
Graphs
Lecture 7

CSC263 Winter 2020

CSC263 | Jessica Burgner-Kahrs
1

Problem Set 1

Results are out

CSC263 | Jessica Burgner-Kahrs
2

Problem 1
Why did marking take so long?

§ Unexpected errors in programming submissions

§ Test your code. Many of them had compile errors.

§ Use the practice test given to match format

§ Do NOT print anything. Just return the expected answer!

§ Write your own tests and run them (remove them for
submission)

CSC263 | Jessica Burgner-Kahrs
3

Problem 1
Programming Question
Our solution code runs in 3 seconds (all tests included)
§ Timeout for automated testing 120 seconds
§ If your code times out, the complexity is almost surely incorrect.

§ Bugs can be subtle
Example (real submission)
equality check heap == max_heap

runs in time O(n), n is the size of the heap, not O(1)
resulting in your complexity being off by O(n)

CSC263 | Jessica Burgner-Kahrs
4

Problem Set 1
Remarking

Remarking instructions will be posted
on the discussion board shortly

CSC263 | Jessica Burgner-Kahrs
5

Problem Set 1
Consider Remarking?

If the description of your code does
not meet the complexity requirements,

the programming part will not be awarded any points.

Please see the annotations on your pdf solutions
before submitting a remarking request

for the programming assignment.
CSC263 | Jessica Burgner-Kahrs

6

Problem Set 1
Consider Remarking?

Website: One of the largest cases used to test your code,
along with the solution

Our solution runs on this test in 0.6 seconds on my laptop.

CSC263 | Jessica Burgner-Kahrs
7

pretend_sorted_array_test.py Profiles your code
for debugging

Midterm

Outside of class! 6:00PM, Fri Mar 8, IB110
Midterm is 80 minutes

Coverage: everything up to and including week 6 material

Don't forget your T-card!

You can bring one 8.5x11 double-sided sheet

CSC263 | Jessica Burgner-Kahrs
8

Midterm
Types of Questions

Multiple choice, true/false

Short answer questions (e.g. giving explanations)

Long answer (e.g. analysis, design)

CSC263 | Jessica Burgner-Kahrs
9

Midterm
We will Test You on

§ Understanding of data structures.
What are they good for, how do they work, what are their
properties?

§ Problem-solving using appropriate data structures

§ Stuff from problem sets, tutorials, lectures

CSC263 | Jessica Burgner-Kahrs
10

Midterm
How to study
§ Be active! Solve problems (past tests/exams, course notes,

textbook)
§ Revisit problem sets and tutorials
§ Read lecture slides to review
§ Consult textbook or course notes when you want more

information or to clear up confusion
§ We'll do a mock midterm in the tutorial on Tue Mar 5

CSC263 | Jessica Burgner-Kahrs
11

Graphs

CSC263 | Jessica Burgner-Kahrs
12

What can be modelled using graphs

Web
Facebook
Task scheduling
Maps & GPS
Compiler (garbage collection)
Database
Rubik’s cube
….

13
CSC263 | Jessica Burgner-Kahrs

Definition

14

G = (V, E)

Set of vertices
e.g., V={a, b, c}

Set of edges
e.g., E= { (a, b), (c, a) }

a

b
c

CSC263 | Jessica Burgner-Kahrs

aka nodes

Types of Graphs

15
CSC263 | Jessica Burgner-Kahrs

Undirected Directed

each edge is an
unordered pair
(u, v) = (v, u)

each edge is an
ordered pair
(u, v) ≠ (v, u)

16
CSC263 | Jessica Burgner-Kahrs

10 200

-3

Unweighted Weighted

CSC263 | Jessica Burgner-Kahrs
17

edges have no weights edges have weights

Simple Non-simple

CSC263 | Jessica Burgner-Kahrs
18

at most one edge
between pairs of
vertices, no self-

loop

Acyclic Cyclic

CSC263 | Jessica Burgner-Kahrs
19

using each edge at most
once, you cannot start at
the some vertex and go

back to it

Connected Disconnected

CSC263 | Jessica Burgner-Kahrs
20

can get from any vertex
to any other vertex

Dense Sparse

CSC263 | Jessica Burgner-Kahrs
21

most edges are present

Path in a Graph

CSC263 | Jessica Burgner-Kahrs
22

A path begins at some start node
and follows 0 or more edges to some end node

Length of path = number of edges

A path of length 3

Read CLRS Appendix B.4 for more background on graphs.

