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Recap: Data structures for implementing 
the dictionary ADT
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unsorted 
list sorted array

Search(S,k) O(n) O(log n)

Insert(S,x) O(n) O(n)

Delete(S,x) O(1) O(n)

BST

O(n)

O(n)

O(n)

Balanced 
BST

O(log n)

O(log n)

O(log n)



Balanced BSTs
AVL tree, Red-Black tree, 2-3 tree, AA tree, Scapegoat tree, Splay 

tree, Treap, ...
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AVL Tree

Invented by 
Georgy Adelson-Velsky
and 
Evgenii M. Landis 
in 1962.

First self-balancing BST to be invented.
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An extra attribute to each node in a BST
Balance Factor
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hR(x): height of x’s right subtree

hL(x): height of x’s left subtree

BF(x) = hR(x) - hL(x)

x

L
R

hL

hR
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BF(x) = 0: x is balanced

BF(x) = 1: x is right-heavy
BF(x) = -1: x is left-heavy
BF(x) > 1 or < -1: x is unbalanced

considered 
“good”



Heights of some special trees
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h = 1 h = 0

NIL

h = -1

Note: height is measured by the number of edges.
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AVL Tree: Definition
An AVL tree is a BST in which every node is balanced, 
right-heavy or left-heavy.
i.e., the BF of every node must be 0, 1 or -1.
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Number of Nodes in an AVL Tree

Let N(h) be the minimum number of nodes 
in an AVL tree of height h

N(h) >= N(h-1) + N(h-2) + 1

N(0) = 1, N(1) = 2
N(2) = 4, N(3) = 7

N(h) >= Fibonacci(h+2) - 1 
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X

h-1
h-1
or

h-2

h



Number of nodes in an AVL tree

Let N(h) be the minimum number of nodes in an AVL tree of 
height h

N(h) >= N(h-1) + N(h-2) + 1
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Approximately,
N(h) >= 2 N(h-2) + 1
N(h) >= 2^(h/2) - 1     
⟹ h <= 2 ln2 (n+1) 
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It can be proven that the height of an AVL tree with n nodes 
satisfies

i.e., h is in O(log n).
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Read Course Notes 
Lemma 3.5 for the proof.
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Operations on AVL trees
AVL-Search(root,k)
AVL-Insert(root,x)
AVL-Delete(root,x)
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Things to worry about

Before the operation, 
the BST is a valid AVL tree (precondition)

After the operation, the BST must still be a 
valid AVL tree (so re-balancing may be needed)

The balance factor attributes of some nodes 
need to be updated.
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AVL-Search(root,k)

Search for key k in the AVL tree rooted at root
TreeSearch(root,k) as in BST.

Then, nothing else!
(No worry about balance being broken because we didn’t 
change the tree)

Time = O(h) = O(log n)
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AVL-Insert(root,x)
First, do a TreeInsert(root,x) as in BST
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65

50 77

35

Insert 70
everything is fine

70

65

50 77

35 Insert 28

28 NOT an AVL tree anymore, 
need rebalancing.
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Basic Move for Rebalancing - Rotation
Objective
§ change heights of a node’s left and right subtrees
§ maintain the BST property (invariant)
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D

B

A C

E

BST order to be maintained: ABCDE

D

B

A

C E

right rotation

➔ height of left subtree 
decreased

➔ height of right subtree 
increased

➔ BST order maintainedCSC263 | Jessica Burgner-Kahrs



Similarly, left rotation

16

D

B

A C

E D

B

A

C E

left rotation

➔ height of left subtree 
increased

➔ height of right subtree 
decreased

➔ BST order maintained

BST order to be maintained: ABCDE
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Now, we are ready to use 
rotations to rebalance an AVL 

tree after insertion
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For every step we do, 
don’t just passively accept it. 

Ask “Why do we do so?”

We don’t want to learn this algorithm. 
We want to learn the ability to design this 

algorithm



Also, get your pencil and a piece 
of paper, we will draw some 

pictures together.
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When do we need to rebalance?

Case 1: the insertion increases the 
height of a node’s right subtree, and 
that node was already right heavy.

