
Graphs: DFS
Lecture 8

CSC263 | Jessica Burgner-Kahrs
1

CSC263 Winter 2020

Midterm

TA Office Hours

§ 10-11 am MN3120 (Naaz)

§ 3-4 pm MN3220 (Rida)

Practise previous midterm questions!

CSC263 | Jessica Burgner-Kahrs
2

6pm IB110
80 minutes

Don't forget
your T-card!

Recap

§ ADT: Graph
§ Data structures

§ Adjacency matrix
§ Adjacency list

§ Graph operations
§ Add vertex, remove vertex, …, edge query, …
§ Traversal

3
CSC263 | Jessica Burgner-Kahrs

Graph Traversals

Visiting every vertex once, starting from a given vertex.

The visits can follow different orders, we will study the
following two ways

§ Breadth First Search (BFS)
§ Depth First Search (DFS)

CSC263 | Jessica Burgner-Kahrs
4

The Breadth-First ways of learning these subjects
➔ Level by level, finish high school, then all subjects at

College level, then finish all subjects in PhD level.

CSC263 | Jessica Burgner-Kahrs
5

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
holes

Rocks Sand

Recap of BFS

§ Prefer to explore breadth rather than depth
§ Useful for getting single-source shortest paths on

unweighted graphs
§ Useful for testing reachability

§ Runtime O(|V|+|E|) with adjacency list (with adjacency
matrix it’ll be different)

6
CSC263 | Jessica Burgner-Kahrs

The Depth-First way of learning these subjects
➔ Go towards PhD whenever possible; only start

learning physics after finishing everything in CS.

CSC263 | Jessica Burgner-Kahrs
7

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
holes

Rocks Sand

DFS and BFS

CSC263 | Jessica Burgner-Kahrs
8

NOT_QUITE_BFS(root):
Q ← Queue()
Enqueue(Q, root)
while Q not empty:

x ← Dequeue(Q)
print x
for each child c of x:

Enqueue(Q, c)

NOT_QUITE_DFS(root):
Q ← Stack()
Push(Q, root)
while Q not empty:

x ← Pop(Q)
print x
for each child c of x:

Push(Q, c)

They are twins!

NOT_QUITE_DFS(root):
Q ← Stack()
Push(Q, root)
while Q not empty:

x ← Pop(Q)
print x
for each child c of x:

Push(Q, c)

Stack: a

Output:
a

POP

b c

POP

e f

c

POP

f
e
b
d

d

POP POP POP

Sepcial Case: DFS in a Tree

CSC263 | Jessica Burgner-Kahrs
9

a

b c

d e f

NOT_QUITE_DFS(root):
Q ← Stack()
Push(Q, root)
while Q not empty:

x ← Pop(Q)
print x
for each child c of x:

Push(Q, c)

A nicer way to write this code?

10

The use of stack is
basically implementing
_________________.recursion

NOT_QUITE_DFS(root):
print root
for each child c of root:

NOT_QUITE_DFS(c)

Exercise: Trace this code on the
tree in the previous slide.

CSC263 | Jessica Burgner-Kahrs

DFS in Graphs

Explore edges out of the most recently discovered vertex v
that still has unexplored edges leaving it.

Once all of v’s edges have been explored, the search backtracks to

explore edges leaving the vertex from which v was discovered.

Continue until we have discovered all reachable vertices from the

original source vertex.

If any undiscovered vertices remain, DFS selects one of them as a

new source, and repeats the search from that source.

Algorithm repeats this process until it has discovered every vertex.

CSC263 | Jessica Burgner-Kahrs
11

Visiting a Vertex only once

CSC263 | Jessica Burgner-Kahrs
12

Remember you visited it by labelling it using colours.

➔ White: “unvisited”
➔ Gray: “encountered”
➔ Black: “explored” ➔ Initially all vertices start off as white

➔ Colour a vertex gray the first time visiting it

➔ Colour a vertex black when all its neighbours
have been encountered

➔ Don’t visit gray or black vertices

➔ In the end, all vertices are black (sort-of)

Same as BFS

Additonal Values to Remember

§ pi[v]: the vertex from which v is encountered
§ “I was introduced as whose neighbour?”

