
Amortized Analysis, Quicksort
& Randomized Algorithms

Week 6

CSC263 Winter 2020

CSC263 | Jessica Burgner-Kahrs
1

Amortized Analysis

The amortized sequence complexity is the “average” cost per
operation over a sequence of operations.

For a sequence of m operations:

CSC263 | Jessica Burgner-Kahrs
2

The MAXIMUM possible total cost
of among all possible sequences
of m operations

Amortized sequence complexity

worst-case sequence complexity
=

m

Amortized Analysis

The amortized sequence complexity is the “average” cost per operation
over the sequence.

§ Unlike average-case analysis, there is NO probability or expectation
involved.

We do amortized analysis when we are interested in the total complexity of
a sequence of operations.

§ Unlike in average-case analysis where we are interested in a single
operation.

CSC263 | Jessica Burgner-Kahrs
3

Example for Intuition
Stack with additional operation
§ PUSH(S, x) push one item into the stack
§ POP(S) pops the top item from S
§ MULTIPOP(S, k) pop k top items from S

4
CSC263 | Jessica Burgner-Kahrs

23
17
6
39
10
47

10
47

S

MULTIPOP(S,4)

S S

MULTIPOP(S,7)

def MULTIPOP(S,k):
while not STACK-EMPTY(S) and k>0:
POP(S)
k = k-1

Example for Intuition
We have a sequence of N operations consisting of PUSH and MULTIPOP.

What’s the worst-case total runtime of the sequence?
(Start: S empty)

§ with N operations we can push in at most N items into the stack
§ MULTIPOP pops N elements in worst-case, which takes N steps.
§ If all operations were MULTIPOP, each of which takes the worst N steps, the

total runtime would be O(N²). Right?
§ No! We have at most N elements, each of which is at most pushed once and

popped once, so the total runtime of the sequence is O(N) !

CSC263 | Jessica Burgner-Kahrs
5

Analysing the runtime of a sequence of operations
IS NOT

the runtime of a single operation multiplied
by the size of the sequence

especially when the sequence of operations are operating on a shared
data structure and have interdependencies with each other.

So we need some special analysis methods

6CSC263 | Jessica Burgner-Kahrs

Amortized Analysis

An amortized analysis of a data structure
computes the maximum possible

average cost per operation
in a sequence of operations,

starting from some initial base state.

CSC263 | Jessica Burgner-Kahrs
7

Methods for Amortized Analysis

§ Aggregate Method

§ Accounting Method

§ Potential Method
not covered in lecture, read CLRS Chapter 17

CSC263 | Jessica Burgner-Kahrs
8

Amortized Analysis

Real-life Intuition
Monthly cost of living,
a sequence of 12
operations

CSC263 | Jessica Burgner-Kahrs
9

Aggregate method

What is the amortized cost per month (operation)?

Build sum of the costs of sequence of operations
and divide by the number of operations,

to determine the average cost per operation.

CSC263 | Jessica Burgner-Kahrs
10

CSC263 | Jessica Burgner-Kahrs
11

Aggregate Method: sum of all months’ spending is
$12,600 divided by 12 months

amortized cost is $1,050 per month.

Accounting Method

Instead of calculating the average cost, we think about the
cost from a different angle, i.e.,

How much money do I need to earn each month in order to
keep living? That is, be able to pay for the spending every
month and never become broke.

CSC263 | Jessica Burgner-Kahrs
12

CSC263 | Jessica Burgner-Kahrs
13

Accounting method: if I earn $1,050 per month from Jan to Dec, I will
never become broke (assuming earnings are paid at the beginning of month).

So the amortized cost: $1,050

Saving money for big
spendings in the future.

Aggregate vs Accounting

§ Aggregate method gives each type of operation the same
amortized cost (the average cost)

§ Accounting method is more flexible
§ Each type of operation can be assigned a different

amortized cost
§ Works even when the sequence of operations is not

concretely defined
§ Gives more interesting insights for data structure design

CSC263 | Jessica Burgner-Kahrs
14

Amortized Analysis on
Dynamic Arrays

Case Study

CSC263 | Jessica Burgner-Kahrs
15

Problem Description

§ Think of an array initialized with a fixed number of slots, which
supports APPEND operations.

§ When we APPEND too many elements, the array would be full and
we need to expand the array (increase its size).

§ Requirement: the array must be using one contiguous block of
memory all the time.

CSC263 | Jessica Burgner-Kahrs
16

How do we do the expansion so that we have good
performance with a sequence of APPENDs?

One Way to Expand
If the array is full, APPEND is called

§ Create a new array of double the size
§ Copy the all elements from old array to new array
§ Append the element

CSC263 | Jessica Burgner-Kahrs
17

3 7 2 1 APPEND(9)

93 7 2 1

Amortized Analysis of Expand

Now consider a dynamic array initialized with size 1 and a
sequence of m APPEND operations on it.