Case 2: the insertion increases the 
height of a node’s left subtree, and 
that node was already left heavy.
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A A

h h+1 h+1 h

A is the lowest
unbalanced 

ancestor of the 
new node.
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a thing to remember
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Before insertion, the height of the subtree 
root at A is …

h+2

we will check whether it  
changes after insertion

A

h h+1
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Case 1
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A

h h+1

In order to rebalance, we 
need to increase the 
height of the left subtree 
and decrease the height 
of the right subtree, so….

We want to do a left rotation,
but in order to to that, we need a more refined 
picture (why? see the picture on the top-right)
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Case 1, more refined picture
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A

h
h

B

C D

A

h h+1

Case 1.2 Case 1.1

Why must C and D both have height h? 
Can’t one of them be h-1?

HINT: A is the lowest ancestor that 
became unbalanced.
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Case 1.1: Left-rotate
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A

h
h

B

C D

A

h
h

B

C

D

Balanced!

Note
The height of the whole subtree after insertion and rotation is (h+2). 
Same as before insertion!
i.e., everything that happens in this picture stays in this picture, no node above would notice.
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Case 1.2: Left-rotate?
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A

h
h

B

C D

A

h
h

B

C

D

--

Still not balanced.

To deal with Case 1.2, we need an 
even more refined picture.
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Intuition of the problem
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Rotation is good at adjusting the heights of the left side and the right side. But in this 
picture the long part (green node) is in the middle, which does NOT shrink when rotating. 

It would nice to move the green node to the side first… maybe right rotation at subroot B.

A

h

h

B

C D

A

h

h

B

C

D

--



Case 1.2: An even more refined picture 
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Case 1.2.1Case 1.2.2
These two cases are actually not that different.

A

h
h

B

E D

C

F
h-1

A

h
h

B

C D
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Case 1.2.1: Right-rotate first
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A

h
h

B

E D

C

F

right rotation 
at B

A

h

h

B

E

D

C

F

Now the right side looks “heavy” enough 
for a left rotation at A.
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Again, after the rotations, the height of the whole subtree in the picture 

does not change (h+2) before and after the insertion.

None of the above nodes would notice!

Case 1.2.1: Second rotation
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A

h

h

B

E

D

C

F

left rotation 
at A

A

h h

B

E

D

C

F

Balanced!
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What did we just do for Case 1.2.1?
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We did a double right-left rotation.

For Case 1.2.2, we do 
exactly the same thing, 
and get this...

A

h h

B

E

D

C

F

Practice for home
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Outline AVL-Insert

§ First, insert like BST
§ If still balanced, return.
§ Else (need re-balancing)

§ Case 1
§ Case 1.1 single left rotation
§ Case 1.2 double right-left rotation

§ Case 2 (symmetric to Case 1)
§ Case 2.1 single right rotation
§ Case 2.2 double left-right rotation

32

Something missing?
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Things to worry about

Before the operation, 
the BST is a valid AVL tree (precondition)

After the operation, the BST must still be a 
valid AVL tree (so re-balancing may be needed)

The balance factor attributes of some nodes 
need to be updated.

33
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Updating balance factors

34

Update BFs as we go up from the new 
leaf to the root. 

If the height of a child changes, then the 

BF may need to be updated.

Which nodes?
The “whole subtree”, 

where things happened.All ancestors of the subtree

How many of them?
O(h) = O(log n) Updating BFs take 

O(log n) time worst-case.
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Updating balance factors
Update BFs as we go up from the new leaf to the root. 

If an unbalanced node was created, and hence rotated:
Since the height of that subtree remains the same after insert+rotate, nobody 
above needs to be updated.
“What happens in subtree stays in subtree”.

So, only need to update BFs from new leaf to the lowest unbalanced ancestor, 
which is rotated.

Note: this property is only for Insert. Delete will be different.

35
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Runtime of AVL-Insert
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Tree-Insert plus 
constant time for rotations
O(h) time for BF updating.

Overall, worst case O(h)

since it’s balanced, O(log n)

CSC263 | Jessica Burgner-Kahrs



AVL-Delete(root,x)
Delete node x from the AVL tree rooted at root
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AVL-Delete: General idea

§ First do a normal BST Tree-Delete
§ The deletion may cause changes of subtree heights, and 

may cause certain nodes to lose AVL-ness (BF(x) is 0, 1 
or -1)

§ Then rebalance by single or double rotations, similar to 
what we did for AVL-Insert.

