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CSC263 Winter 2020



Midterm

TA Office Hours

§ 10-11 am MN3120 (Naaz)

§ 3-4 pm MN3220 (Rida)

Practise previous midterm questions!
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6pm IB110
80 minutes

Don't forget 
your T-card!



Recap

§ ADT: Graph
§ Data structures

§ Adjacency matrix
§ Adjacency list

§ Graph operations
§ Add vertex, remove vertex, …, edge query, …
§ Traversal
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Graph Traversals

Visiting every vertex once, starting from a given vertex.

The visits can follow different orders, we will study the 
following two ways

§ Breadth First Search (BFS)
§ Depth First Search (DFS)
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The Breadth-First ways of learning these subjects 
➔ Level by level, finish high school, then all subjects at 

College level, then finish all subjects in PhD level.
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High School

College

PhD

Science

CS Physics Geology

AI DB String 
Theory

Black 
holes

Rocks Sand



Recap of BFS

§ Prefer to explore breadth rather than depth
§ Useful for getting single-source shortest paths on 

unweighted graphs
§ Useful for testing reachability

§ Runtime O(|V|+|E|) with adjacency list (with adjacency 
matrix it’ll be different)
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The Depth-First way of learning these subjects 
➔ Go towards PhD whenever possible; only start 

learning physics after finishing everything in CS.
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DFS and BFS
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NOT_QUITE_BFS(root):
Q ← Queue()
Enqueue(Q, root)
while Q not empty:

x ← Dequeue(Q)
print x
for each child c of x:

Enqueue(Q, c)

NOT_QUITE_DFS(root):
Q ← Stack()
Push(Q, root)
while Q not empty:

x ← Pop(Q)
print x
for each child c of x:

Push(Q, c)

They are twins!



NOT_QUITE_DFS(root):
Q ← Stack()
Push(Q, root)
while Q not empty:

x ← Pop(Q)
print x
for each child c of x:

Push(Q, c)

Stack: a

Output: 
a

POP

b c

POP

e f

c

POP

f
e
b
d

d

POP POP POP

Sepcial Case: DFS in a Tree
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a

b c

d e f



NOT_QUITE_DFS(root):
Q ← Stack()
Push(Q, root)
while Q not empty:

x ← Pop(Q)
print x
for each child c of x:

Push(Q, c)

A nicer way to write this code?
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The use of stack is 
basically implementing 
_________________.recursion

NOT_QUITE_DFS(root):
print root
for each child c of root:

NOT_QUITE_DFS(c)

Exercise: Trace this code on the 
tree in the previous slide.
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DFS in Graphs

Explore edges out of the most recently discovered vertex v
that still has unexplored edges leaving it. 

Once all of v’s edges have been explored, the search backtracks to 

explore edges leaving the vertex from which v was discovered.

Continue until we have discovered all reachable vertices from the 

original source vertex.

If any undiscovered vertices remain, DFS selects one of them as a 

new source, and repeats the search from that source.

Algorithm repeats this process until it has discovered every vertex.
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Visiting a Vertex only once
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Remember you visited it by labelling it using colours.

➔ White: “unvisited”
➔ Gray: “encountered”
➔ Black: “explored” ➔ Initially all vertices start off as white

➔ Colour a vertex gray the first time visiting it

➔ Colour a vertex black when all its neighbours
have been encountered

➔ Don’t visit gray or black vertices

➔ In the end, all vertices are black (sort-of)

Same as BFS



Additonal Values to Remember

§ pi[v]: the vertex from which v is encountered
§ “I was introduced as whose neighbour?”

Clock ticking, incremented whenever someone’s colour is changed
§ For each vertex v, remember two timestamps

§ d[v]: “discovery time”, when the vertex is first 
encountered (when it becomes gray)

§ f[v]: “finishing time”, when all the vertex’s neighbours 
have been visited (when become black).
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Same 
as BFS

differentfrom d[v] in 
BFS



The DFS Pseudocode (incomplete)
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

The orange part is 
the same as 
NOT_QUITE_DFS

# keep discovery time on 
first encounter

# keep finishing time after 
exploring all neighbours

Why DFS_VISIT
instead of DFS? 
We will see...



Let’s run an example!
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u v w

x y z

DFS_VISIT(G, u)
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

time = 0



time = 1, encounter the source vertex
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u v w

x y z

d=1
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 2, recursive call, level 2
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u v w

x y z

1 2
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 3, recursive call, level 3
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u v w

x y z

1 2

3
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 4, recursive call, level 4
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u v w

x y z

1 2

34
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 5, vertex x finished
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u v w

x y z

1 2

34
5
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 6, recursion back to level 3, finish y
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u v w

x y z

1 2

34
5 6
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 7, recursive back to level 2, finish v
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u v w

x y z

1 2

34
5 6

7
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 8, recursion back to level 1, finish u
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u v w

x y z

1 2

34
5 6

78
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



DFS_VISIT(G, u) completed
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u v w

x y z

1 2

34
5 6

78

What about 
these two white 
vertices?