Clock ticking, incremented whenever someone’s colour is changed
§ For each vertex v, remember two timestamps

§ d[v]: “discovery time”, when the vertex is first
encountered (when it becomes gray)

§ f[v]: “finishing time”, when all the vertex’s neighbours
have been visited (when become black).

CSC263 | Jessica Burgner-Kahrs
13

Same
as BFS

differentfrom d[v] in
BFS

The DFS Pseudocode (incomplete)

CSC263 | Jessica Burgner-Kahrs
14

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

The orange part is
the same as
NOT_QUITE_DFS

keep discovery time on
first encounter

keep finishing time after
exploring all neighbours

Why DFS_VISIT
instead of DFS?
We will see...

Let’s run an example!

15

u v w

x y z

DFS_VISIT(G, u)

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 0

time = 1, encounter the source vertex

16

u v w

x y z

d=1

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 2, recursive call, level 2

17

u v w

x y z

1 2

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 3, recursive call, level 3

18

u v w

x y z

1 2

3

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 4, recursive call, level 4

19

u v w

x y z

1 2

34

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 5, vertex x finished

20

u v w

x y z

1 2

34
5

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 6, recursion back to level 3, finish y

21

u v w

x y z

1 2

34
5 6

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 7, recursive back to level 2, finish v

22

u v w

x y z

1 2

34
5 6

7

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 8, recursion back to level 1, finish u

23

u v w

x y z

1 2

34
5 6

78

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

DFS_VISIT(G, u) completed

24

u v w

x y z

1 2

34
5 6

78

What about
these two white
vertices?

We actually
want to visit
them (will be
useful later)

CSC263 | Jessica Burgner-Kahrs

DFS Pseudocode

CSC263 | Jessica Burgner-Kahrs
25

DFS(G):
for each v in G.V:

colour[v] ← white
f[v] ← d[v] ← ∞
pi[v] ← NIL

time ← 0
for each v in G.V:

if colour[v] = white:
DFS_VISIT(G, v)

Make sure
NO vertex
is left with
white
colour.

Initialization
DFS_VISIT(G, u):

colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

Strategy Call DFS_visit for every unvisited vertex.

So, let’s finish this DFS

26

u v w

x y z

1 2

34
5 6

78

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 9, DFS_VISIT(G, w)

27

u v w

x y z

1 2

34
5 6

78
9

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 10

28

u v w

x y z

1 2

34
5 6

78
9

10

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 11

29

u v w

x y z

1 2

34
5 6

78
9

10
11

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 12

30

u v w

x y z

1 2

34
5 6

78
9

10
11

12

CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

DFS(G) done!

31

u v w

x y z

1 2

34
5 6

78
9

10
11

12

CSC263 | Jessica Burgner-Kahrs

Every vertex has
been assigned a

discovery time and
a finishing time.

Runtime Analysis

The total amount of work (use adjacency list):
§ Visit each vertex once

§ constant work per vertex

§ in total: O(|V|)
§ At each vertex, check all its neighbours (all its incident edges)

§ Each edge is checked once (in a directed graph)

§ in total: O(|E|)

32

Total runtime: O(|V|+|E|)

Same as BFS

CSC263 | Jessica Burgner-Kahrs

CSC263 | Jessica Burgner-Kahrs
33

7 min

Properties of DFS

§ DFS visits every node exactly once

§ DFS can tell us whether a graph is connected

34

u v w

x y z

1 2

34
5 6

78
9

10
11

12

CSC263 | Jessica Burgner-Kahrs

Same as BFS

d[v]: discovery time

f[v]: finishing time

We get a
DFS forest

(a set of disjoint trees)

Information about Graph Structure

35

u v w

x y z

1 2

34
5 6

78
9

10
11

12

CSC263 | Jessica Burgner-Kahrs

Information about Graph Structure

§ Detect whether a graph has a cycle.

How can we detect a cycle?

36
CSC263 | Jessica Burgner-Kahrs

determine descendant /
ancestor relationship

in the DFS forest

37
CSC263 | Jessica Burgner-Kahrs

Idea #1
Trace back the pi[v] pointers (the
green edges) starting from y, see
whether you can get to u.
Worst-case takes O(n) steps.

