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Amortized Analysis

The amortized sequence complexity is the “average” cost per 
operation over a sequence of operations.

For a sequence of m operations:
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The MAXIMUM possible total cost 
of among all possible sequences 
of m operations

Amortized sequence complexity 

worst-case sequence complexity
=                                  

m        



Amortized Analysis

The amortized sequence complexity is the “average” cost per operation 
over the sequence.

§ Unlike average-case analysis, there is NO probability or expectation 
involved.

We do amortized analysis when we are interested in the total complexity of 
a sequence of operations.

§ Unlike in average-case analysis where we are interested in a single
operation.
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Example for Intuition
Stack with additional operation 
§ PUSH(S, x) push one item into the stack
§ POP(S) pops the top item from S
§ MULTIPOP(S, k) pop k top items from S 
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def MULTIPOP(S,k):
while not STACK-EMPTY(S) and k>0:
POP(S)
k = k-1



Example for Intuition
We have a sequence of N operations consisting of PUSH and MULTIPOP. 

What’s the worst-case total runtime of the sequence?
(Start: S empty)

§ with N operations we can push in at most N items into the stack
§ MULTIPOP pops N elements in worst-case, which takes N steps.
§ If all operations were MULTIPOP, each of which takes the worst N steps, the 

total runtime would be O(N²). Right?
§ No! We have at most N elements, each of which is at most pushed once and 

popped once, so the total runtime of the sequence is O(N) !
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Analysing the runtime of a sequence of operations
IS NOT

the runtime of a single operation multiplied
by the size of the sequence

especially when the sequence of operations are operating on a shared 
data structure and have interdependencies with each other.

So we need some special analysis methods

6CSC263 | Jessica Burgner-Kahrs



Amortized Analysis

An amortized analysis of a data structure
computes the maximum possible 

average cost per operation
in a sequence of operations, 

starting from some initial base state.
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Methods for Amortized Analysis

§ Aggregate Method

§ Accounting Method

§ Potential Method 
not covered in lecture, read CLRS Chapter 17
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Amortized Analysis

Real-life Intuition
Monthly cost of living, 
a sequence of 12 
operations
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Aggregate method

What is the amortized cost per month (operation)?

Build sum of the costs of sequence of operations 
and divide by the number of operations,

to determine the average cost per operation.
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Aggregate Method: sum of all months’ spending is 
$12,600 divided by 12 months 

amortized cost is $1,050 per month.



Accounting Method

Instead of calculating the average cost, we think about the 
cost from a different angle, i.e., 

How much money do I need to earn each month in order to 
keep living? That is, be able to pay for the spending every 
month and never become broke.
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Accounting method: if I earn $1,050 per month from Jan to Dec, I will 
never become broke (assuming earnings are paid at the beginning of month).

So the amortized cost: $1,050

Saving money for big 
spendings in the future.



Aggregate vs Accounting

§ Aggregate method gives each type of operation the same 
amortized cost (the average cost)

§ Accounting method is more flexible
§ Each type of operation can be assigned a different

amortized cost
§ Works even when the sequence of operations is not 

concretely defined
§ Gives more interesting insights for data structure design
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Amortized Analysis on 
Dynamic Arrays

Case Study
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Problem Description

§ Think of an array initialized with a fixed number of slots, which 
supports APPEND operations.

§ When we APPEND too many elements, the array would be full and 
we need to expand the array (increase its size).

§ Requirement: the array must be using one contiguous block of 
memory all the time.
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How do we do the expansion so that we have good 
performance with a sequence of APPENDs?



One Way to Expand
If the array is full, APPEND is called

§ Create a new array of double the size
§ Copy the all elements from old array to new array
§ Append the element
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3 7 2 1 APPEND(9)

93 7 2 1



Amortized Analysis of Expand

Now consider a dynamic array initialized with size 1 and a 
sequence of m APPEND operations on it.