We actually 
want to visit 
them (will be 
useful later)
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DFS Pseudocode
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DFS(G):
for each v in G.V:

colour[v] ← white
f[v] ← d[v] ← ∞
pi[v] ← NIL

time ← 0
for each v in G.V:

if colour[v] = white:
DFS_VISIT(G, v)

Make sure 
NO vertex 
is left with 
white 
colour.

Initialization
DFS_VISIT(G, u):

colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time

Strategy Call DFS_visit for every unvisited vertex.



So, let’s finish this DFS
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u v w

x y z

1 2

34
5 6

78
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 9, DFS_VISIT(G, w)
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u v w

x y z

1 2

34
5 6

78
9
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 10
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u v w

x y z
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34
5 6

78
9
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 11
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CSC263 | Jessica Burgner-Kahrs

DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



time = 12
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u v w

x y z
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DFS_VISIT(G, u):
colour[u] ← gray
time ← time + 1
d[u] ← time
for each neighbour v of u:

if colour[v] = white:
pi[v] ← u
DFS_VISIT(G, v)

colour[u] ← black
time ← time + 1
f[u] ← time



DFS(G) done!

31

u v w

x y z
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34
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78
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11

12
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Every vertex has 
been assigned a 

discovery time and 
a finishing time.



Runtime Analysis

The total amount of work (use adjacency list):
§ Visit each vertex once 

§ constant work per vertex

§ in total: O(|V|)
§ At each vertex, check all its neighbours (all its incident edges)

§ Each edge is checked once (in a directed graph)

§ in total: O(|E|)

32

Total runtime: O(|V|+|E|)

Same as BFS
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7 min



Properties of DFS

§ DFS visits every node exactly once 

§ DFS can tell us whether a graph is connected
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u v w

x y z
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78
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Same as BFS



d[v]: discovery time

f[v]: finishing time

We get a 
DFS forest 

(a set of disjoint trees)

Information about Graph Structure
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u v w

x y z
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CSC263 | Jessica Burgner-Kahrs



Information about Graph Structure

§ Detect whether a graph has a cycle.

How can we detect a cycle? 
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determine descendant / 
ancestor relationship

in the DFS forest
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Idea #1
Trace back the pi[v] pointers (the 
green edges) starting from y, see 
whether you can get to u.
Worst-case takes O(n) steps.

How to decide whether y is a descendant
of u in the DFS forest?
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u v w

x y z

1 2

34
5 6

78
9

10
11

12

Can do better than this…
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the parenthesis structure

( ( ( ) ) ) ( ) ( ( ) )

( ( ) )

➔ Either one pair contains the another pair.
➔ Or one pair is disjoint from another

This (overlapping) 
never happens!
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Visualize

d[v], f[v] as interval [ d[v], f[v] ]

2
7

2 7
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Now, visualize all the intervals!
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u

v

y

x

w

z

1 8

2 7

3 6

4 5

9 12

10 11

What do you see in this?

Parenthesis structure!

u v w

x y z

1 2

34
5 6

78
9

10
11

12
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Parenthesis Theorem

In any depth-first search of a (directed or undirected) graph G=(V,E), for any two 
vertices u and v, exactly one of the following three conditions holds:

§ the intervals [d[u], f[u]] and [d[v],f[v]] are entirely disjoint, 
and neither u nor v is a descendant of the other in the depth-first forest,

§ the interval [d[u], f[u]] is contained entirely within the interval [d[v],f[v]], 
and u is a descendant of v in a depth-first tree, or

§ the interval [d[v],f[v]] is contained entirely within the interval [d[u], f[u]], 
and v is a descendant of u in a depth-first tree.

42
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CLRS 
Chapter 22.3



Idea #1
Trace back the pi[v] pointers (the 
green edges) starting from y, see 
whether you can get to u.
Worst-case takes O(n) steps.

How to decide whether y is a descendant
of u in the DFS forest?
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u v w

x y z

1 2

34
5 6

78
9

10
11

12

FORGET THIS

Idea #2 
See if [d[u], f[u]] contains [d[y], f[y]].
Worst-case: 1 step! WAY BETTER!
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We can efficiently check whether a 
vertex is an ancestor of another 
vertex in the DFS forest.

so what...

44
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Classifying Edges
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4 Types of Edges in a Graph after DFS
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u v w

x y z

1 2

34
5 6

78
9
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§ Tree edge: an edge in the DFS-forest

§ Back edge: a non-tree edge pointing 

from a vertex to its ancestor in the 

DFS forest.

