c,d,e},{a}

(a, e) and (a, b) are crossing components.



MST grown!



Two Implementation Challenges

- 1. How to keep track of the **connected components**?
- 2. How to efficiently find the minimum weighted edge?

Prim's and Kruskal's basically use

different data structures to do these two things.

Overview: Prim's and Kruskal's

	Keep track of connected components	Find safe edge
Prim's	one tree plus isolated vertices	Priority Queue ADT
Kruskal's	Disjoint Set ADT	Sort all edges by weight

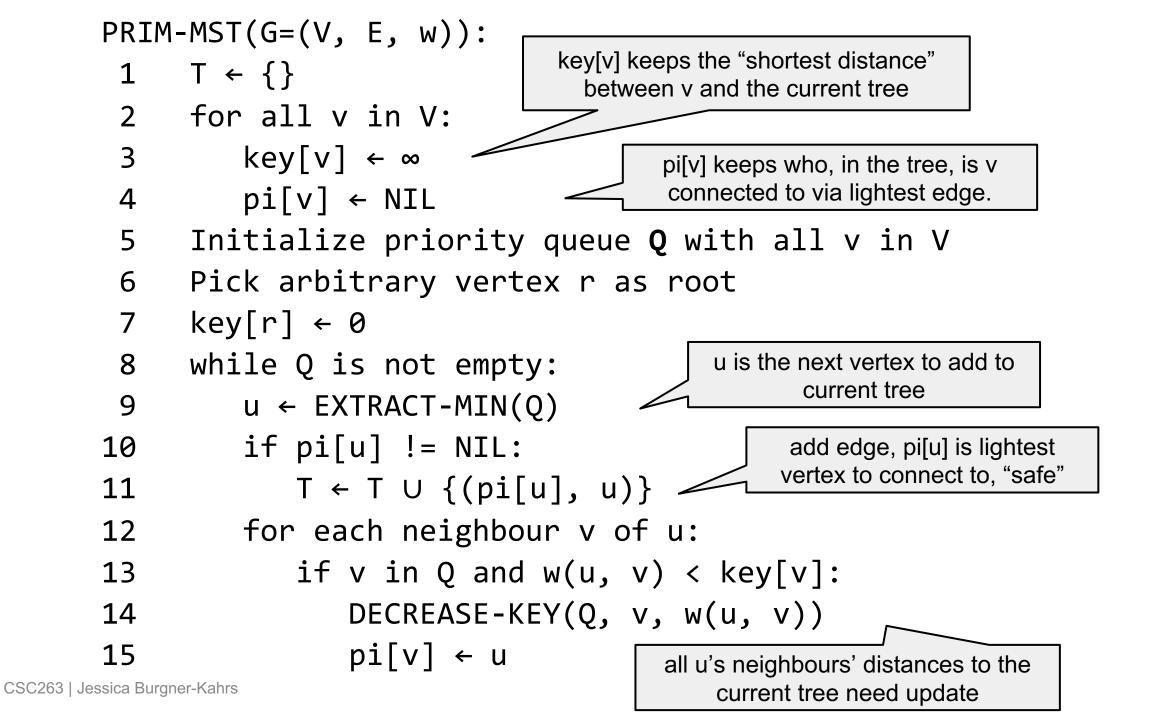
Conversion (

Prim's MST algorithm

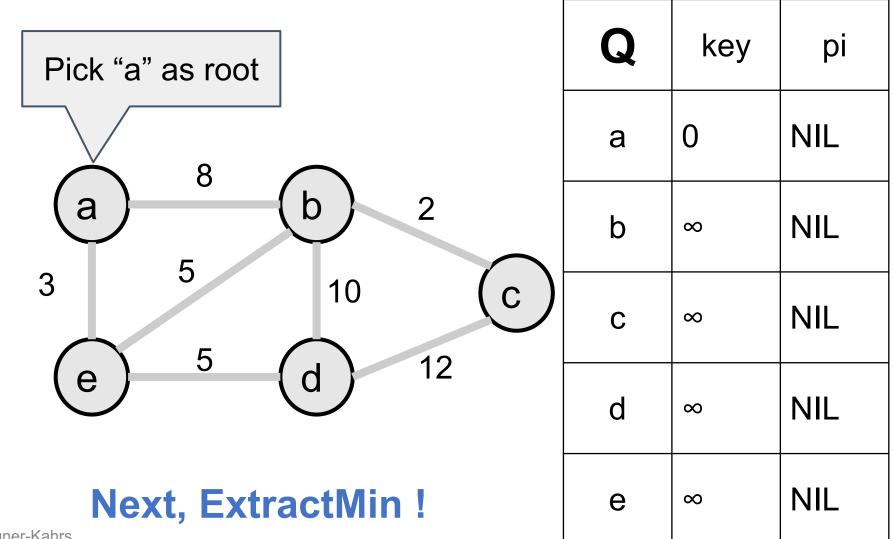
Prim's Algorithm: Idea

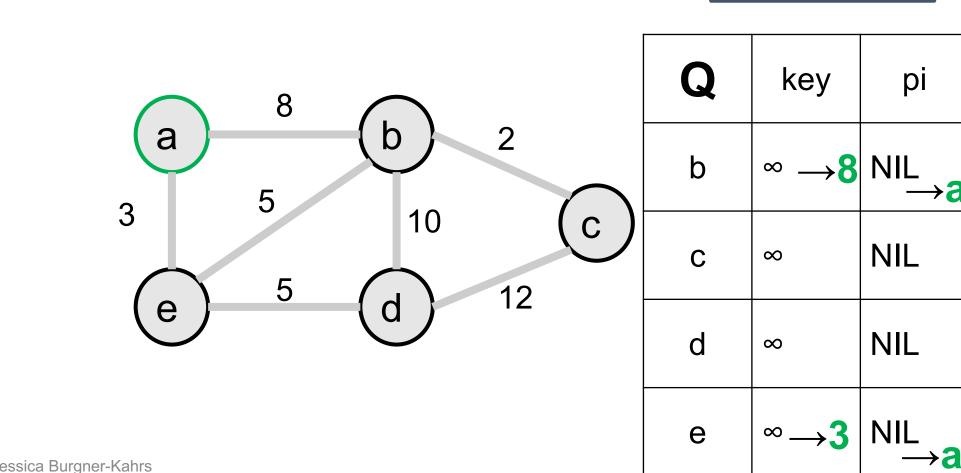
- Start from an arbitrary vertex as root
- Focus on growing one tree, add one edge at a time. The tree is one component, each of the other (isolated) vertices is a component.
- Add which edge? Among all edges that are leave the current tree (edges crossing components), pick one with the minimum weight.
- How to get that minimum? Store all candidate vertices in a Min-Priority Queue whose key is the weight of the crossing edge (incident to tree).

```
PRIM-MST(G=(V, E, w)):
 1
      T \leftarrow \{\}
      for all v in V:
 2
 3
          key[v] ← ∞
          pi[v] \leftarrow NIL
 4
 5
      Initialize priority queue \mathbf{Q} with all v in V
      Pick arbitrary vertex r as root
 6
      key[r] \leftarrow 0
 7
                                         u is the end point of the "safe"
 8
      while Q is not empty:
                                         edge leaving the current tree
 9
          u \leftarrow EXTRACT-MIN(Q)
          if pi[u] != NIL:
10
                                                add u to the tree using its safe edge
              T \leftarrow T \cup \{(pi[u], u)\}
11
          for each neighbour v of u:
12
              if v in Q and w(u, v) < key[v]:
13
                  DECREASE-KEY(Q, v, w(u, v))
14
15
                  pi[v] ← u
```



