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Hash Table implementing ADT Dictionary

2

unsorted 
list sorted array

Search(S, k) O(n) O(log n)

Insert(S, x) O(n) O(n)

Delete(S, x) O(1) O(n)

Balanced 
BST

O(log n)

O(log n)

O(log n)

Hash table

O(1)

O(1)

O(1)

CSC263 | Jessica Burgner-Kahrs

worst-case average-case



Hash table Applications

§ Python dict is implemented using hash table

§ C++ unordered_map
§ Spell checkers: just modify one letter of the wrong word at a time, 

and lookup a dictionary implemented by hash table. This naive 

algorithm works well because hash table lookup is so fast.

§ Hashing is widely used in cryptography and integrity verification 

(e.g., checksum with MD5, SHA)

§ Database indexing, cache...
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Direct Address Table
the formal term for array
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Example: Problem
Read a grade file, keep track of number 

of occurrences of each grade (integer 0~100).

5

33 20 35 65 771 332 21 125 ... 2

The fastest way: create an array T[0, …, 100], where 
T[i] stores the number of occurrences of grade i.

0         1           2         3          4          5           6         7      …   100

Search, Insert, Delete in O(1) time, worst-case.

Direct-address table: directly using the key as the index of the table

values:

keys:
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The drawbacks of direct-address table?

Drawback #1

What if the keys are not integers? 
Cannot use keys as indices anymore!

Drawback #2

What if the grade 1,000,000,000 is 
allowed? Then we need an array of 
size 1,000,000,001! Most space is 
wasted.
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We need to be able to 
convert any type of key 
to an integer.

We need to map the 
universe of keys into a 
small number of slots.

A hash function does both!

33 20 35 65 771 332 21 125 ... 2
0         1           2         3          4          5           6         7      …   100

values:

keys:
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Definitions

Universe U the set of all possible keys.
Hash Table T an array with m positions, each position is 

called a “slot” or a “bucket”.
Hash Function h a deterministic function mapping U to {0, 1, …, m-1}

in other words, h(k) maps any key k to one of the 
m buckets in table T
in yet other words, in array T, h(k) is the the index 
at which the key k is stored.
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Hash Table

© Introduction to Algorithms. 3/e by Cormen et al.
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Example: A hash table with m = 7

9

0

1

2

3

4

5

6

Insert(“hello”)
assume h(“hello”) = 4

hello

Insert(“world”)
assume h(“world”) = 2world

Insert(“tree”)
assume h(“tree”) = 5

tree Search(“hello”)
return T[ h(“hello”) ]

T

What’s the concern?
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Example: A hash table with m = 7
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0

1

2

3

4

5

6

hello

world

T

tree
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Collision Two distinct keys hash to the 
same location.

What if we Insert(“snow”), 
and h(“snow”) = 4?

One way to resolve collisions is Chaining



Example: A hash table with m = 7
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0

1

2

3

4

5

6

snow

world

T

tree

What if we Insert(“snow”), 
and h(“snow”) = 4?

Collision Two distinct keys hash to the 
same location.

One way to resolve collisions is Chaining

hello

Store a linked list at 
each bucket, and insert 
new ones at the head
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Hashing with Chaining: Operations
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Search(k)
§ Search k in the linked list stored at T[ h(k) ]
§ Worst-case O(length of chain),

Insert(k)
§ Insert into the linked list stored at T[ h(k) ]
§ Need to check whether key already exists, still takes                     

O(length of chain)

Delete(k)
§ Search k in the linked list stored at T[ h(k) ], then 

delete, O(length of chain)

0

1

2

3

4

5

6

snow

world

T

tree

hello

Let n be the total 
number of keys in 
the hash table.
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How bad can “length of chain” be?

O(n) 
i.e. all keys hash to the same slot
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Hashing with Chaining
Worst-case running times are O(n) in general.

… Doesn’t sound too good.

However, in practice, hash tables work really well, that is because

Ø The worst case almost never happens.
Ø Average case performance is really good.
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Search in 
Hashing with Chaining

Average-case analysis
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Simple Uniform Hashing Assumption

Every key k ∈ U is equally likely to hash to any of the m buckets.

Intuition: If we insert n keys into the m slots with simple uniform 
hashing, the chains at every slot will have on average the same 
length, so the average length of each chain would be

#keys
#slots =

n
m

16
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Simple Uniform Hashing Assumption
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Every key k ∈ U is equally likely to hash to any of the m buckets.

For any key k and any bucket j

Given a key k, each of the m
slots is equally likely to be 
hashed to, therefore 1/m
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formalized

Pr ℎ % = ' = 1
) = Pr ℎ % = ℎ %′

This is independent of 
all other keys % ≠ %,.



