
Balanced BST, Augmentation
Week 4

CSC263 | Jessica Burgner-Kahrs
1

CSC263 Winter 2020

Recap: Data structures for implementing
the dictionary ADT

CSC263 | Jessica Burgner-Kahrs
2

unsorted
list sorted array

Search(S,k) O(n) O(log n)

Insert(S,x) O(n) O(n)

Delete(S,x) O(1) O(n)

BST

O(n)

O(n)

O(n)

Balanced
BST

O(log n)

O(log n)

O(log n)

Balanced BSTs
AVL tree, Red-Black tree, 2-3 tree, AA tree, Scapegoat tree, Splay

tree, Treap, ...

3
CSC263 | Jessica Burgner-Kahrs

AVL Tree

Invented by
Georgy Adelson-Velsky
and
Evgenii M. Landis
in 1962.

First self-balancing BST to be invented.

4
CSC263 | Jessica Burgner-Kahrs

An extra attribute to each node in a BST
Balance Factor

5

hR(x): height of x’s right subtree

hL(x): height of x’s left subtree

BF(x) = hR(x) - hL(x)

x

L
R

hL

hR

CSC263 | Jessica Burgner-Kahrs

BF(x) = 0: x is balanced

BF(x) = 1: x is right-heavy
BF(x) = -1: x is left-heavy
BF(x) > 1 or < -1: x is unbalanced

considered
“good”

Heights of some special trees

6

h = 1 h = 0

NIL

h = -1

Note: height is measured by the number of edges.

CSC263 | Jessica Burgner-Kahrs

AVL Tree: Definition
An AVL tree is a BST in which every node is balanced,
right-heavy or left-heavy.
i.e., the BF of every node must be 0, 1 or -1.

7

0 0

- +

++--

0

0

-

0+0

+ -

CSC263 | Jessica Burgner-Kahrs

Number of Nodes in an AVL Tree

Let N(h) be the minimum number of nodes
in an AVL tree of height h

N(h) >= N(h-1) + N(h-2) + 1

N(0) = 1, N(1) = 2
N(2) = 4, N(3) = 7

N(h) >= Fibonacci(h+2) - 1

8
CSC263 | Jessica Burgner-Kahrs

X

h-1
h-1
or

h-2

h

Number of nodes in an AVL tree

Let N(h) be the minimum number of nodes in an AVL tree of
height h

N(h) >= N(h-1) + N(h-2) + 1

9

Approximately,
N(h) >= 2 N(h-2) + 1
N(h) >= 2^(h/2) - 1
⟹ h <= 2 ln2 (n+1)

CSC263 | Jessica Burgner-Kahrs

It can be proven that the height of an AVL tree with n nodes
satisfies

i.e., h is in O(log n).

10

Read Course Notes
Lemma 3.5 for the proof.

CSC263 | Jessica Burgner-Kahrs

Operations on AVL trees
AVL-Search(root,k)
AVL-Insert(root,x)
AVL-Delete(root,x)

CSC263 | Jessica Burgner-Kahrs
11

Things to worry about

Before the operation,
the BST is a valid AVL tree (precondition)

After the operation, the BST must still be a
valid AVL tree (so re-balancing may be needed)

The balance factor attributes of some nodes
need to be updated.

12
CSC263 | Jessica Burgner-Kahrs

AVL-Search(root,k)

Search for key k in the AVL tree rooted at root
TreeSearch(root,k) as in BST.

Then, nothing else!
(No worry about balance being broken because we didn’t
change the tree)

Time = O(h) = O(log n)

13
CSC263 | Jessica Burgner-Kahrs

AVL-Insert(root,x)
First, do a TreeInsert(root,x) as in BST

14

65

50 77

35

Insert 70
everything is fine

70

65

50 77

35 Insert 28

28 NOT an AVL tree anymore,
need rebalancing.

CSC263 | Jessica Burgner-Kahrs

Basic Move for Rebalancing - Rotation
Objective
§ change heights of a node’s left and right subtrees
§ maintain the BST property (invariant)

15

D

B

A C

E

BST order to be maintained: ABCDE

D

B

A

C E

right rotation

➔ height of left subtree
decreased

➔ height of right subtree
increased

➔ BST order maintainedCSC263 | Jessica Burgner-Kahrs

Similarly, left rotation

16

D

B

A C

E D

B

A

C E

left rotation

➔ height of left subtree
increased

➔ height of right subtree
decreased

➔ BST order maintained

BST order to be maintained: ABCDE

CSC263 | Jessica Burgner-Kahrs

Now, we are ready to use
rotations to rebalance an AVL

tree after insertion

17
CSC263 | Jessica Burgner-Kahrs

CSC263 | Jessica Burgner-Kahrs
18

For every step we do,
don’t just passively accept it.

