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Problem Set 1

Results are out
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Problem 1
Why did marking take so long?

§ Unexpected errors in programming submissions

§ Test your code. Many of them had compile errors.

§ Use the practice test given to match format

§ Do NOT print anything. Just return the expected answer!

§ Write your own tests and run them (remove them for 
submission)
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Problem 1
Programming Question
Our solution code runs in 3 seconds (all tests included)
§ Timeout for automated testing 120 seconds
§ If your code times out, the complexity is almost surely incorrect.

§ Bugs can be subtle 
Example (real submission)
equality check heap == max_heap

runs in time O(n), n is the size of the heap, not O(1)
resulting in your complexity being off by O(n)
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Problem Set 1
Remarking

Remarking instructions will be posted
on the discussion board shortly
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Problem Set 1
Consider Remarking?

If the description of your code does 
not meet the complexity requirements, 

the programming part will not be awarded any points.

Please see the annotations on your pdf solutions 
before submitting a remarking request 

for the programming assignment.
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Problem Set 1
Consider Remarking?

Website: One of the largest cases used to test your code, 
along with the solution

Our solution runs on this test in 0.6 seconds on my laptop.
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pretend_sorted_array_test.py Profiles your code 
for debugging



Midterm

Outside of class! 6:00PM, Fri Mar 8, IB110
Midterm is 80 minutes

Coverage: everything up to and including week 6 material

Don't forget your T-card!

You can bring one 8.5x11 double-sided sheet
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Midterm
Types of Questions

Multiple choice, true/false

Short answer questions (e.g. giving explanations)

Long answer (e.g. analysis, design)
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Midterm
We will Test You on

§ Understanding of data structures. 
What are they good for, how do they work, what are their 
properties?

§ Problem-solving using appropriate data structures

§ Stuff from problem sets, tutorials, lectures
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Midterm
How to study
§ Be active! Solve problems (past tests/exams, course notes, 

textbook)
§ Revisit problem sets and tutorials
§ Read lecture slides to review
§ Consult textbook or course notes when you want more 

information or to clear up confusion
§ We'll do a mock midterm in the tutorial on Tue Mar 5
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Graphs
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What can be modelled using graphs

Web
Facebook
Task scheduling
Maps & GPS
Compiler (garbage collection)
Database
Rubik’s cube
…. 
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Definition

14

G = (V, E)

Set of vertices
e.g., V={a, b, c}

Set of edges
e.g., E= { (a, b), (c, a) }

a

b
c
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Types of Graphs
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Undirected Directed

each edge is an 
unordered pair 
(u, v) = (v, u)

each edge is an 
ordered pair 
(u, v) ≠ (v, u)
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Unweighted Weighted 
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edges have no weights edges have weights



Simple Non-simple 
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at most one edge 
between pairs of 
vertices, no self-

loop



Acyclic Cyclic 
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using each edge at most 
once, you cannot start at 
the some vertex and go 

back to it



Connected Disconnected
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can get from any vertex 
to any other vertex



Dense Sparse
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most edges are present



Path in a Graph
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A path begins at some start node 
and follows 0 or more edges to some end node

Length of path = number of edges

A path of length 3

Read CLRS Appendix B.4 for more background on graphs.



Graph Operations

§ Add a vertex; remove a vertex
§ Add an edge; remove an edge

§ Determine whether an edge (i,j) is present
§ Get neighbours

§ For vertex u, return all v ∈ V such that (u, v) ∈ E (undirected graph)
§ Get in-neighbours / out-neighbours (directed graph)

§ Traversal: visit all vertices in the graph
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Data Structures 
for Graph ADT

Adjacency Matrix

Adjacency List
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Adjacency Matrix
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Adjacency matrix ! is a " × " array

Let " = %&, %(, … , %*

+ ,, - = . 1 if %0, %1 ∈ 3
0 otherwise



Adjacency Matrix (directed graph)

CSC263 | Jessica Burgner-Kahrs
26

1

3

42

1         2        3        4

1

2

3

4

1 1

1

1

0 0

0 0 0

0 0 0

0 0 0 0



Adjacency Matrix (undirected graph)
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1

3

42

The adjacency matrix of an undirected graph is ___________.symmetric

1         2        3        4

1

2

3

4

1 1

1

1

0 1

1 0 0

1 0 0

1 0 0 0



Adjacency Matrix: Space Complexity

How much space is required for the adjacency matrix?
§ |V| rows, each with |V| columns

§ Total: |V|2

So, space is Θ(|V|2) for both directed and undirected graphs.
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Adjacency List
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Adjacency List
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In an adjacency list, each vertex stores a list of vertices

The list for vertex vi stores all vertices vj
such that ("# , "%) ∈ (



Adjacency List (directed graph)
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1

2

3

4

2 4

1

1

3

42

1 4 3



Adjacency List (undirected graph)
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1

3

42

1

2

3

4

2 4 3

1 3

2 1

1



Adjacency List: Space Complexity
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How much space is required for the adjacency list?