Analyse the amortized cost per operation
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Assumption: only count array assignments, i.e., 
append an element and copy an element



Using the Aggregate Method

Cost sequence would be like:

1,  2,  3,  1,  5,  1,  1,  1,  9,  1,  1,  1,  1,  1,  1, …
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Copy 1 
append 1

Copy 2 
append 1

Copy 4 
append 1

Copy 8 
append 1

Cost sequence concretely defined, sum-and-divide can be done, 
but we want to do something more interesting…



Using the Accounting Method

How much money do we need to earn at each operation, so 
that all future costs can be paid for?

How much money to earn for each APPEND’ed element ?
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Son, you’re going to be appended to the array. Here is 
some money. Use it to pay all your future expenses (like 
cost of appending, being copied, etc).

I hope that’s enough, so that I will never become broke.



How much money do we need to earn at each operation, so 
that all future costs can be paid for?

How much money to earn for each APPEND’ed element ?

Using the Accounting Method

CSC263 | Jessica Burgner-Kahrs
22

$1 ?
$2 ?

$3 ?
$log m ?

$m ?



Earn $1 for each appended element

This $1 (the “append-dollar”) is spent when appending the element.

But, when we need to copy this element to a new array (when expanding the 
array), we don’t any money to pay for it --

BROKE!
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Earn $2 for each appended element

$1 (the “append-dollar”) will be spent when appending the element

$1 (the “copy-dollar”) will be spent when copying the element to a new array

What if the element is copied for a second time (when expanding the array for a 
second time)?

BROKE!
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Earn $3 for each appended element

$1 (the “append-dollar”) will be spent when appending the element

$1 (the “copy-dollar”) will be spent when copying the element to a new array

$1 (the “recharge-dollar”) is used to recharge the old elements
that have spent their “copy-dollars”.

NEVER BROKE!

CSC263 | Jessica Burgner-Kahrs
25



$1 (the “recharge-dollar”) is used to recharge the 
old elements that have used their “copy-dollar”.

Old elements who have 
used their “copy-dollars”

New elements each of whom 
spares $1 for recharging one 
old element’s “copy-dollar”.

There will be enough new elements who will spare enough money for all
the old elements, because the way we expand – TWICE the size
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In Summary

If we earn $3 upon each APPEND it is enough money to pay 
for all costs in the sequence of APPEND operations.

In other words, for a sequence of m APPEND operations, the 
amortised cost per operations is 3, which is in O(1).
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In a regular worst-case analysis (non-amortized), 
what is the worst-case runtime of an APPEND 
operation on an array with m elements?



By performing the amortised analysis, we showed that “double 
the size when full” is a good strategy for expanding a dynamic 
array, since it’s amortised cost per operation is O(1).

In contrast, “increase size by 100 when full” would not be a 
good strategy. 

It will cause O(n) amortised runtime.

Why?
CSC263 | Jessica Burgner-Kahrs

28



Takeaway

Amortized analysis provides us valuable insights into the 
design of the expansion strategy of dynamic arrays.

It is a powerful tool for data structures design.
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How about Shrinking?

For a complete implementation of Dynamic Array, we also need a 
strategy for shrinking.
If we keep deleting elements and there are many unused space 
in the array, we want to shrink.
When to shrink? 
Amortised analysis tells we shrink when the array is ¼ full, this 
ensures DELETE operations have amortised runtime O(1).
More details in CLRS Chapter 17.4
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This type of strategy for expanding and shrinking is widely used 
by hash table implementations
§ Java HashMap: expand when load factor is larger than ¾
§ Python Dict: expand when load factor is larger than ⅔

By dynamically resizing, the hash table can maintain a constant 
load factor therefore guarantees constant lookup time.

31
CSC263 | Jessica Burgner-Kahrs



32
CSC263 | Jessica Burgner-Kahrs

7 min



QuickSort
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Background
Invented by Tony Hoare in 1960 

Very commonly used sorting 
algorithm. When implemented 
well, it is typically faster than 
merge sort and heapsort.