Example



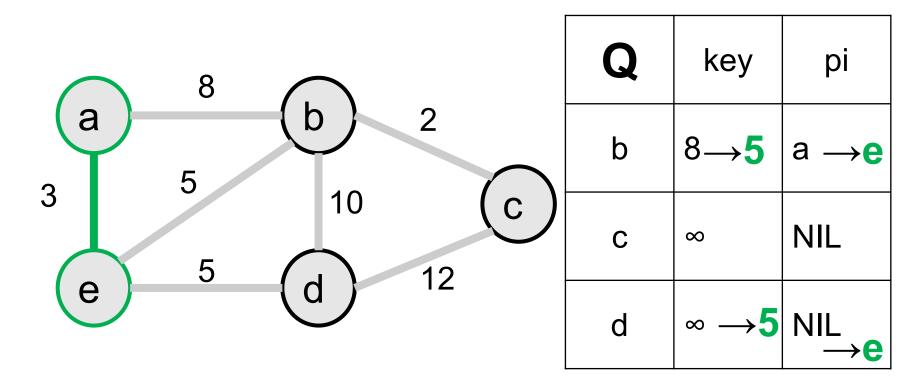


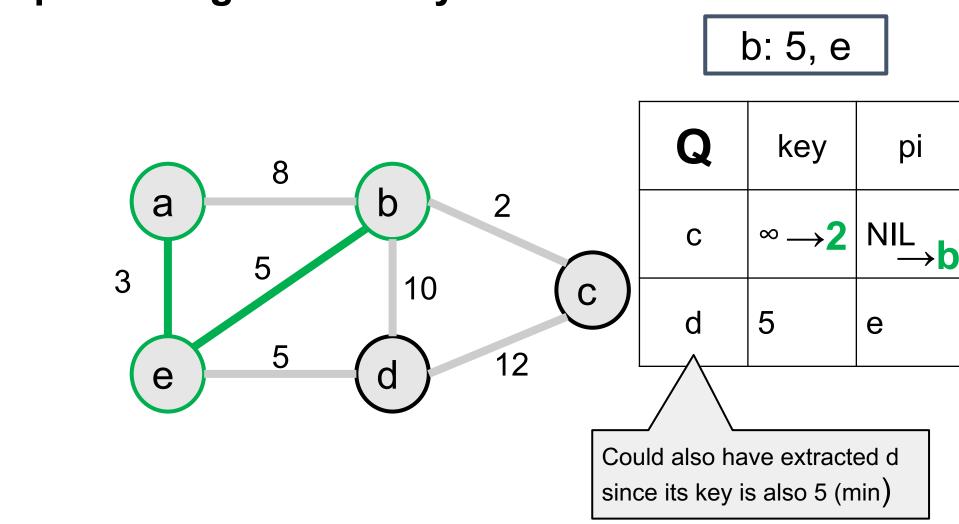
a: 0, NIL

ExtractMin (#1) then update neighbours' keys

CSC263 | Jessica Burgner-Kahrs

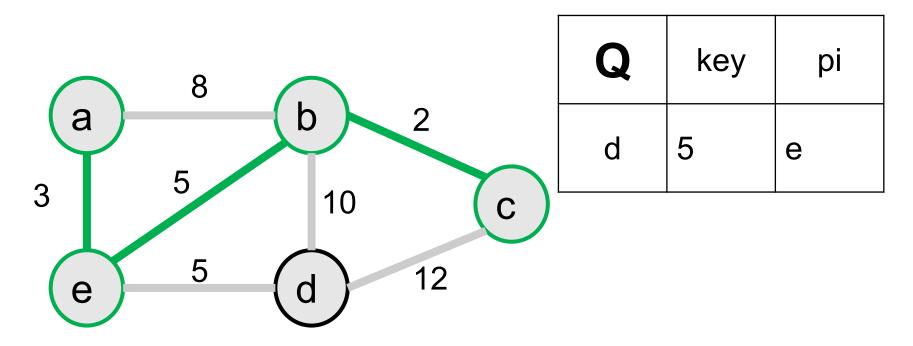
ExtractMin (#2) then update neighbours' keys