Ask “Why do we do so?”

We don’t want to learn this algorithm.
We want to learn the ability to design this

algorithm

Also, get your pencil and a piece
of paper, we will draw some

pictures together.

CSC263 | Jessica Burgner-Kahrs
19

When do we need to rebalance?

Case 1: the insertion increases the
height of a node’s right subtree, and
that node was already right heavy.

Case 2: the insertion increases the
height of a node’s left subtree, and
that node was already left heavy.

20

A A

h h+1 h+1 h

A is the lowest
unbalanced

ancestor of the
new node.

CSC263 | Jessica Burgner-Kahrs

a thing to remember

21

Before insertion, the height of the subtree
root at A is …

h+2

we will check whether it
changes after insertion

A

h h+1

CSC263 | Jessica Burgner-Kahrs

Case 1

22

A

h h+1

In order to rebalance, we
need to increase the
height of the left subtree
and decrease the height
of the right subtree, so….

We want to do a left rotation,
but in order to to that, we need a more refined
picture (why? see the picture on the top-right)

CSC263 | Jessica Burgner-Kahrs

Case 1, more refined picture

23

A

h
h

B

C D

A

h h+1

Case 1.2 Case 1.1

Why must C and D both have height h?
Can’t one of them be h-1?

HINT: A is the lowest ancestor that
became unbalanced.

CSC263 | Jessica Burgner-Kahrs

Case 1.1: Left-rotate

24

A

h
h

B

C D

A

h
h

B

C

D

Balanced!

Note
The height of the whole subtree after insertion and rotation is (h+2).
Same as before insertion!
i.e., everything that happens in this picture stays in this picture, no node above would notice.

CSC263 | Jessica Burgner-Kahrs

Case 1.2: Left-rotate?

25

A

h
h

B

C D

A

h
h

B

C

D

--

Still not balanced.

To deal with Case 1.2, we need an
even more refined picture.

CSC263 | Jessica Burgner-Kahrs

Intuition of the problem

CSC263 | Jessica Burgner-Kahrs
26

Rotation is good at adjusting the heights of the left side and the right side. But in this
picture the long part (green node) is in the middle, which does NOT shrink when rotating.

It would nice to move the green node to the side first… maybe right rotation at subroot B.

A

h

h

B

C D

A

h

h

B

C

D

--

Case 1.2: An even more refined picture

27

Case 1.2.1Case 1.2.2
These two cases are actually not that different.

A

h
h

B

E D

C

F
h-1

A

h
h

B

C D

CSC263 | Jessica Burgner-Kahrs

Case 1.2.1: Right-rotate first

28

A

h
h

B

E D

C

F

right rotation
at B

A

h

h

B

E

D

C

F

Now the right side looks “heavy” enough
for a left rotation at A.

CSC263 | Jessica Burgner-Kahrs

Again, after the rotations, the height of the whole subtree in the picture

does not change (h+2) before and after the insertion.

None of the above nodes would notice!

Case 1.2.1: Second rotation

29

A

h

h

B

E

D

C

F

left rotation
at A

A

h h

B

E

D

C

F

Balanced!

CSC263 | Jessica Burgner-Kahrs

What did we just do for Case 1.2.1?

30

We did a double right-left rotation.

For Case 1.2.2, we do
exactly the same thing,
and get this...

A

h h

B

E

D

C

F

Practice for home

CSC263 | Jessica Burgner-Kahrs

31
CSC263 | Jessica Burgner-Kahrs

5 min

Outline AVL-Insert

§ First, insert like BST
§ If still balanced, return.
§ Else (need re-balancing)

§ Case 1
§ Case 1.1 single left rotation
§ Case 1.2 double right-left rotation

§ Case 2 (symmetric to Case 1)
§ Case 2.1 single right rotation
§ Case 2.2 double left-right rotation

32

Something missing?

