
Hash Tables
Week 5

CSC263 Winter 2020

CSC263 | Jessica Burgner-Kahrs
1

Hash Table implementing ADT Dictionary

2

unsorted
list sorted array

Search(S, k) O(n) O(log n)

Insert(S, x) O(n) O(n)

Delete(S, x) O(1) O(n)

Balanced
BST

O(log n)

O(log n)

O(log n)

Hash table

O(1)

O(1)

O(1)

CSC263 | Jessica Burgner-Kahrs

worst-case average-case

Hash table Applications

§ Python dict is implemented using hash table

§ C++ unordered_map
§ Spell checkers: just modify one letter of the wrong word at a time,

and lookup a dictionary implemented by hash table. This naive

algorithm works well because hash table lookup is so fast.

§ Hashing is widely used in cryptography and integrity verification

(e.g., checksum with MD5, SHA)

§ Database indexing, cache...

3
CSC263 | Jessica Burgner-Kahrs

Direct Address Table
the formal term for array

CSC263 | Jessica Burgner-Kahrs
4

Example: Problem
Read a grade file, keep track of number

of occurrences of each grade (integer 0~100).

5

33 20 35 65 771 332 21 125 ... 2

The fastest way: create an array T[0, …, 100], where
T[i] stores the number of occurrences of grade i.

0 1 2 3 4 5 6 7 … 100

Search, Insert, Delete in O(1) time, worst-case.

Direct-address table: directly using the key as the index of the table

values:

keys:

CSC263 | Jessica Burgner-Kahrs

The drawbacks of direct-address table?

Drawback #1

What if the keys are not integers?
Cannot use keys as indices anymore!

Drawback #2

What if the grade 1,000,000,000 is
allowed? Then we need an array of
size 1,000,000,001! Most space is
wasted.

6

We need to be able to
convert any type of key
to an integer.

We need to map the
universe of keys into a
small number of slots.

A hash function does both!

33 20 35 65 771 332 21 125 ... 2
0 1 2 3 4 5 6 7 … 100

values:

keys:

CSC263 | Jessica Burgner-Kahrs

Definitions

Universe U the set of all possible keys.
Hash Table T an array with m positions, each position is

called a “slot” or a “bucket”.
Hash Function h a deterministic function mapping U to {0, 1, …, m-1}

in other words, h(k) maps any key k to one of the
m buckets in table T
in yet other words, in array T, h(k) is the the index
at which the key k is stored.

7
CSC263 | Jessica Burgner-Kahrs

Hash Table

© Introduction to Algorithms. 3/e by Cormen et al.

CSC263 | Jessica Burgner-Kahrs
8

Example: A hash table with m = 7

9

0

1

2

3

4

5

6

Insert(“hello”)
assume h(“hello”) = 4

hello

Insert(“world”)
assume h(“world”) = 2world

Insert(“tree”)
assume h(“tree”) = 5

tree Search(“hello”)
return T[h(“hello”)]

T

What’s the concern?
CSC263 | Jessica Burgner-Kahrs

Example: A hash table with m = 7

10

0

1

2

3

4

5

6

hello

world

T

tree

CSC263 | Jessica Burgner-Kahrs

Collision Two distinct keys hash to the
same location.

What if we Insert(“snow”),
and h(“snow”) = 4?

One way to resolve collisions is Chaining

Example: A hash table with m = 7

11

0

1

2

3

4

5

6

snow

world

T

tree

What if we Insert(“snow”),
and h(“snow”) = 4?

Collision Two distinct keys hash to the
same location.

One way to resolve collisions is Chaining

hello

Store a linked list at
each bucket, and insert
new ones at the head

CSC263 | Jessica Burgner-Kahrs

Hashing with Chaining: Operations

12

Search(k)
§ Search k in the linked list stored at T[h(k)]
§ Worst-case O(length of chain),

Insert(k)
§ Insert into the linked list stored at T[h(k)]
§ Need to check whether key already exists, still takes

O(length of chain)

Delete(k)
§ Search k in the linked list stored at T[h(k)], then

delete, O(length of chain)

0

1

2

3

4

5

6

snow

world

T

tree

hello

Let n be the total
number of keys in
the hash table.

CSC263 | Jessica Burgner-Kahrs

How bad can “length of chain” be?

O(n)
i.e. all keys hash to the same slot

CSC263 | Jessica Burgner-Kahrs
13

Hashing with Chaining
Worst-case running times are O(n) in general.

… Doesn’t sound too good.