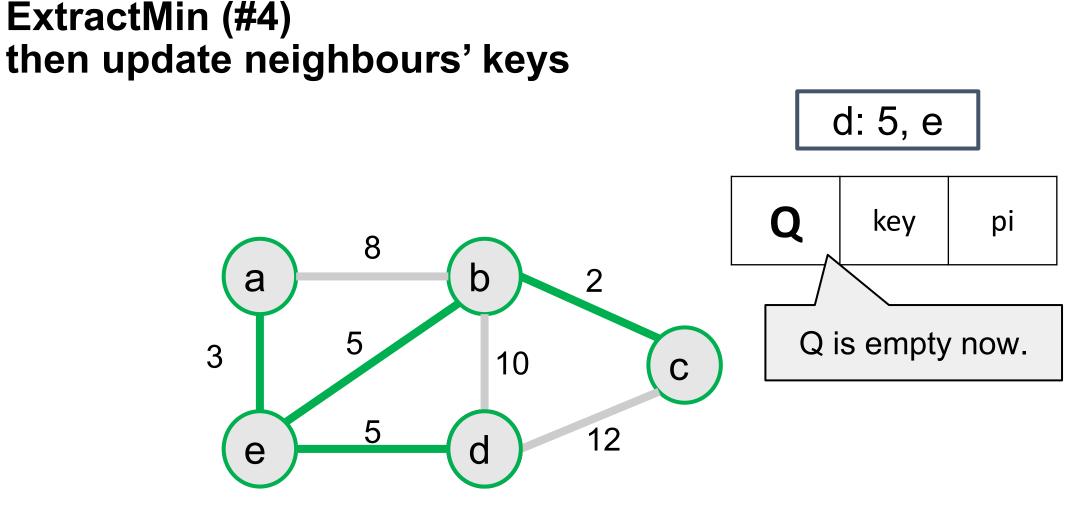




ExtractMin (#3) then update neighbours' keys

ExtractMin (#4) then update neighbours' keys

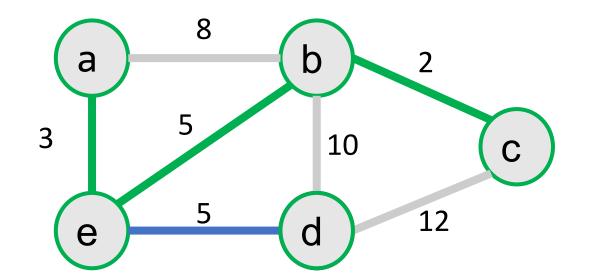




MST grown!

Correctness of Prim's

The added edge is always a "**safe**" edge, i.e., the **minimum** weight edge leaving the current tree (because **ExtractMin**).



Runtime Analysis: Prim's

- Assume we use binary min heap to implement priority queue.
 - Each ExtractMin takes O(lg |V|)
 - In total O(|V|) ExtractMins
 - Total for all ExtractMin calls O(|V| lg |V|)

Runtime Analysis: Prim's

Total so far: O(|V| lg |V|)

- We look at each of the **|E|** edges once
- Worst case: Each leads to a DecreaseKey
- DecreaseKey costs O(lg |V|) time
- Total work for all DecreaseKeys is O(|E| Ig |V|)

Runtime Analysis: Prim's

Total: O(|V| Ig |V|) + O(|E| Ig |V|) = O((|V|+|E|)log |V|)

This is O(|E| log |V|) in a connected graph.