How to decide whether y is a descendant
of u in the DFS forest?

38

u v w

x y z

1 2

34
5 6

78
9

10
11

12

Can do better than this…

CSC263 | Jessica Burgner-Kahrs

39

the parenthesis structure

((())) () (())

(())

➔ Either one pair contains the another pair.
➔ Or one pair is disjoint from another

This (overlapping)
never happens!

CSC263 | Jessica Burgner-Kahrs

40

Visualize

d[v], f[v] as interval [d[v], f[v]]

2
7

2 7

CSC263 | Jessica Burgner-Kahrs

Now, visualize all the intervals!

41

u

v

y

x

w

z

1 8

2 7

3 6

4 5

9 12

10 11

What do you see in this?

Parenthesis structure!

u v w

x y z

1 2

34
5 6

78
9

10
11

12

CSC263 | Jessica Burgner-Kahrs

Parenthesis Theorem

In any depth-first search of a (directed or undirected) graph G=(V,E), for any two
vertices u and v, exactly one of the following three conditions holds:

§ the intervals [d[u], f[u]] and [d[v],f[v]] are entirely disjoint,
and neither u nor v is a descendant of the other in the depth-first forest,

§ the interval [d[u], f[u]] is contained entirely within the interval [d[v],f[v]],
and u is a descendant of v in a depth-first tree, or

§ the interval [d[v],f[v]] is contained entirely within the interval [d[u], f[u]],
and v is a descendant of u in a depth-first tree.

42
CSC263 | Jessica Burgner-Kahrs

CLRS
Chapter 22.3

Idea #1
Trace back the pi[v] pointers (the
green edges) starting from y, see
whether you can get to u.
Worst-case takes O(n) steps.

How to decide whether y is a descendant
of u in the DFS forest?

43

u v w

x y z

1 2

34
5 6

78
9

10
11

12

FORGET THIS

Idea #2
See if [d[u], f[u]] contains [d[y], f[y]].
Worst-case: 1 step! WAY BETTER!

CSC263 | Jessica Burgner-Kahrs

We can efficiently check whether a
vertex is an ancestor of another
vertex in the DFS forest.

so what...

44
CSC263 | Jessica Burgner-Kahrs

Classifying Edges

CSC263 | Jessica Burgner-Kahrs
45

4 Types of Edges in a Graph after DFS

46

u v w

x y z

1 2

34
5 6

78
9

10
11

12

§ Tree edge: an edge in the DFS-forest

§ Back edge: a non-tree edge pointing

from a vertex to its ancestor in the

DFS forest.

§ Forward edge: a non-tree edge

pointing from a vertex to its

descendant in the DFS forest

§ Cross edge: all other edges

CSC263 | Jessica Burgner-Kahrs

Example

CSC263 | Jessica Burgner-Kahrs
47

DFS Tree of G

Tree edge

Back edge

Forward edge

Cross edge

Checking Edge Types

We can efficiently check whether a vertex is an ancestor /
descendant of another vertex using the parenthesis structure of
[d[v], f[v]] intervals.

48

u v w

x y z

1 2

34
5 6

78
9

10
11

12

CSC263 | Jessica Burgner-Kahrs

Edge Type of uv Discovery Times Finishing Times
Tree edge d[u] < d[v] f[u] > f[v]
Back edge d[u] > d[v] f[u] < f[v]
Forward edge d[u] < d[v] f[u] > f[v]
Cross edge d[u] > d[v] f[u] > f[v]

We can efficiently check edge
types after a DFS!

so what...

A graph is cyclic if and only if
DFS yields a back edge.

That’s useful!

CSC263 | Jessica Burgner-Kahrs
49

50

A (directed) graph contains a cycle if and
only if DFS yields a back edge.

u v w

x y z

1 2

34
5 6

78
9

10
11

12

CSC263 | Jessica Burgner-Kahrs

Proof of “if”:
Let the edge be (u, v),
then by definition of back edge,
v is an ancestor of u in the DFS tree,
then there is a path from v to u,
i.e., v → … → u,
using DFS forest edges plus the back
edge u → v,
which is a Cycle.