Analyse the amortized cost per operation

CSC263 | Jessica Burgner-Kahrs
18

Assumption: only count array assignments, i.e.,
append an element and copy an element

Using the Aggregate Method

Cost sequence would be like:

1, 2, 3, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, …

CSC263 | Jessica Burgner-Kahrs
19

Copy 1
append 1

Copy 2
append 1

Copy 4
append 1

Copy 8
append 1

Cost sequence concretely defined, sum-and-divide can be done,
but we want to do something more interesting…

Using the Accounting Method

How much money do we need to earn at each operation, so
that all future costs can be paid for?

How much money to earn for each APPEND’ed element ?

CSC263 | Jessica Burgner-Kahrs
20

CSC263 | Jessica Burgner-Kahrs
21

Son, you’re going to be appended to the array. Here is
some money. Use it to pay all your future expenses (like
cost of appending, being copied, etc).

I hope that’s enough, so that I will never become broke.

How much money do we need to earn at each operation, so
that all future costs can be paid for?

How much money to earn for each APPEND’ed element ?

Using the Accounting Method

CSC263 | Jessica Burgner-Kahrs
22

$1 ?
$2 ?

$3 ?
$log m ?

$m ?

Earn $1 for each appended element

This $1 (the “append-dollar”) is spent when appending the element.

But, when we need to copy this element to a new array (when expanding the
array), we don’t any money to pay for it --

BROKE!

CSC263 | Jessica Burgner-Kahrs
23

Earn $2 for each appended element

$1 (the “append-dollar”) will be spent when appending the element

$1 (the “copy-dollar”) will be spent when copying the element to a new array

What if the element is copied for a second time (when expanding the array for a
second time)?

BROKE!

CSC263 | Jessica Burgner-Kahrs
24

Earn $3 for each appended element

$1 (the “append-dollar”) will be spent when appending the element

$1 (the “copy-dollar”) will be spent when copying the element to a new array

$1 (the “recharge-dollar”) is used to recharge the old elements
that have spent their “copy-dollars”.

NEVER BROKE!

CSC263 | Jessica Burgner-Kahrs
25

$1 (the “recharge-dollar”) is used to recharge the
old elements that have used their “copy-dollar”.

Old elements who have
used their “copy-dollars”

New elements each of whom
spares $1 for recharging one
old element’s “copy-dollar”.

There will be enough new elements who will spare enough money for all
the old elements, because the way we expand – TWICE the size

CSC263 | Jessica Burgner-Kahrs
26

In Summary

If we earn $3 upon each APPEND it is enough money to pay
for all costs in the sequence of APPEND operations.

In other words, for a sequence of m APPEND operations, the
amortised cost per operations is 3, which is in O(1).

CSC263 | Jessica Burgner-Kahrs
27

In a regular worst-case analysis (non-amortized),
what is the worst-case runtime of an APPEND
operation on an array with m elements?

By performing the amortised analysis, we showed that “double
the size when full” is a good strategy for expanding a dynamic
array, since it’s amortised cost per operation is O(1).

In contrast, “increase size by 100 when full” would not be a
good strategy.

It will cause O(n) amortised runtime.

Why?
CSC263 | Jessica Burgner-Kahrs

28

Takeaway

Amortized analysis provides us valuable insights into the
design of the expansion strategy of dynamic arrays.

It is a powerful tool for data structures design.

CSC263 | Jessica Burgner-Kahrs
29

How about Shrinking?

For a complete implementation of Dynamic Array, we also need a
strategy for shrinking.
If we keep deleting elements and there are many unused space
in the array, we want to shrink.
When to shrink?
Amortised analysis tells we shrink when the array is ¼ full, this
ensures DELETE operations have amortised runtime O(1).
More details in CLRS Chapter 17.4

CSC263 | Jessica Burgner-Kahrs
30

This type of strategy for expanding and shrinking is widely used
by hash table implementations
§ Java HashMap: expand when load factor is larger than ¾
§ Python Dict: expand when load factor is larger than ⅔

By dynamically resizing, the hash table can maintain a constant
load factor therefore guarantees constant lookup time.

31
CSC263 | Jessica Burgner-Kahrs

32
CSC263 | Jessica Burgner-Kahrs

7 min

QuickSort

CSC263 | Jessica Burgner-Kahrs
33

Background
Invented by Tony Hoare in 1960

Very commonly used sorting
algorithm. When implemented
well, it is typically faster than
merge sort and heapsort.