However, in practice, hash tables work really well, that is because

Ø The worst case almost never happens.
Ø Average case performance is really good.

14
CSC263 | Jessica Burgner-Kahrs

Search in
Hashing with Chaining

Average-case analysis

CSC263 | Jessica Burgner-Kahrs
15

Simple Uniform Hashing Assumption

Every key k ∈ U is equally likely to hash to any of the m buckets.

Intuition: If we insert n keys into the m slots with simple uniform
hashing, the chains at every slot will have on average the same
length, so the average length of each chain would be

#keys
#slots =

n
m

16
CSC263 | Jessica Burgner-Kahrs

Simple Uniform Hashing Assumption

17

Every key k ∈ U is equally likely to hash to any of the m buckets.

For any key k and any bucket j

Given a key k, each of the m
slots is equally likely to be
hashed to, therefore 1/m

CSC263 | Jessica Burgner-Kahrs

formalized

Pr ℎ % = ' = 1
) = Pr ℎ % = ℎ %′

This is independent of
all other keys % ≠ %,.

Let random variable N(k) be the number of
elements examined during search for k, then
average-case running time is basically E[N(k)]
(plus time spent in computing the hashing)

18
CSC263 | Jessica Burgner-Kahrs

Average-case Running Time

CSC263 | Jessica Burgner-Kahrs
19

!
"#∈%

Pr ℎ) = ℎ)′, -()) ≤

≤ 1 + !
"#∈%

Pr ℎ) = ℎ)′) ≠)#

) ∈ 4

≤ 1 + 5
6

Every key in T
which collided

Add O(1) steps for calculating h(k), accessing T

Average-case running time for Search
is in at most 1 + # (O(1 + #))
(it’s an upper bound since we also consider the case of unsuccessful search, i.e. have to
go through the chain)

With a little more work, we can show that it is actually Θ 1+α

20CSC263 | Jessica Burgner-Kahrs

$ %(') ≤ 1 + *
+

Load factor # = *
+

average number of keys per bucket, i.e., the average length of chain

21

Bonus Proof
Average-case Runtime of a Successful Search

Assumption: k is a key that exists in the hash table

The number of elements examined during search for a
key k
= 1 + number of elements before x in chain

= 1 + number of keys that hash samely as k and are
inserted after k

The successful
comparison when
found k

The comparisons
that return false

so in the same
chain as x

so it’s before x in the
chain (we insert at the
head)

after-class reading

CSC263 | Jessica Burgner-Kahrs

Let k1, k2, k3, …, kn be the order of insertion

Define

then, the expectation

E [number of keys that hash samely as a key k and are inserted after k]

because simple uniform hashing

average over
all keys ki

sum over all
keys kj inserted
after ki

So overall,
average-case runtime of successful search:

22

Proof continued…

CSC263 | Jessica Burgner-Kahrs

Θ(1+α) Θ(1 + n/m)

If n < m, i.e., more slots than keys stored, the running time is Θ(1)

If n/m is of the order of a constant, the running time is still Θ(1)

If n/m of higher order, e.g., sqrt(n), then it’s not constant anymore.

In practice
§ choose m (size of the table) wisely to guarantee constant average-case running time
§ grow/shrink the table dynamically

23
CSC263 | Jessica Burgner-Kahrs

24
CSC263 | Jessica Burgner-Kahrs

7 min

We made an important Assumption...

Simple Uniform Hashing

Can we really get this for real?

Difficult, but we try to be as close to it as possible.

Choose good hash functions

25
CSC263 | Jessica Burgner-Kahrs

Choose a good hash
function

CSC263 | Jessica Burgner-Kahrs
26

Recap

§ Hash table: a data structure used to implement the Dictionary ADT.

§ Hash function h(k): maps any key k to {0, 1, …, m-1}

§ Hashing with chaining: average-case O(1+α) for search, insert and
delete, assuming simple uniform hashing

27
CSC263 | Jessica Burgner-Kahrs

Simple Uniform Hashing

All keys are evenly distributed to the m buckets of the hash table, so that the lengths of
chains at each bucket are the same.
§ Think about inserting English words from a book into the hash table

We cannot really guarantee this in practice, we don’t know the distribution from which
the keys are drawn.

§ e.g., we cannot really tell which English words will actually be inserted into the hash
table before we go through the whole document.

§ so there is no way to choose a hash function beforehand that guarantees all chains
will be equally long (simple uniform hashing).

28
CSC263 | Jessica Burgner-Kahrs

So what can we do?

29

We use some heuristics.