34

Invented NULL
pointer in 1965.
Apologized for it in 
2009

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
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(aka Sir Charles Antony Richard Hoare)

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare


QuickSort: The Idea
Partition an array

35

2 8 7 1 3 5 6 4

pick a pivot
(e.g. the last element)

2 1 3 4 7 5 6 8

smaller than pivot greater than pivot

CSC263 | Jessica Burgner-Kahrs

CLRS Chapter 7



2 1 3 4 7 5 6 8

Recursively partition the sub-arrays 
before and after the pivot.

Base case

1 sorted

CLRS Chapter 7
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Pseudocode Quicksort
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def partition (array, p, r):
pivot = array[r]
i = p-1
for j = p to r-1:
if array[j] <= pivot:
i=i+1
exchange array[i] with array[j]

exchange array[i+1] with array[r]
return i+1

def quicksort(array,p,r):
#initial call: quicksort(A, 1, A.length)
if p < r:
q <- partition(array, p, r)     

quicksort(array, p, q-1)
quicksort(array, q+1, r)



Worst-case Analysis of 
QuickSort

T(n): the total number of comparisons made
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We will first prove T(n) = O(something)

Then we will prove T(n) = Ω(the same thing)

Therefore we conclude T(n) = Θ(the thing)
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Claim 1
Each element in A can be chosen as pivot at most once. 

Claim 2
Elements are only compared to pivots. 

2 1 3 4 7 5 6 8

For simplicity, assume all elements are distinct

A pivot never goes into a sub-array on which a recursive call is made.

That’s what partition is all about - comparing with pivot.

A
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Claim 3
Any pair (a, b) of elements in A are compared at most 
once. For a and b to be compared, one of them must be the pivot (Claim 2). This pivot will 

never be pivot again (Claim 1), and so can’t participate in any more comparisons.

The total number of comparisons is 
no more than the total number of pairs.

2 1 3 4 7 5 6 8A
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The total number of comparisons is 
no more than the total number of pairs.



i.e., the worst-case running time is lower-bounded by some cn²

How do you show the tallest person in the 
room is lower-bounded by 1 meter?

Just find one person who is taller than 1m!

so, just find one input for which the running time is some cn²
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Week 1



i.e., find one input that results in 
awful partitions (everything on one side).

Remember that we 
always pick the last 
one as pivot.

1     2     3     4     5      6     7     8

IRONY
The worst input for QuickSort
is an already sorted array.
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so, just find one input for which the running time is some cn²



1 2 3 4 5 6 7 8

Choose pivot A[n], then n-1 comparisons

Calculate the Number of Comparisons
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Recurse to subarray, pivot A[n-1], then n-2 comps

Recursive to subarray, pivot A[n-2], then n-3 comps

...

Total # of comps:

A



So, the worst-case runtime
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What other sorting algorithms have n² worst-case running time?
Bubble Sort, Insertion Sort, …

Is QuickSort really “quick” ? 

Yes, in average-case.
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Average-case Analysis of QuickSort

Input distribution all permutations of array [1, 2, …, n]

array is chosen uniformly at random from among 

these permutations

One can prove that the expected number of comparisons is O(n log n).

Read CLRS Chapter 7.4
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Summary Quicksort

The worst-case runtime is Θ(n²).

The average-case runtime of QuickSort is O(n log n), given 
that the inputs are uniformly random permutations of an array.
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However, in Real Life...
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QuickSort(A)

The assumption of uniform randomness is NOT really true, 
because it is often impossible for us to know what the input 
distribution really is.

Even worse, if the person who provides the 
inputs is malicious, they can totally only 
provide worst-inputs and guarantee worst-
case runtime.

The theoretical average case O(nlog n) 
is no way guaranteed in real life…



How can we get guaranteed performance 
in real life? Use Randomisation!
§ We shuffle the input array “uniformly randomly”, so that after 

shuffling the array looks like drawn from a uniform distribution

§ Even the malicious person’s always-worst inputs will be 
shuffled to be like uniformly distributed

§ This makes the assumption of the average-case analysis true

§ So we can guarantee O(n log n) expected runtime
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Randomised-QuickSort(A):
permute A uniformly randomly
QuickSort(A)

How exactly do we perform the permutation so that we can prove that it’s going 
to be like uniform distribution? (Read CLRS Chapter 5.3)
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Randomized Algorithms
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Use Randomization to Guarantee 
Expected Performance
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We do it everyday.