Let random variable N(k) be the number of 
elements examined during search for k, then 
average-case running time is basically E[N(k)]
(plus time spent in computing the hashing)  
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Average-case Running Time
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!
"#∈%

Pr ℎ ) = ℎ )′, -()) ≤

≤ 1 + !
"#∈%

Pr ℎ ) = ℎ )′ ) ≠ )#

) ∈ 4

≤ 1 + 5
6

Every key in T 
which collided



Add O(1) steps for calculating h(k), accessing T

Average-case running time for Search
is in at most 1 + # ( O(1 + # ) ) 
(it’s an upper bound since we also consider the case of unsuccessful search, i.e. have to 
go through the chain)

With a little more work, we can show that it is actually Θ 1+α
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$ %(') ≤ 1 + *
+

Load factor # = *
+

average number of keys per bucket, i.e., the average length of chain
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Bonus Proof
Average-case Runtime of a Successful Search 

Assumption: k is a key that exists in the hash table

The number of elements examined during search for a 
key k
= 1 + number of elements before x in chain

= 1 + number of keys that hash samely as k and are 
inserted after k

The successful 
comparison when 
found k

The comparisons 
that return false

so in the same
chain as x

so it’s before x in the 
chain (we insert at the 
head)

after-class reading
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Let k1, k2, k3, …, kn be the order of insertion

Define

then, the expectation

E [number of keys that hash samely as a key k and are inserted after k]

because simple uniform hashing

average over 
all keys ki

sum over all 
keys kj inserted 
after ki

So overall, 
average-case runtime of successful search: 
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Proof continued…
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Θ(1+α) Θ(1 + n/m)

If n < m, i.e., more slots than keys stored, the running time is Θ(1)

If n/m is of the order of a constant, the running time is still Θ(1)

If n/m of higher order, e.g., sqrt(n), then it’s not constant anymore. 

In practice
§ choose m (size of the table) wisely to guarantee constant average-case running time
§ grow/shrink the table dynamically

23
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We made an important Assumption...

Simple Uniform Hashing

Can we really get this for real?

Difficult, but we try to be as close to it as possible.

Choose good hash functions

25
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Choose a good hash 
function
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Recap

§ Hash table: a data structure used to implement the Dictionary ADT.

§ Hash function h(k): maps any key k to {0, 1, …, m-1}

§ Hashing with chaining: average-case O(1+α) for search, insert and 
delete, assuming simple uniform hashing

27
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Simple Uniform Hashing

All keys are evenly distributed to the m buckets of the hash table, so that the lengths of 
chains at each bucket are the same.
§ Think about inserting English words from a book into the hash table

We cannot really guarantee this in practice, we don’t know the distribution from which 
the keys are drawn.

§ e.g., we cannot really tell which English words will actually be inserted into the hash 
table before we go through the whole document.

§ so there is no way to choose a hash function beforehand that guarantees all chains 
will be equally long (simple uniform hashing).

28
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So what can we do?
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We use some heuristics.

Heuristic
(noun)

A method that works in practice but 
nobody really knows why.
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First of all: Converting key to integer

Every object stored in a computer can be represented by a bit-string
(string of 1’s and 0’s), which corresponds to a (large) integer, i.e., any 
type of key can be converted to an integer easily.

So the only thing a hash function really needs to worry about is how 
to map these large integers to a small set of integers {0, 1, …, m-1}, 
i.e., the buckets.

30
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What do we want to 
have in a hash function?
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Want-to-have #1
h(k) depends on every bit of k,

so that the differences between different k’s are fully considered.
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h(k) = lowest 3-bits of k
e.g., 
h(101001010001010) = 2

bad

h(k) = sum of all bits
e.g., 
h(101001010001010) = 6

a little 
better
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Want-to-have #2
h(k) “spreads out” values, so all buckets get something.
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h(k) = k mod 2

Assume there are m = 263 buckets in the hash table.

bad
because all keys 

hash to 

either bucket 0 

or bucket 1

h(k) = k mod 263

better
all buckets get

used
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Want-to-have #3

h(k) should be efficient to compute

34

h(k) = solution to the PDE 
*$^% with parameter k

Terrible!

h(k) = k mod 263

better
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A good Function

1. h(k) depends on every bit of k

2. h(k) “spreads out” values

3. h(k) is efficient to compute

In practice, it is difficult to get all three of them, 

but there are some heuristics that work well

35
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The Division Method

h(k) = k mod m

h(k) is between 0 and m-1

Pitfall: Sensitive to the value of m

§ if m = 8: h(k) just returns the lowest 3-bits of k

§ so m is preferably a prime number other than 2
That means the size of the table better be a prime number, 
that’s kind-of restrictive!

36
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A Variation of the Division Method

h(k) = (ak + b) mod m

where a and b are constants picked randomly

Used in “Universal hashing” (see CLRS 11.3.3)

§ achieve simple uniform hashing and fight malicious adversary by 
choosing randomly from a set of hash functions.

37
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The Multiplication Method

with constant 0 < A < 1

e.g. A = 0.45352364758429879433234

38

x mod 1 returns the 
fractional part of x

We “mess-up” k by multiplying A, take the fractional part of the “mess” (between 
0 and 1), then multiply m to make sure the result is between 0 and m-1.

Magic A suggested by Donald Knuth:

Tends to evenly distribute the hash values, because of the “mess-up”. Not sensitive to the value of m.
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Donald Knuth
The “father of analysis of algorithms”

Inventor of LaTeX
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Summary: Hash Functions
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Hash
(noun)

a dish of cooked meat cut into small 
pieces and cooked again, usually 

with potatoes.