§ We store each node, so that is |V|

§ We also have one entry for each edge
§ Directed graph: |E|
§ Undirected graph: 2|E|

So, space is Θ(|V|+|E|) for both directed and undirected graphs.



Matrix vs List

In term of space complexity

§ adjacency matrix is Θ(|V|²)
§ adjacency list is Θ(|V|+|E|)
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Which one is more space-efficient?

Adjacency list, if |E| ≪ |V|² , 
i.e., the graph is not yoo dense.



Matrix vs List
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Anything that Adjacency Matrix does 
better than Adjacency List?

Check whether edge ("#, "%) is in E

➔Matrix: just check if A[i, j] = 1, O(1)

➔List: go through list A[i] see if j is in there, O(length of list)



Takeaway

Adjacency matrix or adjacency list?

Choose the more appropriate one depending on the problem.
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Graph Traversals
BFS and DFS
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Example
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Social Network
Get the names of everyone 

who is connected 

to a particular person.



Graph Traversals

Visiting every vertex once, starting from a given vertex.

The visits can follow different orders, we will study the 
following two ways

§ Breadth First Search (BFS)

§ Depth First Search (DFS)
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Intuitions of BFS and DFS

Consider a special graph - a tree
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“The knowledge learning tree”

High School

College

PhD

Science

CS Physics Geology

AI DB String 
Theory

Black 
holes

Rocks Sand

Traversing this graph 
means learning all 

these subjects.
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The Breadth-First ways of learning these subjects 
➔ Level by level, finish high school, then all subjects at 

College level, then finish all subjects in PhD level.
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High School

College

PhD

Science

CS Physics Geology

AI DB String 
Theory

Black 
holes

Rocks Sand



The Depth-First way of learning these subjects 
➔ Go towards PhD whenever possible; only start 

learning physics after finishing everything in CS.
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High School

College

PhD

Science

CS Physics Geology

AI DB String 
Theory

Black 
holes

Rocks Sand



Special Case: BFS in a Tree

Review CSC148

BFS in a tree (starting from root) is a 

______________________ traversal.
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What ADT did we use for implementing the 
level-by-level traversal?

level-by-level

Queue!

(NOT preorder!)



Special Case: BFS in a Tree
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NOT_QUITE_BFS(root):
Q ← Queue()
Enqueue(Q, root)
while Q not empty:
x ← Dequeue(Q)
print x
for each child c of x:
Enqueue(Q, c)

a

b c

d e f

a

DQ

bQueue: c d e f

DQ DQ DQ DQ DQ
EMPTY!

Output: 
a
b
c
d
e
f



BFS in a Graph
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r ts

w xv

u

y

It would want to visit some vertex twice
(e.g., x), which must be avoided!

NOT_QUITE_BFS(root):
Q ← Queue()
Enqueue(Q, root)
while Q not empty:
x ← Dequeue(Q)
print x
for each child c of x:
Enqueue(Q, c)

If we just run NOT_QUITE_BFS(t) on 
the above graph. 
What problem would we have?



BFS in General
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How can we avoid visiting a vertex multiple times?

Remember you visited it by labelling it using colours.

➔ White: “unvisited”
➔ Gray: “encountered”
➔ Black: “explored”

➔ Initially all vertices start off as white
➔ Colour a vertex gray the first time visiting it
➔ Colour a vertex black when all its neighbours

have been encountered
➔ Don’t visit gray or black vertices
➔ In the end, all vertices are black (sort-of)



BFS in General
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We are going to remember two more things about each node.

§ pi[v]: the vertex from which v is encountered
§ “I was introduced as whose neighbour?”