§ Then update BFs of affected nodes. 
Ø More details in the slide appendix and in tutorial
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Food for Thought

In an AVL tree, each node does NOT really store the height attribute. 
They only store the balance factor.

But a node can always infer the change of height 
from the change of BF of its child.

Example: “After an insertion, my left child’s BF changed from 0 to +1, 
then my left subtree’s height must have increase by 1. I gotta
update my BF...”

Think it through by enumerating all possible cases.
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Augmenting 
Data Structures

This is not about a particular dish, 
this is about how to cook.
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Reflect on AVL tree

We “augmented” BST by storing additional information 
(the balance factor) at each node.

The additional information enabled us to do additional cool things 
with the BST (keep the tree balanced).

And we can maintain this additional information 
efficiently in modifying operations 

(within O(log n) time, without affecting the runtime of Insert or Delete).

41
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Augmentation is an important methodology 
for data structure and algorithm design.

It’s widely used in practice, because

• Textbook data structures rarely satisfy what’s needed for solving real 
interesting problems.

• People also rarely need to invent something completely new.
• Augmenting known data structures to serve specific needs is the sensible 

middle-ground.

42
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Augmentation: General Procedure

1. Choose data structure to augment

2. Determine additional information
3. Check additional information can be maintained 

efficiently during each original operation.

4. Implement new operations using the additional 
information.

43
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Example: Ordered Set
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An ADT with the following operations
➔Search(S,k) in O(log n)
➔Insert(S,x) in O(log n)
➔Delete(S,x) in O(log n)
➔Rank(k): return the rank of key k
➔Select(r): return the key with 
rank r

AVL tree 
would work

Example S = { 27, 56, 30, 3, 15 }
Rank(15) = 2 because 15 is the second smallest key
Select(4) = 30 because 30 is the 4th smallest key

Augmentation 
needed
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Idea #1
Implement Ordered Set 

Using a Regular AVL-Tree
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Unmodified AVL-Tree
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Rank(x)
§ Do inorder traversal, get a sorted list, then go through the 

list to find the position of x.
§ Or, starting from x, keep calling Predecessor(x) until it 

returns NIL
Select(r)
§ Do inorder traversal, get a sorted list L, then return L[r]

(assuming index starts at 1)
§ Or, first find the minimum node, then call Successor(x)

for r-1 times.
Θ(n) isn’t good enough!

Worst-case runtime

Θ(n)

Θ(n)

Θ(n)

Θ(n)
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Idea #2
Augment an AVL-Tree by adding 

node.rank to each node
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65

4

40

2
77

5

81

6
45

3
30

1

Add node.rank to each node
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Rank(x)
§ just return x.rank

Select(r)
§ do a BST search on r

Maintaining
rank attribute is a problem.
If we insert a new node 29, the rank of 
every node in the tree needs to be 
updated

Adding node.rank is NOT a 
good way of augmentation, 

because the attribute cannot 
be maintained efficiently.

Θ(n)

O(1)

O(log n)

Worst-case 
runtime
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Idea #3
Augment an AVL-Tree by adding

node.size to each node
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Add node.size to each node

50

x.size is the size of the 
subtree rooted at x.

65

6

40

2
77

3

81

1
45

1
70

1

CSC263 | Jessica Burgner-Kahrs



node.size
Rank(77) 
➔ easy to tell that 77’s left subtree 

has 1 node, so 77 is ranked 2nd
in the subtree rooted at 77.

➔ going up, what’s smaller than 77
◆ the parent (1 node), and 

◆ the parent’s left subtree (2 nodes), 

◆ so the rank of 77 in the whole tree is 
1 + 2 + (1+1) = 5

➔ worst-case takes O(log n) time, i.e., going at most from leaf to root.
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65

6

40

2
77

3

81

1
45

1
70

1



RANK(S, x)
1  r = x.left.size + 1
2  y = x
3  while y.p != NIL:
4    if y == y.p.right: # if y is a right child
7      r = r + y.p.left.size + 1
8    y = y.p
9  return r

Rank(x) Pseudocode
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65

6

40

2
77

3

81

1
45

1
70

1



node.size
Select(5): find the node with rank 5 
➔ Start from the root 65
➔ The root’s rank is 2+1=3, 

so the node with rank 5 
must be in the right subtree

➔ The target should have 
rank 5-3=2 within the right subtree 
rooted at 77.