(verb)
make (meat or other food) into a 

hash “The spirit of hashing”
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Open Addressing
another way of resolving collisions

other than chaining
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Open Addressing

§ There is no chain

§ Then what to do when having a collision?
§ Find another bucket that is free

§ How to find another bucket that is free?
§ We probe.

§ How to probe?
§ linear probing
§ quadratic probing
§ double hashing

42
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Requirement
For every key k the probe 
sequence is a permutation
of <0,1,…,m-1>.



Linear probing
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Probe sequence h(k,i) = (h(k) + i) mod m,  for i=0,1,2, ...

0

1

2

3

4

5

6

hello

world

T

tree

Insert(“hello”)
assume h(“hello”) = 4

Insert(“world”)
assume h(“world”) = 2

Insert(“tree”)
assume h(“tree”) = 2
probe 2, 3 ok

Insert(“snow”)
assume h(“snow”) = 3
probe 3, 4, 5 ok

snow
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Problem with Linear Probing
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Primary Clustering
Keys tend to cluster, which 
causes long runs of probing.

Solution
Jump farther in each probe.
before: h(k), h(k)+1, h(k)+2, h(k)+3, ...

after: h(k), h(k)+1, h(k)+4, h(k)+9, ...

This is called quadratic probing.

0

1

2

3

4

5

6

hello

world

T

tree

snow
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Quadratic Probing

45

Probe sequence h(k,i) = (h(k) + c₁i + c₂i²) mod m, for i=0,1,2,...

Pitfalls
§ Collisions still cause a milder form of clustering, i.e. 

secondary clustering, which still cause long runs 
(keys that collide jump to the same places and form cluster)

§ Need to be careful with the values of c₁ and c₂, it could jump in 
such a way that some of the buckets are never reachable
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Double Hashing

46

Probe sequence h(k,i) = (h₁(k) + ih₂(k)) mod m, for i=0,1,2,...

Now the jumps almost look like random, the 
jump-step (h₂(k)) is different for different k, 
which helps avoiding clustering upon collisions, 
therefore avoids long runs (each one has their 
own way of jumping, so no clustering).
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Performance of Open Addressing

Assuming simple uniform hashing, the average-case number of 
probes in an unsuccessful search is 1/(1-α).

For a successful search it is 

In both cases, assume α < 1

47

Open addressing cannot have α > 1. Why?
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Search, Insert, Delete
in an open-addressing hash table
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Insert (assume linear probing)

49

Insert(“Four2”)
check T[h(“Four2”)=4]: occupied

check T[h(“Four2”)+1=5]: occupied

check T[h(“Four2”)+2=6]: free slot! 

Insert there

0

1

2

3

4

5

6

Four1

Two1

T

Two2

Two3

Four2
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Search (assume linear probing)
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Search(k = “Two3”):

check T[h(“Two3”)=2]: not yet

check T[h(“Two3”)+1=3]: not yet

check T[h(“Two3”)+2=4]: not yet

check T[h(“Two3”)+3=5]: found!

Search(k=”Four2”):

check T[h(“Four2”)=4]: not found

check T[h(“Four2”)+1=5]: not found

check T[h(“Four2”)+2=6]: a free slot! 

Can give up now, “Four2” is NOT there

0

1

2

3

4

5

6

Four1

Two1

T

Two2

Two3
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Delete (assume linear probing)
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Delete(“Two2”)

check T[h(“Two2”)=2]: not yet
check T[h(“Two2”)+1=3]: found
Just delete it?

0

1

2

3

4

5

6

Four1

Two1

T

Two
2

Two3

DELETED

No, if T[3] becomes a free slot, next 
time Search(Two3) will give up by 
mistake.
Solution: let T[3] store a special node 
called “deleted”, and Search() doesn’t 
give up when seeing “deleted”. And 
“deleted” can be used for insertion
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more details about 
open-addressing 

in the Tutorial
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An unfortunate Naming Confusion

Python has a built-in “hash()” function

53

By the definition, this “hash()” 
function is not really a hash 
function because it only does the 
first thing (convert to integer) but 
not the second thing (map to a 
small number of slots).
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One more thing to know

The coolest hash table so far.

Cuckoo Hashing
https://en.wikipedia.org/wiki/Cuckoo_hashing
Invented by Rasmus Pagh and Flemming Friche Rodler in 2001.

Simple algorithm with provable worst-case O(1) lookup time.

54
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Reflection

Both BST and Hash Table both implement the 
Dictionary ADT, and they are both invented by 
smart people.

This is a rare case where one data structure is 
better than the other in every aspect.

But really? Is that true?
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Balanced 
BST

O(log n)

O(log n)

O(log n)

Hash 
table

O(1)

O(1)

O(1)

What can BST do better than Hash Tables?
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Today we learned

§ Hash tables: fast lookup

§ Choose good hash functions

Next week

§ Amortized analysis

§ QuickSort
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