51

1 2

34
5 6

78

CSC263 | Jessica Burgner-Kahrs

A (directed) graph contains a cycle if and
only if DFS yields a back edge.

Proof of “only if”:
Let the cycle be...,

v0

v1

v2

vk

Let v0 be the first one that turns gray,
when all others in the cycle are white,
then vk must be a descendant of v0.
(Read “White Path Theorem” in CRLS)

52

v
1 2

CSC263 | Jessica Burgner-Kahrs

A (directed) graph contains a cycle if and
only if DFS yields a back edge.

How about undirected graph?

53

u v w

x y z

Should back and forward edges be the same thing?
➔ No, because although the edges are undirected,

neighbour checking still has a “direction”.

Checking in this
direction, so it’s
a back edge

CSC263 | Jessica Burgner-Kahrs

Classify an edge
as the first type in
the classification
list that applies.

Undirected Graph: Edge Types
After a DFS on a undirected graph, every edge

is either a tree edge or a back edge,
i.e., no forward edges or cross edges exist.

54

A

B

C

If this was a forward edge, it would
violate the DFS algorithm (DFS would
check A from C, not check C from A)

A

B

C

If this was a cross edge, it violates
DFS (should have visited C from A,
rather than from B)

CSC263 | Jessica Burgner-Kahrs

Why do we care about
cycles in a graph?

Because cycles have meaningful implication in real applications.

CSC263 | Jessica Burgner-Kahrs
55

Applications of DFS

Ø Detect cycles in a graph (CLRS 22.3)

Ø Topological sort (CLRS 22.4)

Ø Strongly connected components (CLRS 22.5)

56
CSC263 | Jessica Burgner-Kahrs

Example: A Course Prerequisite Graph

57

CSC148

CSC236

CSC263

CSC373

STA256

CSC258

If the graph has a cycle, all
courses in the cycle become
impossible to take!

CSC263 | Jessica Burgner-Kahrs

Topological Sort

58

§ Vertices are tasks, edges are dependencies
§ Goal: Order the vertices so that the tasks can all be completed without

violating dependencies.

A valid order of
getting dressed.

Topological sort is useful for
scheduling jobs that have
dependencies between each other.

CSC263 | Jessica Burgner-Kahrs

How to do Topological Sorting

1. Do a DFS
2. Order vertices according to their finishing times f[v]

Read CLRS 22.4 for more details.

Other methods for topological sort also exist, such as Kahn’s
algorithm https://en.wikipedia.org/wiki/Topological_sorting

59
CSC263 | Jessica Burgner-Kahrs

https://en.wikipedia.org/wiki/Topological_sorting

Strongly Connected Components

60

➔Subgraphs with strong connectivity (any pair of vertices can
reach each other)

CSC263 | Jessica Burgner-Kahrs

How to Compute Strongly Connected
Components?
1. Call DFS(G) to compute finishing

times for each vertex

2. Compute GT

3. Call DFS(GT), considering the vertices
in decreasing order f[u] from line 1

4. Each Tree in DFS Forest from line 3 is
a strongly connected component

CSC263 | Jessica Burgner-Kahrs
61

G=(V,E)
Transpose of G
GT=(V,ET) with

ET={(u,v): (v,u) ∈ E}

Read CLRS 22.4
for more details.

Summary of DFS

§ It’s the twin of BFS (Queue vs Stack)
§ Keeps two timestamps: d[v] and f[v]
§ Has same runtime as BFS
§ Does NOT give us shortest-path
§ Allows for cycle detection (back edge)
§ Useful applications such as topological sort and strongly connected

components
§ For real problems, choose BFS and DFS wisely

62
CSC263 | Jessica Burgner-Kahrs

CSC263 | Jessica Burgner-Kahrs
63

The Show is a massive celebration of a
year in CS at UTM, happening March
20th. This is a great opportunity to
destress before exams from all the hard
work you guys have put in with a ton of
exciting games, activities, workshops,
competitions, and projects!

The best part is free food and free
admission, just make sure you get your
ticket soon because they are going fast!

The event coordinators would love to
answer any and all questions!
Come by DH2014 or message
@utmmcss.