34

Invented NULL
pointer in 1965.
Apologized for it in
2009

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
CSC263 | Jessica Burgner-Kahrs

(aka Sir Charles Antony Richard Hoare)

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

QuickSort: The Idea
Partition an array

35

2 8 7 1 3 5 6 4

pick a pivot
(e.g. the last element)

2 1 3 4 7 5 6 8

smaller than pivot greater than pivot

CSC263 | Jessica Burgner-Kahrs

CLRS Chapter 7

2 1 3 4 7 5 6 8

Recursively partition the sub-arrays
before and after the pivot.

Base case

1 sorted

CLRS Chapter 7

CSC263 | Jessica Burgner-Kahrs
36

Pseudocode Quicksort

CSC263 | Jessica Burgner-Kahrs
37

def partition (array, p, r):
pivot = array[r]
i = p-1
for j = p to r-1:
if array[j] <= pivot:
i=i+1
exchange array[i] with array[j]

exchange array[i+1] with array[r]
return i+1

def quicksort(array,p,r):
#initial call: quicksort(A, 1, A.length)
if p < r:
q <- partition(array, p, r)

quicksort(array, p, q-1)
quicksort(array, q+1, r)

Worst-case Analysis of
QuickSort

T(n): the total number of comparisons made

CSC263 | Jessica Burgner-Kahrs
38

We will first prove T(n) = O(something)

Then we will prove T(n) = Ω(the same thing)

Therefore we conclude T(n) = Θ(the thing)

CSC263 | Jessica Burgner-Kahrs
39

CSC263 | Jessica Burgner-Kahrs
40

Claim 1
Each element in A can be chosen as pivot at most once.

Claim 2
Elements are only compared to pivots.

2 1 3 4 7 5 6 8

For simplicity, assume all elements are distinct

A pivot never goes into a sub-array on which a recursive call is made.

That’s what partition is all about - comparing with pivot.

A

CSC263 | Jessica Burgner-Kahrs
41

Claim 3
Any pair (a, b) of elements in A are compared at most
once. For a and b to be compared, one of them must be the pivot (Claim 2). This pivot will

never be pivot again (Claim 1), and so can’t participate in any more comparisons.

The total number of comparisons is
no more than the total number of pairs.

2 1 3 4 7 5 6 8A

CSC263 | Jessica Burgner-Kahrs
42

The total number of comparisons is
no more than the total number of pairs.

i.e., the worst-case running time is lower-bounded by some cn²

How do you show the tallest person in the
room is lower-bounded by 1 meter?

Just find one person who is taller than 1m!

so, just find one input for which the running time is some cn²

CSC263 | Jessica Burgner-Kahrs
43

Week 1

i.e., find one input that results in
awful partitions (everything on one side).

Remember that we
always pick the last
one as pivot.

1 2 3 4 5 6 7 8

IRONY
The worst input for QuickSort
is an already sorted array.

CSC263 | Jessica Burgner-Kahrs
44

so, just find one input for which the running time is some cn²

1 2 3 4 5 6 7 8

Choose pivot A[n], then n-1 comparisons

Calculate the Number of Comparisons

CSC263 | Jessica Burgner-Kahrs
45

Recurse to subarray, pivot A[n-1], then n-2 comps

Recursive to subarray, pivot A[n-2], then n-3 comps

...

Total # of comps:

A

So, the worst-case runtime

CSC263 | Jessica Burgner-Kahrs
46

What other sorting algorithms have n² worst-case running time?
Bubble Sort, Insertion Sort, …

Is QuickSort really “quick” ?

Yes, in average-case.
CSC263 | Jessica Burgner-Kahrs

47

Average-case Analysis of QuickSort

Input distribution all permutations of array [1, 2, …, n]

array is chosen uniformly at random from among

these permutations

One can prove that the expected number of comparisons is O(n log n).

Read CLRS Chapter 7.4

CSC263 | Jessica Burgner-Kahrs
48

Summary Quicksort

The worst-case runtime is Θ(n²).

The average-case runtime of QuickSort is O(n log n), given
that the inputs are uniformly random permutations of an array.

CSC263 | Jessica Burgner-Kahrs
49

However, in Real Life...

CSC263 | Jessica Burgner-Kahrs
50

QuickSort(A)

The assumption of uniform randomness is NOT really true,
because it is often impossible for us to know what the input
distribution really is.

Even worse, if the person who provides the
inputs is malicious, they can totally only
provide worst-inputs and guarantee worst-
case runtime.