➔ 77 has exactly rank 2 in its the subtree! Found!
➔ worst-case takes O(log n) time, constant work at each level.
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65

6

40

2
77

3

81

1
45

1
70

1
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SELECT(root, r)
1  x = root
2  p = x.left.size + 1  # rank of root
3  if p == r:  # found it
4    return x
5  elif r < p: # the target is in left subtree
6    return SELECT(x.left, r)
7  else: # the target is in left subtree
8    return SELECT(x.right, r - p)

Select(r) Pseudocode
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40

2
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3
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1
45

1
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Maintaining node.size
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§ If one node’s node.size changes, only need 
to update all its ancestors

§ worst case takes O(log n)
§ Since the original AVL-INSERT already takes 

O(logn), this maintenance does NOT affect 
the overall O(log n) runtime of AVL-INSERT.

§ Same for AVL-DELETE

65

6

40

2
77

3

81

1
45

1
70

1

node.size can be maintained efficiently 
upon insertion and deletion



An important question for 
augmentation:

How can we tell (quickly) whether 
an additional attribute can be 
efficiently maintained or not?
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A useful theorem about AVL tree 
(or red-black tree) augmentation
Theorem 14.1 of CLRS
If the additional information of a node only 
depends on the information stored in its 
children and itself,
then this information can be maintained 
efficiently during Insert() and Delete() without 
affecting their O(log n) worst-case runtime.
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size(x) = 1 + size(x.left)
+ size(x.right)
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A useful theorem about AVL tree 
(or red-black tree) augmentation

58

The change of info at 
this node only affects 
the info stored in its 
ancestors (at most 
O(log n) of them)

Theorem 14.1 of CLRS
If the additional information of a node only 
depends on the information stored in its 
children and itself,
then this information can be maintained 
efficiently during Insert() and Delete() without 
affecting their O(log n) worst-case runtime.
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Extra reading

Another cool augmentation:

Interval Tree (CLRS: Chapter 14.3)

Adding a pair of additional attributes to each node.

Can efficient find overlapping intervals, very useful for solving 
scheduling problems

59
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Today we learned

➔ AVL tree, a balanced BST

➔ Search, Insert on AVL tree

➔ Augmenting data structures

Next tutorial

➔AVL-Delete

Next week

➔Hash tables
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APPENDIX

AVL-Delete(root,x)
Delete node x from the AVL tree rooted at root
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AVL-Delete: General idea

62

§ First do a normal BST Tree-Delete
§ The deletion may cause changes of subtree heights, 

and may cause certain nodes to lose AVL-ness
(BF(x) is 0, 1 or -1)

§ Then rebalance by single or double rotations, 
similar to what we did for AVL-Insert.

§ Then update BFs of affected nodes. 
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Cases that need rebalancing.
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Case 2
Deletion reduces the height of a 
node’s left subtree, and that 
node was right heavy.

Case 1
Deletion reduces the height of a 
node’s right subtree, and that 
node was left heavy.

A

h
h+2

A

h h+2

Note 2
height of the 
“whole subtree” 
rooted at A 
before deletion 
is h + 3

Note 1
node A is the 
lowest 
ancestor that 
becomes 
unbalanced.

Just need to handle Case 1, Case 2 is symmetric.
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Case 1.1 and Case 1.2 in refined pictures
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A

h
h+1

B

This one can be h or 
h+1, doesn’t matter

A

h

h

B

A single right rotation 
would fix it

The long part in the 
middle, need double left-
right rotations

h+1

Case 1.1 Case 1.2
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Case 1.1: Single right rotation
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A

h
h+1

B

right rotation 

A

h
h+1

B

Balanced!

Note: after deletion, the height of the 
whole subtree could be h+3 (same as 
before) or h+2 (different from before) 
depending on whether the yellow box 
exists or not.
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Case 2: Refine the picture
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A

h

h

B

refined picture

A

h
h

B

C h

Only one of the two yellow 
boxes needs to exist.
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Case 2: Double left-right rotation 
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A

h
h

B

C h

double left 
right rotation

A

hh

B

C

h

Beautifully balanced!

Note: In this case, the height of 
the whole subtree after deletion 
must be h+2 (guaranteed to be 
different from before).
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Height of subtree rooted at A

Before deletion: h+3
After deletion: h+2

What happens in subtree does NOT stay in subtree 
anymore!
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