§ d[v]: the distance value
§ the distance from v to the source vertex of the BFS

d[v] is going to be 
really useful!
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BFS Pseudocode BFS(G=(V, E), s):
1   for all v in V:
2      colour[v] ← white
3      d[v] ← ∞
4      pi[v] ← NIL
5   Q ← Queue()
6   colour[s] ← gray
7   d[s] ← 0
8   Enqueue(Q, s)

The blue lines are the 
same as 

NOT_QUITE_BFS

# Initialize vertices

# start BFS by encountering the source vertex
# distance from s to s is 0
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BFS(G=(V, E), s):
1   for all v in V:
2      colour[v] ← white
3      d[v] ← ∞
4      pi[v] ← NIL
5   Q ← Queue()
6   colour[s] ← gray
7   d[s] ← 0
8   Enqueue(Q, s)
9   while Q not empty:
10      u ← Dequeue(Q)
11      for each neighbour v of u:
12         if colour[v] = white
13            colour[v] ← gray
14            d[v] ← d[u] + 1
15            pi[v] ← u
16            Enqueue(Q, v)
17      colour[u] ← black

# Initialize vertices

# start BFS by encountering the source vertex
# distance from s to s is 0

# only visit unvisited vertices

# v is at 1 more distance than u
# v is introduced as u’s neighbour

# all neighbours of u have been 
encountered, therefore u is explored 

The blue lines are the 
same as 

NOT_QUITE_BFS

BFS Pseudocode 



Example
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r ts

w xv

u

y

BFS(G, s)



After Initialization
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∞∞

∞ ∞ ∞∞

∞ ∞

All vertices are white with d = ∞

r ts

w xv

u

y



Start by “encountering” the source
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Colour the 
source gray and 
set its d = 0, and 

Enqueue it

Queue: s

∞∞

∞ ∞ ∞0

∞ ∞

r ts

w xv

u

y



Dequeue, explore neighbours
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Queue: s

DQ
r w

The green edge 
indicates the pi[v]

that was stored

1∞

1 ∞ ∞0

∞ ∞

r ts

w xv

u

y



Colour black after exploring all neighbours
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Queue: s

DQ
r w

1∞

1 ∞ ∞0

∞ ∞

r ts

w xv

u

y



Dequeue, explore neighbours (2)
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Queue: s

DQ
r w

DQ
v

12

1 ∞ ∞0

∞ ∞

r ts

w xv

u

y



Dequeue, explore neighbours (3)
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Queue: s

DQ

r w

DQ

v

DQ

t x

12

1 2 ∞0

2 ∞

r ts

w xv

u

y



after a few more steps...
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Queue: s

DQ

r w

DQ

v

DQ

t x

BFS complete
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u y

DQ DQ DQ DQ DQ

12

1 2 30

2 3

r ts

w xv

u

y



What do we get after 
doing BFS?
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First of all, we get to visit every vertex exactly once.
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12

1 2 30

2 3

r ts

w xv

u

y



Green edges give us a BFS tree. 

A tree that connects all vertices, if the graph is connected. 
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w xv

u

y



These d[v] values, 
we said they were 
going to be really 
useful.

The d[v] value indicates the vertex’s 
distance from the source vertex.

Actually, it’s the shortest-path
distance, we can prove it.

How about finding a shortest path itself? 
Follow the green edges, pi[v] comes in 

handy for this.

Shortest path from u to s:
u → pi[u] → pi[pi[u]] → pi[pi[pi[u]]] → … → s
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12

1 2 30

2 3

r ts

w xv

u

y



What if G is disconnected?
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z
∞

The infinite distance value of z indicates that it is 
unreachable from the source vertex.

After BFS(s), z is of white 
colour and d[v] = ∞

Example Application: 
Garbage Collection

12

1 2 30

2 3

r ts

w xv

u

y



Runtime Analysis

Using adjacency list
§ Visit each vertex once 

§ Enqueue, Dequeue, change colours, assign d[v], …, constant work 
per vertex

§ Total: O(|V|)
§ For each vertex, check all its neighbours

§ Each edge is checked once (directed graph) or twice (undirected 
graph)

§ Total: O(|E|)
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Total runtime: O(|V|+|E|)

12

1 2 30

2 3

r ts

w xv

u

y



Summary of BFS

§ Prefer to explore breadth rather than depth
§ Useful for getting single-source shortest paths on 

unweighted graphs

§ Useful for testing reachability

§ Fast! Runtime O(|V|+|E|) with adjacency list (with 

adjacency matrix it’ll be different)
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DFS
Next week
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