CSC263 Winter 2020

Hash Tables

Week 5

1

Hash Table implementing ADT Dictionary

	unsorted list	sorted array	Balanced BST	Hash table
Search(S, k)	O(n)	O(log n)	O(log n)	O(1)
Insert(S, x)	O(n)	O(n)	O(log n)	O(1)
Delete(S, x)	O(1)	O(n)	O(log n)	O(1)
		worst-case	9	average-case

Hash table Applications

- Python **dict** is implemented using hash table
- C++ unordered_map
- Spell checkers: just modify one letter of the wrong word at a time, and lookup a dictionary implemented by hash table. This naive algorithm works well because hash table lookup is so fast.
- Hashing is widely used in cryptography and integrity verification (e.g., checksum with MD5, SHA)
- Database indexing, cache...

Direct Address Table

the formal term for *array*

Example: Problem

Read a grade file, keep track of number of occurrences of each grade (integer 0~100).

The fastest way: create an array **T[0, ..., 100]**, where **T[i]** stores the number of occurrences of grade **i**.

Search, Insert, Delete in O(1) time, worst-case.

The drawbacks of direct-address table?

Definitions

Universe U the set of all possible keys. Hash Table T an array with **m** positions, each position is called a "**slot**" or a "**bucket**". a deterministic function mapping U to {0, 1, ..., m-1} Hash Function h in other words, **h(k)** maps any key **k** to one of the **m** buckets in table **T** in yet other words, in array **T**, **h**(**k**) is the the index at which the key k is stored.

Hash Table

Example: A hash table with m = 7

Insert("hello") assume h("hello") = 4

Insert("world") assume h("world") = 2

Insert("tree") assume h("tree") = 5

Search("hello")
return T[h("hello")]

What's the concern?

Example: A hash table with m = 7

What if we Insert("snow"), and h("snow") = 4?

Collision Two distinct keys hash to the same location.

One way to resolve collisions is Chaining

Example: A hash table with m = 7

Hashing with Chaining: Operations

Search(k)

- Search k in the linked list stored at T[h(k)]
- Worst-case O(length of chain),

Insert(k)

- Insert into the linked list stored at T[h(k)]
- Need to check whether key already exists, still takes
 O(length of chain)

Delete(k)

 Search k in the linked list stored at T[h(k)], then delete, O(length of chain)

How bad can "length of chain" be? O(n)

i.e. all keys hash to the same slot

Hashing with Chaining

Worst-case running times are O(n) in general.

... Doesn't sound too good.

However, in practice, hash tables work really well, that is because

- The worst case almost never happens.
- > Average case performance is really good.

Search in Hashing with Chaining

Average-case analysis

Simple Uniform Hashing Assumption

Every key $k \in U$ is equally likely to hash to any of the m buckets.

Intuition: If we insert n keys into the m slots with simple uniform hashing, the chains at every slot will have on average the same length, so the **average length** of each chain would be

 $\frac{\#\text{keys}}{\#\text{slots}} = \frac{n}{m}$

Simple Uniform Hashing Assumption *formalized*

Every key **k** ∈ **U** is **equally likely** to hash to any of the **m** buckets. For any key **k** and any bucket **j**

Let random variable **N(k)** be the number of elements examined during search for **k**, then average-case running time is basically **E[N(k)]** (plus time spent in computing the hashing)

Average-case Running Time

$$E[N(k)] \leq \sum_{k' \in T} \Pr(h(k) = h(k'))$$

$$E[N(k)] \le 1 + \frac{n}{m}$$

Load factor $\alpha = \frac{n}{m}$

average number of keys per bucket, i.e., the average length of chain

Add O(1) steps for calculating h(k), accessing T

Average-case running time for Search

is in at most $1 + \alpha$ (O(1 + α))

(it's an upper bound since we also consider the case of unsuccessful search, i.e. have to go through the chain)

With a little more work, we can show that it is actually $\Theta(1+\alpha)$

Bonus Proof Average-case Runtime of a Successful Search

so it's **before** x in the

chain (we insert at the

head)

Assumption: k is a key that **exists** in the hash table

The number of elements examined during search for a key k

= 1 + number of elements before x in chain

so in the **same**

chain as x

CSC263 | Jessica Burgner-Kahrs

Proof continued...