In a connected graph G = (V, E)

|V| is in O(|E|) because...|E| has to be at least |V|-1

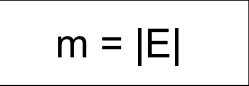
Also, log |E| is in O(log |V|) because ... E is at most V², so log E is at most log V² = 2 log V, which is in O(log V)

Kruskal's MST algorithm

Kruskal's Algorithm: Idea

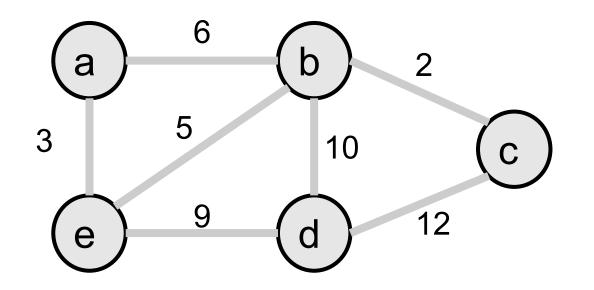
- Sort all edges according to weight, then start adding to MST from the lightest one.
- Constraint: Added edge must **NOT cause a cycle**
 - In other words, the two endpoints of the edge must belong to two different trees (components).
- Unlike Prim, Kruskal allows multiple tree components to exist and progressively combines them into larger trees

Pseudocode

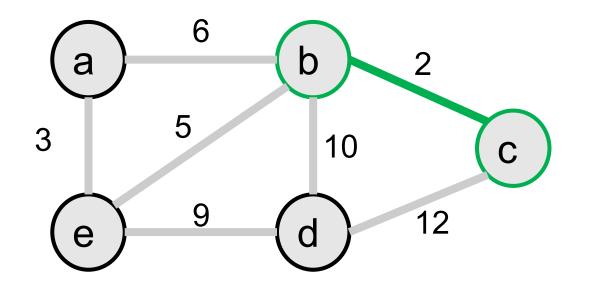


```
KRUSKAL-MST(G(V, E, w)):
1
     T \leftarrow \{\}
2
     sort edges so that w(e1) \le w(e2) \le \ldots \le w(em)
3
     for i \leftarrow 1 to m:
         # let (ui, vi) = ei
4
5
         if ui and vi in different components:
             T \leftarrow T \cup \{ei\}
6
```

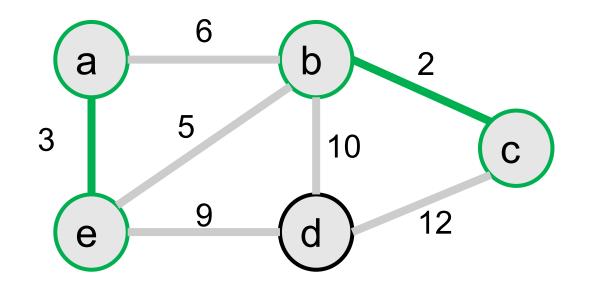
Example



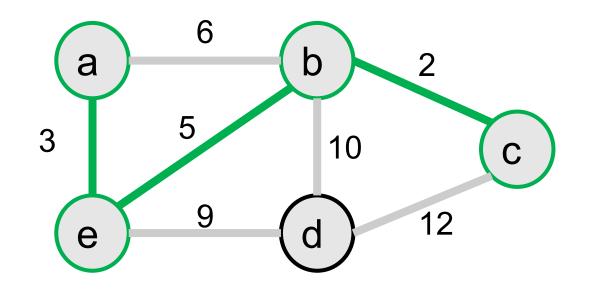
Add (b, c), the lightest edge



Add (a, e), the 2nd lightest

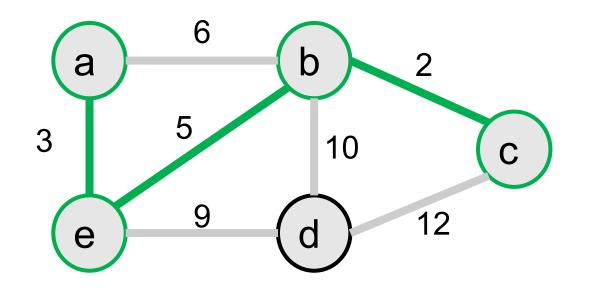


Add (b, e), the 3rd lightest



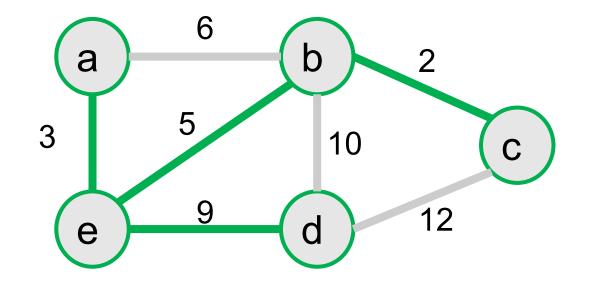
Add (a, b), the 4th lightest ...