§ Forward edge: a non-tree edge 

pointing from a vertex to its 

descendant in the DFS forest

§ Cross edge: all other edges
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Example
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DFS Tree of G

Tree edge

Back edge

Forward edge

Cross edge



Checking Edge Types

We can efficiently check whether a vertex is an ancestor / 
descendant of another vertex using the parenthesis structure of 
[ d[v], f[v] ] intervals.
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u v w
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Edge Type of uv Discovery Times Finishing Times
Tree edge d[u] < d[v] f[u] > f[v]
Back edge d[u] > d[v] f[u] < f[v]
Forward edge d[u] < d[v] f[u] > f[v]
Cross edge d[u] > d[v] f[u] > f[v]



We can efficiently check edge 
types after a DFS!

so what...

A graph is cyclic if and only if 
DFS yields a back edge.

That’s useful!
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A (directed) graph contains a cycle if and 
only if DFS yields a back edge.

u v w

x y z
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Proof of “if”:
Let the edge be (u, v),
then by definition of back edge, 
v is an ancestor of u in the DFS tree, 
then there is a path from v to u, 
i.e., v → … → u, 
using DFS forest edges plus the back 
edge u → v,
which is a Cycle.
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1 2

34
5 6

78
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A (directed) graph contains a cycle if and 
only if DFS yields a back edge.



Proof of “only if”:
Let the cycle be...,

v0

v1

v2

vk

Let v0 be the first one that turns gray, 
when all others in the cycle are white, 
then vk must be a descendant of v0. 
(Read “White Path Theorem” in CRLS)
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v
1 2
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A (directed) graph contains a cycle if and 
only if DFS yields a back edge.



How about undirected graph?
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u v w

x y z

Should back and forward edges be the same thing?
➔ No, because although the edges are undirected, 

neighbour checking still has a “direction”.

Checking in this 
direction, so it’s 
a back edge
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Classify an edge 
as the first type in 
the classification 
list that applies.



Undirected Graph: Edge Types
After a DFS on a undirected graph, every edge 

is either a tree edge or a back edge, 
i.e., no forward edges or cross edges exist.
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A

B

C

If this was a forward edge, it would 
violate the DFS algorithm (DFS would 
check A from C, not check C from A)

A

B

C

If this was a cross edge, it violates 
DFS (should have visited C from A, 
rather than from B)
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Why do we care about 
cycles in a graph?

Because cycles have meaningful implication in real applications.
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Applications of DFS

Ø Detect cycles in a graph (CLRS 22.3)

Ø Topological sort (CLRS 22.4)

Ø Strongly connected components (CLRS 22.5)
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Example: A Course Prerequisite Graph
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CSC148

CSC236

CSC263

CSC373

STA256

CSC258

If the graph has a cycle, all 
courses in the cycle become 
impossible to take!
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Topological Sort

58

§ Vertices are tasks, edges are dependencies
§ Goal: Order the vertices so that the tasks can all be completed without 

violating dependencies.

A valid order of 
getting dressed.

Topological sort is useful for 
scheduling jobs that have 
dependencies between each other.
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How to do Topological Sorting

1. Do a DFS 
2. Order vertices according to their finishing times f[v]

Read CLRS 22.4 for more details.

Other methods for topological sort also exist, such as Kahn’s 
algorithm https://en.wikipedia.org/wiki/Topological_sorting
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https://en.wikipedia.org/wiki/Topological_sorting


Strongly Connected Components
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➔Subgraphs with strong connectivity (any pair of vertices can 
reach each other)
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How to Compute Strongly Connected 
Components?
1. Call DFS(G) to compute finishing 

times for each vertex

2. Compute GT

3. Call DFS(GT), considering the vertices 
in decreasing order f[u] from line 1

4. Each Tree in DFS Forest from line 3 is 
a strongly connected component
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G=(V,E)
Transpose of G
GT=(V,ET) with 

ET={(u,v): (v,u) ∈ E}

Read CLRS 22.4 
for more details.



Summary of DFS

§ It’s the twin of BFS (Queue vs Stack)
§ Keeps two timestamps: d[v] and f[v]
§ Has same runtime as BFS
§ Does NOT give us shortest-path
§ Allows for cycle detection (back edge)
§ Useful applications such as topological sort and strongly connected 

components
§ For real problems, choose BFS and DFS wisely
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The Show is a massive celebration of a 
year in CS at UTM, happening March 
20th. This is a great opportunity to 
destress before exams from all the hard 
work you guys have put in with a ton of 
exciting games, activities, workshops, 
competitions, and projects!

The best part is free food and free 
admission, just make sure you get your 
ticket soon because they are going fast!

The event coordinators would love to 
answer any and all questions! 
Come by DH2014 or message 
@utmmcss.