Graph Operations

§ Add a vertex; remove a vertex
§ Add an edge; remove an edge

§ Determine whether an edge (i,j) is present
§ Get neighbours

§ For vertex u, return all v ∈ V such that (u, v) ∈ E (undirected graph)
§ Get in-neighbours / out-neighbours (directed graph)

§ Traversal: visit all vertices in the graph

CSC263 | Jessica Burgner-Kahrs
23

Data Structures
for Graph ADT

Adjacency Matrix

Adjacency List

CSC263 | Jessica Burgner-Kahrs
24

Adjacency Matrix

CSC263 | Jessica Burgner-Kahrs
25

Adjacency matrix ! is a " × " array

Let " = %&, %(, … , %*

+ ,, - = . 1 if %0, %1 ∈ 3
0 otherwise

Adjacency Matrix (directed graph)

CSC263 | Jessica Burgner-Kahrs
26

1

3

42

1 2 3 4

1

2

3

4

1 1

1

1

0 0

0 0 0

0 0 0

0 0 0 0

Adjacency Matrix (undirected graph)

CSC263 | Jessica Burgner-Kahrs
27

1

3

42

The adjacency matrix of an undirected graph is ___________.symmetric

1 2 3 4

1

2

3

4

1 1

1

1

0 1

1 0 0

1 0 0

1 0 0 0

Adjacency Matrix: Space Complexity

How much space is required for the adjacency matrix?
§ |V| rows, each with |V| columns

§ Total: |V|2

So, space is Θ(|V|2) for both directed and undirected graphs.

CSC263 | Jessica Burgner-Kahrs
28

Adjacency List

CSC263 | Jessica Burgner-Kahrs
29

Adjacency List

CSC263 | Jessica Burgner-Kahrs
30

In an adjacency list, each vertex stores a list of vertices

The list for vertex vi stores all vertices vj
such that ("# , "%) ∈ (

Adjacency List (directed graph)

CSC263 | Jessica Burgner-Kahrs
31

1

2

3

4

2 4

1

1

3

42

1 4 3

Adjacency List (undirected graph)

CSC263 | Jessica Burgner-Kahrs
32

1

3

42

1

2

3

4

2 4 3

1 3

2 1

1

Adjacency List: Space Complexity

CSC263 | Jessica Burgner-Kahrs
33

How much space is required for the adjacency list?

§ We store each node, so that is |V|

§ We also have one entry for each edge
§ Directed graph: |E|
§ Undirected graph: 2|E|

So, space is Θ(|V|+|E|) for both directed and undirected graphs.

Matrix vs List

In term of space complexity

§ adjacency matrix is Θ(|V|²)
§ adjacency list is Θ(|V|+|E|)

CSC263 | Jessica Burgner-Kahrs
34

Which one is more space-efficient?

Adjacency list, if |E| ≪ |V|² ,
i.e., the graph is not yoo dense.

Matrix vs List

CSC263 | Jessica Burgner-Kahrs
35

Anything that Adjacency Matrix does
better than Adjacency List?

Check whether edge ("#, "%) is in E

➔Matrix: just check if A[i, j] = 1, O(1)

➔List: go through list A[i] see if j is in there, O(length of list)

Takeaway

Adjacency matrix or adjacency list?

Choose the more appropriate one depending on the problem.

CSC263 | Jessica Burgner-Kahrs
36

37
CSC263 | Jessica Burgner-Kahrs

7 min

Graph Traversals
BFS and DFS

CSC263 | Jessica Burgner-Kahrs
38

Example

CSC263 | Jessica Burgner-Kahrs
39

Social Network
Get the names of everyone

who is connected

to a particular person.

Graph Traversals

Visiting every vertex once, starting from a given vertex.