No! a, b are in the same component Add (d, e) instead



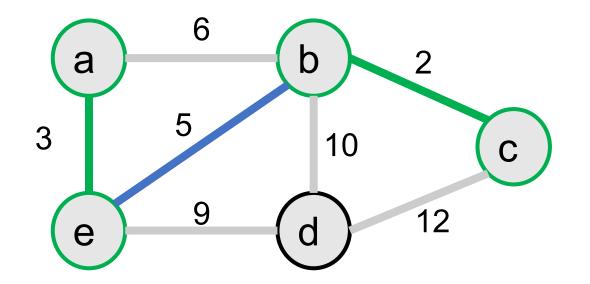
Add (d, e) ...

MST grown!



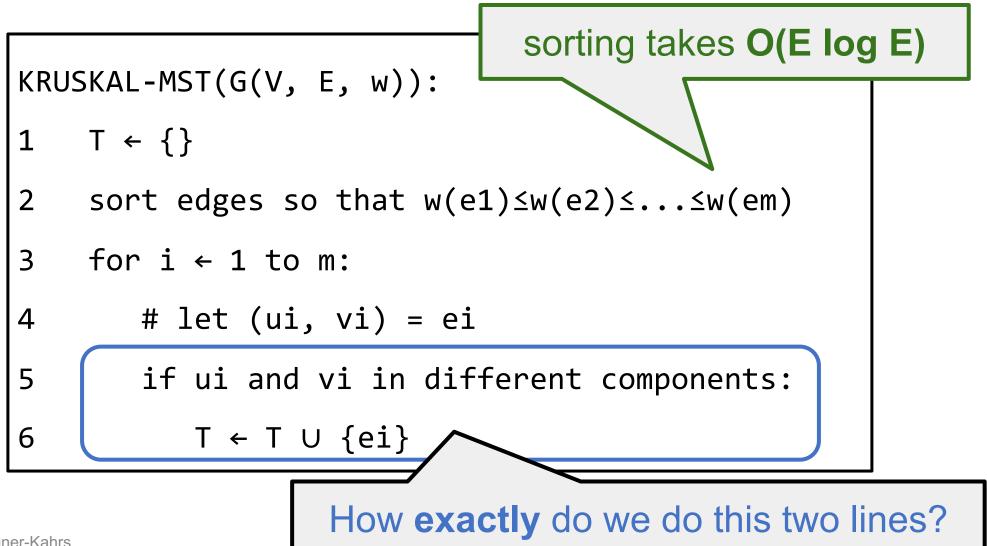
Correctness of Kruskal's

The added edge is always a "**safe**" edge, because it is the **minimum** weight edge among all edges that **cross** components



Runtime ...

m = |E|



We need the **Disjoint Set ADT**

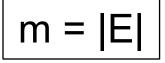
which stores a **collections of nonempty disjoint sets** S1, S2, ..., Sk, each has a "representative".

and supports the following operations

MakeSet(x) create a new set {x}

FindSet(x) return the representative of the set that x belongs to
Union(x,y) union the two sets that contain x and y, if different

Real Pseudocode



```
KRUSKAL-MST(G(V, E, w)):
  T ← {}
1
    sort edges so that w(e1) \le w(e2) \le \dots \le w(em)
2
3
    for each v in V:
        MakeSet(v)
4
5
    for i \leftarrow 1 to m:
6
        # let (ui, vi) = ei
7
        if FindSet(ui) != FindSet(vi):
            Union(ui, vi)
8
9
            T \leftarrow T \cup \{ei\}
```

Next week

Disjoint Set