Let k1, k2, k3, ..., kn be the order of insertion
Define
$$X_{ij} = \begin{cases} 1 & \text{if } h(k_i) = h(k_j) \\ 0 & \text{otherwise} \end{cases}$$
 $E[X_{ij}] = \frac{1}{m}$
because simple uniform hashing
then, the expectation
E [number of keys that hash **samely** as a key k and are inserted **after** k]
 $\begin{bmatrix} 1 & n & n \\ 1 & n & n \end{bmatrix}$ $\begin{bmatrix} 1 & n & n \\ 1 & n & n \end{bmatrix}$

$$= E \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \end{bmatrix} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{m}$$
average over all keys kj inserted after ki
$$= \frac{1}{nm} \sum_{i=1}^{n} (n-i) = \dots = \frac{\alpha}{2} - \frac{\alpha}{2n}$$

So overall,

average-case runtime of successful search: $1 + E[\text{number} \dots] = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n}$

If n < m, i.e., more slots than keys stored, the running time is $\Theta(1)$

If **n/m** is of the order of a constant, the running time is still **O(1)**

If **n/m** of higher order, e.g., **sqrt(n)**, then it's not constant anymore.

In practice

- choose m (size of the table) wisely to guarantee constant average-case running time
- grow/shrink the table dynamically

C parameter

We made an important Assumption...

Simple Uniform Hashing

Can we really get this for real?

Difficult, but we try to be as close to it as possible.

Choose good hash functions

Choose a good hash function

• Hash table: a data structure used to implement the Dictionary ADT.

Hash function h(k): maps any key k to {0, 1, ..., m-1}

 Hashing with chaining: average-case O(1+α) for search, insert and delete, assuming simple uniform hashing

Simple Uniform Hashing

All keys are **evenly** distributed to the m buckets of the hash table, so that the lengths of chains at each bucket are the same.

• Think about inserting English words from a book into the hash table

We **cannot** really **guarantee** this in practice, we don't know the distribution from which the keys are drawn.

- e.g., we cannot really tell which English words will actually be inserted into the hash table before we go through the whole document.
- so there is no way to choose a hash function beforehand that guarantees all chains will be equally long (simple uniform hashing).

So what can we do?

We use some heuristics.

Heuristic

(noun)

A method that works in practice but nobody really knows why.

First of all: Converting key to integer

Every object stored in a computer can be represented by a **bit-string** (string of 1's and 0's), which corresponds to a (**large**) **integer**, i.e., any type of key can be converted to an **integer** easily.

So the only thing a **hash function** really needs to worry about is how to **map** these large integers to a small set of integers **{0, 1, ..., m-1}**, i.e., the buckets.

What do we want to have in a hash function?

Want-to-have #1

h(k) depends on every bit of k,

so that the differences between different k's are fully considered.

Want-to-have #2

h(k) "spreads out" values, so all buckets get something.

Assume there are m = 263 buckets in the hash table.

Want-to-have #3

h(k) should be efficient to compute

h(k) = solution to the PDE ***\$^%** with parameter k

A good Function

- 1. h(k) depends on every bit of k
- 2. h(k) "spreads out" values
- 3. h(k) is efficient to compute

In practice, it is difficult to get all three of them, but there are some **heuristics** that work well

The Division Method

h(k) = k mod m

h(k) is between 0 and m-1

Pitfall: Sensitive to the value of m

- if m = 8: h(k) just returns the lowest 3-bits of k
- so m is preferably a prime number other than 2
 That means the size of the table better be a prime number, that's kind-of restrictive!

A Variation of the Division Method

h(k) = (ak + b) mod m

where a and b are constants picked randomly

Used in "Universal hashing" (see CLRS 11.3.3)

 achieve simple uniform hashing and fight malicious adversary by choosing randomly from a set of hash functions.

The Multiplication Method

$$h(k) = \lfloor m \cdot (kA \mod 1) \rfloor \qquad \qquad \texttt{x mod 1 returns the}_{\texttt{fractional part of x}}$$

with constant 0 < A < 1

e.g. A = 0.45352364758429879433234

We "mess-up" **k** by multiplying **A**, take the fractional part of the "mess" (between **0** and **1**), then multiply **m** to make sure the result is between **0** and **m-1**.

Tends to evenly distribute the hash values, because of the "mess-up". Not sensitive to the value of **m**.

Magic A suggested by **Donald Knuth**:

$$A = \frac{\sqrt{5} - 1}{2} = 0.618\dots$$

Donald Knuth

The "father of analysis of algorithms"

Inventor of LaTeX

Summary: Hash Functions

Hash

(noun)

a dish of cooked meat cut into small pieces and cooked again, usually with potatoes.