The visits can follow different orders, we will study the
following two ways

§ Breadth First Search (BFS)

§ Depth First Search (DFS)

CSC263 | Jessica Burgner-Kahrs
40

Intuitions of BFS and DFS

Consider a special graph - a tree

CSC263 | Jessica Burgner-Kahrs
41

“The knowledge learning tree”

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
holes

Rocks Sand

Traversing this graph
means learning all

these subjects.

CSC263 | Jessica Burgner-Kahrs
42

The Breadth-First ways of learning these subjects
➔ Level by level, finish high school, then all subjects at

College level, then finish all subjects in PhD level.

CSC263 | Jessica Burgner-Kahrs
43

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
holes

Rocks Sand

The Depth-First way of learning these subjects
➔ Go towards PhD whenever possible; only start

learning physics after finishing everything in CS.

CSC263 | Jessica Burgner-Kahrs
44

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
holes

Rocks Sand

Special Case: BFS in a Tree

Review CSC148

BFS in a tree (starting from root) is a

______________________ traversal.

CSC263 | Jessica Burgner-Kahrs
45

What ADT did we use for implementing the
level-by-level traversal?

level-by-level

Queue!

(NOT preorder!)

Special Case: BFS in a Tree

CSC263 | Jessica Burgner-Kahrs
46

NOT_QUITE_BFS(root):
Q ← Queue()
Enqueue(Q, root)
while Q not empty:
x ← Dequeue(Q)
print x
for each child c of x:
Enqueue(Q, c)

a

b c

d e f

a

DQ

bQueue: c d e f

DQ DQ DQ DQ DQ
EMPTY!

Output:
a
b
c
d
e
f

BFS in a Graph

CSC263 | Jessica Burgner-Kahrs
47

r ts

w xv

u

y

It would want to visit some vertex twice
(e.g., x), which must be avoided!

NOT_QUITE_BFS(root):
Q ← Queue()
Enqueue(Q, root)
while Q not empty:
x ← Dequeue(Q)
print x
for each child c of x:
Enqueue(Q, c)

If we just run NOT_QUITE_BFS(t) on
the above graph.
What problem would we have?

BFS in General

CSC263 | Jessica Burgner-Kahrs
48

How can we avoid visiting a vertex multiple times?

Remember you visited it by labelling it using colours.

➔ White: “unvisited”
➔ Gray: “encountered”
➔ Black: “explored”

➔ Initially all vertices start off as white
➔ Colour a vertex gray the first time visiting it
➔ Colour a vertex black when all its neighbours

have been encountered
➔ Don’t visit gray or black vertices
➔ In the end, all vertices are black (sort-of)

BFS in General

CSC263 | Jessica Burgner-Kahrs
49

We are going to remember two more things about each node.

§ pi[v]: the vertex from which v is encountered
§ “I was introduced as whose neighbour?”

§ d[v]: the distance value
§ the distance from v to the source vertex of the BFS

d[v] is going to be
really useful!

CSC263 | Jessica Burgner-Kahrs
50

BFS Pseudocode BFS(G=(V, E), s):
1 for all v in V:
2 colour[v] ← white
3 d[v] ← ∞
4 pi[v] ← NIL
5 Q ← Queue()
6 colour[s] ← gray
7 d[s] ← 0
8 Enqueue(Q, s)

The blue lines are the
same as

NOT_QUITE_BFS

Initialize vertices

start BFS by encountering the source vertex
distance from s to s is 0

CSC263 | Jessica Burgner-Kahrs
51

BFS(G=(V, E), s):
1 for all v in V:
2 colour[v] ← white
3 d[v] ← ∞
4 pi[v] ← NIL
5 Q ← Queue()
6 colour[s] ← gray
7 d[s] ← 0
8 Enqueue(Q, s)
9 while Q not empty:
10 u ← Dequeue(Q)
11 for each neighbour v of u:
12 if colour[v] = white
13 colour[v] ← gray
14 d[v] ← d[u] + 1
15 pi[v] ← u
16 Enqueue(Q, v)
17 colour[u] ← black