The theoretical average case O(nlog n)
is no way guaranteed in real life…

How can we get guaranteed performance
in real life? Use Randomisation!
§ We shuffle the input array “uniformly randomly”, so that after

shuffling the array looks like drawn from a uniform distribution

§ Even the malicious person’s always-worst inputs will be
shuffled to be like uniformly distributed

§ This makes the assumption of the average-case analysis true

§ So we can guarantee O(n log n) expected runtime

CSC263 | Jessica Burgner-Kahrs
51

Randomised-QuickSort(A):
permute A uniformly randomly
QuickSort(A)

How exactly do we perform the permutation so that we can prove that it’s going
to be like uniform distribution? (Read CLRS Chapter 5.3)

52CSC263 | Jessica Burgner-Kahrs

Randomized Algorithms

CSC263 | Jessica Burgner-Kahrs
53

Use Randomization to Guarantee
Expected Performance

CSC263 | Jessica Burgner-Kahrs
54

We do it everyday.

Two Types of Randomized Algorithms

Las Vegas Algorithms

Deterministic answer, random runtime

Monte Carlo Algorithms

Deterministic runtime, random answer

CSC263 | Jessica Burgner-Kahrs
55

Randomized-QuickSort is a … Las Vegas algorithm

An Example
Monte Carlo Algorithm

“Equality Testing”

CSC263 | Jessica Burgner-Kahrs
56

The Problem

Given two binary numbers x and y, decide whether x = y.

CSC263 | Jessica Burgner-Kahrs
57

def equal(x, y):
return x == y

The Problem

Given two binary numbers x and y, decide whether x = y.

CSC263 | Jessica Burgner-Kahrs
58

No kidding, what if the size of x and y are 10TB each?

The above code needs to compare ~10¹⁴ bits.

Even worse, what if x and y are stored on two separate computers
which are connected through a slow network connection?

Can we do better?

CSC263 | Jessica Burgner-Kahrs
59

Need to compare at most 2log(n) bits.

Why assuming x and y are of the same length?

log₂(10¹⁴) ≈ 46.5But, does it give the
correct answer?

Huge improvement on runtime!

Let n = len(x) = len(y) be the length of x and y.

def equal_monte_carlo(x, y):
Randomly choose a prime number p ≤ n²
len(p) ≤ log₂(n²) = 2log₂(n)
return (x mod p) == (y mod p)

Does it give the Correct Answer?

CSC263 | Jessica Burgner-Kahrs
60

If (x mod p) ≠ (y mod p), then…

Must be x ≠ y, our answer is correct for sure.

If (x mod p) = (y mod p), then…

Could happen that x ≠ y but (x mod p) = (y mod p), so our
answer might be wrong, if choosing a “bad” p.

So, what’s the probability of a wrong answer?
It’s upper-bounded by the probability of choosing a “bad” p.

Prime Number Theorem

CSC263 | Jessica Burgner-Kahrs
61

Theorem
In range [1, m], there are roughly m/ln(m) prime numbers.

So in range [1, n²], there are n²/ln(n²) = n²/2ln(n) prime numbers.

Given x and y, how many (bad) primes in [1, n²] could satisfy

(x mod p) = (y mod p) even if x ≠ y ?
At most n

Proof: At most n Bad Primes

There are at most n primes p, such that (x mod p) = (y mod p) while x ≠ y.

Proof

(x mod p) = (y mod p) ⇔ |x - y| is a multiple of p, i.e., p is a prime divisor of |x - y|.

|x - y| < 2ⁿ (as they are n-bit binary numbers)

so it has no more than n prime divisors

(otherwise if it has more than n prime divisors, the product of them will be larger
than 2ⁿ, since all primes >= 2).

CSC263 | Jessica Burgner-Kahrs
62

So...

Out of the n²/2ln(n) prime numbers we choose from, at most n of them
could cause the algorithm to return a wrong answer (bad primes).

If we choose a good prime, the algorithm gives correct answer for sure.
If we choose a bad prime, the algorithm may give a wrong answer.

So the probability of wrong answer is upper-bounded by

CSC263 | Jessica Burgner-Kahrs
63

Error Probability of our Monte Carlo
Algorithm

CSC263 | Jessica Burgner-Kahrs
64

When n = 10¹⁴ (10TB)
Pr(error) ≤ 0.00000000000644

Performance Comparison (n = 10TB)

The Regular Algorithm

x == y

§ Perform 10¹⁴ comparisons

§ Error probability: 0

CSC263 | Jessica Burgner-Kahrs
65

If you feel like: “This error probability is too high!”
§ Run Monte Carlo Algorithm twice

§ Perform < 200 comparisons

§ Error probability squared: 0.000000000000000000000415

The Monte Carlo Algorithm

(x mod p) == (y mod p)

§ Perform < 100 comparisons

§ Error probability: 0.000000000000644

Summary

Randomized Algorithms
Guarantees expected performance

Make algorithm less vulnerable to malicious inputs

Monte Carlo Algorithms
Gain time efficiency by sacrificing a tiny bit of correctness.

CSC263 | Jessica Burgner-Kahrs
66

CSC263 | Jessica Burgner-Kahrs
67

In 2 weeks

Graphs