(verb) make (meat or other food) into a hash

"The spirit of hashing"

Open Addressing

another way of resolving collisions

other than chaining

Open Addressing

- There is no chain
- Then what to do when having a collision?
 - Find another bucket that is free
- How to find another bucket that is free?
 - We probe.
- How to probe?
 - linear probing
 - quadratic probing
 - double hashing

Requirement

For every key **k** the **probe sequence** is a **permutation** of <0,1,...,m-1>.

Linear probing

Probe sequence h(k,i) = (h(k) + i) mod m, for i=0,1,2, ...

Insert("hello") assume h("hello") = 4

Insert("world") assume h("world") = 2

Insert("tree") assume h("tree") = 2 probe 2, 3 ok

Insert("snow") assume h("snow") = 3 probe 3, 4, 5 ok

Problem with Linear Probing

Primary Clustering

Keys tend to **cluster**, which causes **long runs** of probing.

<u>Solution</u>

Jump farther in each probe.

before: h(k), h(k)+1, h(k)+2, h(k)+3, ...

after: h(k), h(k)+1, h(k)+4, h(k)+9, ...

This is called quadratic probing.

Quadratic Probing

Probe sequence $h(k,i) = (h(k) + c_1i + c_2i^2) \mod m$, for i=0,1,2,...

Pitfalls

- Collisions still cause a milder form of clustering, i.e.
 secondary clustering, which still cause long runs

 (keys that collide jump to the same places and form cluster)
- Need to be careful with the values of c₁ and c₂, it could jump in such a way that some of the buckets are never reachable

Double Hashing

Probe sequence $h(k,i) = (h_1(k) + ih_2(k)) \mod m$, for i=0,1,2,...

Now the jumps almost look like random, the jump-step $(h_2(k))$ is different for different k, which helps avoiding clustering upon collisions, therefore avoids long runs (each one has their own way of jumping, so no clustering).

Performance of Open Addressing

Assuming simple uniform hashing, the average-case number of probes in an unsuccessful search is $1/(1-\alpha)$.

For a **successful** search it is
$$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

In both cases, assume $\alpha < 1$

Open addressing cannot have $\alpha > 1$. Why?

Search, Insert, Delete

in an open-addressing hash table

Insert (assume linear probing)

Insert("Four2")

check T[h("Four2")=4]: occupied
check T[h("Four2")+1=5]: occupied
check T[h("Four2")+2=6]: free slot!
Insert there

Search (assume linear probing)

Search(k = "Two3"):

check T[h("Two3")=2]: not yet check T[h("Two3")+1=3]: not yet check T[h("Two3")+2=4]: not yet check T[h("Two3")+3=5]: found!

Search(k="Four2"): check T[h("Four2")=4]: not found check T[h("Four2")+1=5]: not found check T[h("Four2")+2=6]: a free slot! Can give up now, "Four2" is NOT there

Delete (assume linear probing)

Delete("Two2")

check T[**h("Two2")=2**]: not yet check T[**h("Two2")+1=3**]: found Just delete it?

No, if T[3] becomes a free slot, next time **Search(Two3)** will give up by mistake.

Solution: let T[3] store a special node called "**deleted**", and Search() doesn't give up when seeing "deleted". And "deleted" can be used for insertion

more details about open-addressing

in the Tutorial

An unfortunate Naming Confusion

Python has a built-in "hash()" function

```
>>>
>>> hash("sdfsadfdsdf")
-3455985408728624747
>>>
>>> hash(3.1415926)
2319024436
>>>
>>> hash(42)
42
>>> ____
```

By the definition, this "hash()" function is not really a hash function because it only does the first thing (convert to integer) but not the second thing (map to a small number of slots).

One more thing to know

The **coolest** hash table so far.

Cuckoo Hashing

https://en.wikipedia.org/wiki/Cuckoo_hashing

Invented by Rasmus Pagh and Flemming Friche Rodler in 2001.

Simple algorithm with provable worst-case O(1) lookup time.

Reflection

Both BST and Hash Table both implement the Dictionary ADT, and they are both invented by smart people.

This is a rare case where one data structure is better than the other in **every** aspect.

But really? Is that true?

Balanced BST	Hash table	
O(log n)	O(1)	
O(log n)	O(1)	
O(log n)	O(1)	

What can BST do better than Hash Tables?

Today we learned

- Hash tables: fast lookup
- Choose good hash functions

Next week

- Amortized analysis
- QuickSort