Heuristic
(noun)

A method that works in practice but
nobody really knows why.

CSC263 | Jessica Burgner-Kahrs

First of all: Converting key to integer

Every object stored in a computer can be represented by a bit-string
(string of 1’s and 0’s), which corresponds to a (large) integer, i.e., any
type of key can be converted to an integer easily.

So the only thing a hash function really needs to worry about is how
to map these large integers to a small set of integers {0, 1, …, m-1},
i.e., the buckets.

30
CSC263 | Jessica Burgner-Kahrs

What do we want to
have in a hash function?

CSC263 | Jessica Burgner-Kahrs
31

Want-to-have #1
h(k) depends on every bit of k,

so that the differences between different k’s are fully considered.

32

h(k) = lowest 3-bits of k
e.g.,
h(101001010001010) = 2

bad

h(k) = sum of all bits
e.g.,
h(101001010001010) = 6

a little
better

CSC263 | Jessica Burgner-Kahrs

Want-to-have #2
h(k) “spreads out” values, so all buckets get something.

33

h(k) = k mod 2

Assume there are m = 263 buckets in the hash table.

bad
because all keys

hash to

either bucket 0

or bucket 1

h(k) = k mod 263

better
all buckets get

used

CSC263 | Jessica Burgner-Kahrs

Want-to-have #3

h(k) should be efficient to compute

34

h(k) = solution to the PDE
*$^% with parameter k

Terrible!

h(k) = k mod 263

better

CSC263 | Jessica Burgner-Kahrs

A good Function

1. h(k) depends on every bit of k

2. h(k) “spreads out” values

3. h(k) is efficient to compute

In practice, it is difficult to get all three of them,

but there are some heuristics that work well

35
CSC263 | Jessica Burgner-Kahrs

The Division Method

h(k) = k mod m

h(k) is between 0 and m-1

Pitfall: Sensitive to the value of m

§ if m = 8: h(k) just returns the lowest 3-bits of k

§ so m is preferably a prime number other than 2
That means the size of the table better be a prime number,
that’s kind-of restrictive!

36
CSC263 | Jessica Burgner-Kahrs

A Variation of the Division Method

h(k) = (ak + b) mod m

where a and b are constants picked randomly

Used in “Universal hashing” (see CLRS 11.3.3)

§ achieve simple uniform hashing and fight malicious adversary by
choosing randomly from a set of hash functions.

37
CSC263 | Jessica Burgner-Kahrs

The Multiplication Method

with constant 0 < A < 1

e.g. A = 0.45352364758429879433234

38

x mod 1 returns the
fractional part of x

We “mess-up” k by multiplying A, take the fractional part of the “mess” (between
0 and 1), then multiply m to make sure the result is between 0 and m-1.

Magic A suggested by Donald Knuth:

Tends to evenly distribute the hash values, because of the “mess-up”. Not sensitive to the value of m.

CSC263 | Jessica Burgner-Kahrs

39

Donald Knuth
The “father of analysis of algorithms”

Inventor of LaTeX

CSC263 | Jessica Burgner-Kahrs

Summary: Hash Functions

40

Hash
(noun)

a dish of cooked meat cut into small
pieces and cooked again, usually

with potatoes.

(verb)
make (meat or other food) into a

hash “The spirit of hashing”

CSC263 | Jessica Burgner-Kahrs

Open Addressing
another way of resolving collisions

other than chaining

CSC263 | Jessica Burgner-Kahrs
41

Open Addressing

§ There is no chain

§ Then what to do when having a collision?
§ Find another bucket that is free

§ How to find another bucket that is free?
§ We probe.

§ How to probe?
§ linear probing
§ quadratic probing
§ double hashing

42
CSC263 | Jessica Burgner-Kahrs

Requirement
For every key k the probe
sequence is a permutation
of <0,1,…,m-1>.

Linear probing

43

Probe sequence h(k,i) = (h(k) + i) mod m, for i=0,1,2, ...

0

1

2

3

4

5

6

hello

world

T

tree

Insert(“hello”)
assume h(“hello”) = 4

Insert(“world”)
assume h(“world”) = 2

Insert(“tree”)
assume h(“tree”) = 2
probe 2, 3 ok

Insert(“snow”)
assume h(“snow”) = 3
probe 3, 4, 5 ok

snow

CSC263 | Jessica Burgner-Kahrs

Problem with Linear Probing

44

Primary Clustering
Keys tend to cluster, which
causes long runs of probing.