Initialize vertices

start BFS by encountering the source vertex
distance from s to s is 0

only visit unvisited vertices

v is at 1 more distance than u
v is introduced as u’s neighbour

all neighbours of u have been
encountered, therefore u is explored

The blue lines are the
same as

NOT_QUITE_BFS

BFS Pseudocode

Example

CSC263 | Jessica Burgner-Kahrs
52

r ts

w xv

u

y

BFS(G, s)

After Initialization

CSC263 | Jessica Burgner-Kahrs
53

∞∞

∞ ∞ ∞∞

∞ ∞

All vertices are white with d = ∞

r ts

w xv

u

y

Start by “encountering” the source

CSC263 | Jessica Burgner-Kahrs
54

Colour the
source gray and
set its d = 0, and

Enqueue it

Queue: s

∞∞

∞ ∞ ∞0

∞ ∞

r ts

w xv

u

y

Dequeue, explore neighbours

CSC263 | Jessica Burgner-Kahrs
55

Queue: s

DQ
r w

The green edge
indicates the pi[v]

that was stored

1∞

1 ∞ ∞0

∞ ∞

r ts

w xv

u

y

Colour black after exploring all neighbours

CSC263 | Jessica Burgner-Kahrs
56

Queue: s

DQ
r w

1∞

1 ∞ ∞0

∞ ∞

r ts

w xv

u

y

Dequeue, explore neighbours (2)

CSC263 | Jessica Burgner-Kahrs
57

Queue: s

DQ
r w

DQ
v

12

1 ∞ ∞0

∞ ∞

r ts

w xv

u

y

Dequeue, explore neighbours (3)

CSC263 | Jessica Burgner-Kahrs
58

Queue: s

DQ

r w

DQ

v

DQ

t x

12

1 2 ∞0

2 ∞

r ts

w xv

u

y

after a few more steps...

CSC263 | Jessica Burgner-Kahrs
59

Queue: s

DQ

r w

DQ

v

DQ

t x

BFS complete

CSC263 | Jessica Burgner-Kahrs
60

u y

DQ DQ DQ DQ DQ

12

1 2 30

2 3

r ts

w xv

u

y

What do we get after
doing BFS?

CSC263 | Jessica Burgner-Kahrs
61

First of all, we get to visit every vertex exactly once.

CSC263 | Jessica Burgner-Kahrs
62

12

1 2 30

2 3

r ts

w xv

u

y

Green edges give us a BFS tree.

A tree that connects all vertices, if the graph is connected.
CSC263 | Jessica Burgner-Kahrs

63

r ts

w xv

u

y

These d[v] values,
we said they were
going to be really
useful.

The d[v] value indicates the vertex’s
distance from the source vertex.

Actually, it’s the shortest-path
distance, we can prove it.

How about finding a shortest path itself?
Follow the green edges, pi[v] comes in

handy for this.

Shortest path from u to s:
u → pi[u] → pi[pi[u]] → pi[pi[pi[u]]] → … → s

CSC263 | Jessica Burgner-Kahrs
64

12

1 2 30

2 3

r ts

w xv

u

y

What if G is disconnected?

CSC263 | Jessica Burgner-Kahrs
65

z
∞

The infinite distance value of z indicates that it is
unreachable from the source vertex.

After BFS(s), z is of white
colour and d[v] = ∞

Example Application:
Garbage Collection

12

1 2 30

2 3

r ts

w xv

u

y

Runtime Analysis

Using adjacency list
§ Visit each vertex once

§ Enqueue, Dequeue, change colours, assign d[v], …, constant work
per vertex

§ Total: O(|V|)
§ For each vertex, check all its neighbours

§ Each edge is checked once (directed graph) or twice (undirected
graph)

§ Total: O(|E|)
CSC263 | Jessica Burgner-Kahrs

66

Total runtime: O(|V|+|E|)

12

1 2 30

2 3

r ts

w xv

u

y

Summary of BFS

§ Prefer to explore breadth rather than depth
§ Useful for getting single-source shortest paths on

unweighted graphs

§ Useful for testing reachability

§ Fast! Runtime O(|V|+|E|) with adjacency list (with

adjacency matrix it’ll be different)

CSC263 | Jessica Burgner-Kahrs
67

DFS
Next week

CSC263 | Jessica Burgner-Kahrs
68