Two Types of Randomized Algorithms

Las Vegas Algorithms

Deterministic answer, random runtime

Monte Carlo Algorithms

Deterministic runtime, random answer
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Randomized-QuickSort is a … Las Vegas algorithm



An Example
Monte Carlo Algorithm

“Equality Testing”
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The Problem

Given two binary numbers x and y, decide whether x = y.

CSC263 | Jessica Burgner-Kahrs
57

def equal(x, y):
return x == y



The Problem

Given two binary numbers x and y, decide whether x = y.
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No kidding, what if the size of x and y are 10TB each?

The above code needs to compare ~10¹⁴ bits.

Even worse, what if x and y are stored on two separate computers 
which are connected through a slow network connection?

Can we do better?
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Need to compare at most 2log(n) bits.

Why assuming x and y are of the same length?

log₂(10¹⁴) ≈ 46.5But, does it give the 
correct answer?

Huge improvement on runtime!

Let n = len(x) = len(y) be the length of x and y.

def equal_monte_carlo(x, y):
Randomly choose a prime number p ≤ n²
# len(p) ≤ log₂(n²) = 2log₂(n)
return (x mod p) == (y mod p)



Does it give the Correct Answer?
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If (x mod p) ≠ (y mod p), then…

Must be x ≠ y, our answer is correct for sure.

If (x mod p) = (y mod p), then…

Could happen that x ≠ y but (x mod p) = (y mod p), so our 
answer might be wrong, if choosing a “bad” p.

So, what’s the probability of a wrong answer?
It’s upper-bounded by the probability of choosing a “bad” p.



Prime Number Theorem
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Theorem
In range [1, m], there are roughly m/ln(m) prime numbers.

So in range [1, n²], there are n²/ln(n²) = n²/2ln(n) prime numbers.

Given x and y, how many (bad) primes in [1, n²] could satisfy 

(x mod p) = (y mod p) even if x ≠ y ?
At most n



Proof: At most n Bad Primes

There are at most n primes p, such that (x mod p) = (y mod p) while x ≠ y.

Proof

(x mod p) = (y mod p) ⇔ |x - y| is a multiple of p, i.e., p is a prime divisor of |x - y|.

|x - y| < 2ⁿ (as they are n-bit binary numbers) 

so it has no more than n prime divisors 

(otherwise if it has more than n prime divisors, the product of them will be larger 
than 2ⁿ, since all primes >= 2).
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So...

Out of the n²/2ln(n) prime numbers we choose from, at most n of them 
could cause the algorithm to return a wrong answer (bad primes).

If we choose a good prime, the algorithm gives correct answer for sure.
If we choose a bad prime, the algorithm may give a wrong answer.

So the probability of wrong answer is upper-bounded by
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Error Probability of our Monte Carlo 
Algorithm
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When n = 10¹⁴  (10TB)
Pr(error) ≤ 0.00000000000644



Performance Comparison (n = 10TB)

The Regular Algorithm 

x == y

§ Perform 10¹⁴ comparisons

§ Error probability: 0
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If you feel like: “This error probability is too high!”
§ Run Monte Carlo Algorithm twice

§ Perform < 200 comparisons

§ Error probability squared: 0.000000000000000000000415

The Monte Carlo Algorithm 

(x mod p) == (y mod p)

§ Perform < 100 comparisons

§ Error probability: 0.000000000000644



Summary

Randomized Algorithms
Guarantees expected performance

Make algorithm less vulnerable to malicious inputs

Monte Carlo Algorithms
Gain time efficiency by sacrificing a tiny bit of correctness.
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In 2 weeks

Graphs