Solution
Jump farther in each probe.
before: h(k), h(k)+1, h(k)+2, h(k)+3, ...

after: h(k), h(k)+1, h(k)+4, h(k)+9, ...

This is called quadratic probing.

0

1

2

3

4

5

6

hello

world

T

tree

snow

CSC263 | Jessica Burgner-Kahrs

Quadratic Probing

45

Probe sequence h(k,i) = (h(k) + c₁i + c₂i²) mod m, for i=0,1,2,...

Pitfalls
§ Collisions still cause a milder form of clustering, i.e.

secondary clustering, which still cause long runs
(keys that collide jump to the same places and form cluster)

§ Need to be careful with the values of c₁ and c₂, it could jump in
such a way that some of the buckets are never reachable

CSC263 | Jessica Burgner-Kahrs

Double Hashing

46

Probe sequence h(k,i) = (h₁(k) + ih₂(k)) mod m, for i=0,1,2,...

Now the jumps almost look like random, the
jump-step (h₂(k)) is different for different k,
which helps avoiding clustering upon collisions,
therefore avoids long runs (each one has their
own way of jumping, so no clustering).

CSC263 | Jessica Burgner-Kahrs

Performance of Open Addressing

Assuming simple uniform hashing, the average-case number of
probes in an unsuccessful search is 1/(1-α).

For a successful search it is

In both cases, assume α < 1

47

Open addressing cannot have α > 1. Why?

CSC263 | Jessica Burgner-Kahrs

Search, Insert, Delete
in an open-addressing hash table

CSC263 | Jessica Burgner-Kahrs
48

Insert (assume linear probing)

49

Insert(“Four2”)
check T[h(“Four2”)=4]: occupied

check T[h(“Four2”)+1=5]: occupied

check T[h(“Four2”)+2=6]: free slot!

Insert there

0

1

2

3

4

5

6

Four1

Two1

T

Two2

Two3

Four2

CSC263 | Jessica Burgner-Kahrs

Search (assume linear probing)

50

Search(k = “Two3”):

check T[h(“Two3”)=2]: not yet

check T[h(“Two3”)+1=3]: not yet

check T[h(“Two3”)+2=4]: not yet

check T[h(“Two3”)+3=5]: found!

Search(k=”Four2”):

check T[h(“Four2”)=4]: not found

check T[h(“Four2”)+1=5]: not found

check T[h(“Four2”)+2=6]: a free slot!

Can give up now, “Four2” is NOT there

0

1

2

3

4

5

6

Four1

Two1

T

Two2

Two3

CSC263 | Jessica Burgner-Kahrs

Delete (assume linear probing)

51

Delete(“Two2”)

check T[h(“Two2”)=2]: not yet
check T[h(“Two2”)+1=3]: found
Just delete it?

0

1

2

3

4

5

6

Four1

Two1

T

Two
2

Two3

DELETED

No, if T[3] becomes a free slot, next
time Search(Two3) will give up by
mistake.
Solution: let T[3] store a special node
called “deleted”, and Search() doesn’t
give up when seeing “deleted”. And
“deleted” can be used for insertion

CSC263 | Jessica Burgner-Kahrs

more details about
open-addressing

in the Tutorial

CSC263 | Jessica Burgner-Kahrs
52

An unfortunate Naming Confusion

Python has a built-in “hash()” function

53

By the definition, this “hash()”
function is not really a hash
function because it only does the
first thing (convert to integer) but
not the second thing (map to a
small number of slots).

CSC263 | Jessica Burgner-Kahrs

One more thing to know

The coolest hash table so far.

Cuckoo Hashing
https://en.wikipedia.org/wiki/Cuckoo_hashing
Invented by Rasmus Pagh and Flemming Friche Rodler in 2001.

Simple algorithm with provable worst-case O(1) lookup time.

54
CSC263 | Jessica Burgner-Kahrs

https://en.wikipedia.org/wiki/Cuckoo_hashing

Reflection

Both BST and Hash Table both implement the
Dictionary ADT, and they are both invented by
smart people.

This is a rare case where one data structure is
better than the other in every aspect.

But really? Is that true?

55

Balanced
BST

O(log n)

O(log n)

O(log n)

Hash
table

O(1)

O(1)

O(1)

What can BST do better than Hash Tables?

CSC263 | Jessica Burgner-Kahrs

Today we learned

§ Hash tables: fast lookup

§ Choose good hash functions

Next week

§ Amortized analysis

§ QuickSort

56
CSC263 | Jessica Burgner-Kahrs