CSC263 | Jessica Burgner-Kahrs

Things to worry about

Before the operation,
the BST is a valid AVL tree (precondition)

After the operation, the BST must still be a
valid AVL tree (so re-balancing may be needed)

The balance factor attributes of some nodes
need to be updated.

33
CSC263 | Jessica Burgner-Kahrs

Updating balance factors

34

Update BFs as we go up from the new
leaf to the root.

If the height of a child changes, then the

BF may need to be updated.

Which nodes?
The “whole subtree”,

where things happened.All ancestors of the subtree

How many of them?
O(h) = O(log n) Updating BFs take

O(log n) time worst-case.
CSC263 | Jessica Burgner-Kahrs

Updating balance factors
Update BFs as we go up from the new leaf to the root.

If an unbalanced node was created, and hence rotated:
Since the height of that subtree remains the same after insert+rotate, nobody
above needs to be updated.
“What happens in subtree stays in subtree”.

So, only need to update BFs from new leaf to the lowest unbalanced ancestor,
which is rotated.

Note: this property is only for Insert. Delete will be different.

35
CSC263 | Jessica Burgner-Kahrs

Runtime of AVL-Insert

36

Tree-Insert plus
constant time for rotations
O(h) time for BF updating.

Overall, worst case O(h)

since it’s balanced, O(log n)

CSC263 | Jessica Burgner-Kahrs

AVL-Delete(root,x)
Delete node x from the AVL tree rooted at root

CSC263 | Jessica Burgner-Kahrs
37

AVL-Delete: General idea

§ First do a normal BST Tree-Delete
§ The deletion may cause changes of subtree heights, and

may cause certain nodes to lose AVL-ness (BF(x) is 0, 1
or -1)

§ Then rebalance by single or double rotations, similar to
what we did for AVL-Insert.

§ Then update BFs of affected nodes.
Ø More details in the slide appendix and in tutorial

38
CSC263 | Jessica Burgner-Kahrs

Food for Thought

In an AVL tree, each node does NOT really store the height attribute.
They only store the balance factor.

But a node can always infer the change of height
from the change of BF of its child.

Example: “After an insertion, my left child’s BF changed from 0 to +1,
then my left subtree’s height must have increase by 1. I gotta
update my BF...”

Think it through by enumerating all possible cases.

39
CSC263 | Jessica Burgner-Kahrs

Augmenting
Data Structures

This is not about a particular dish,
this is about how to cook.

CSC263 | Jessica Burgner-Kahrs
40

Reflect on AVL tree

We “augmented” BST by storing additional information
(the balance factor) at each node.

The additional information enabled us to do additional cool things
with the BST (keep the tree balanced).

And we can maintain this additional information
efficiently in modifying operations

(within O(log n) time, without affecting the runtime of Insert or Delete).

41
CSC263 | Jessica Burgner-Kahrs

Augmentation is an important methodology
for data structure and algorithm design.

It’s widely used in practice, because

• Textbook data structures rarely satisfy what’s needed for solving real
interesting problems.

• People also rarely need to invent something completely new.
• Augmenting known data structures to serve specific needs is the sensible

middle-ground.

42
CSC263 | Jessica Burgner-Kahrs

Augmentation: General Procedure

1. Choose data structure to augment

2. Determine additional information
3. Check additional information can be maintained

efficiently during each original operation.

4. Implement new operations using the additional
information.

43
CSC263 | Jessica Burgner-Kahrs

Example: Ordered Set

44

An ADT with the following operations
➔Search(S,k) in O(log n)
➔Insert(S,x) in O(log n)
➔Delete(S,x) in O(log n)
➔Rank(k): return the rank of key k
➔Select(r): return the key with
rank r

AVL tree
would work

Example S = { 27, 56, 30, 3, 15 }
Rank(15) = 2 because 15 is the second smallest key
Select(4) = 30 because 30 is the 4th smallest key

Augmentation
needed

CSC263 | Jessica Burgner-Kahrs

Idea #1
Implement Ordered Set

Using a Regular AVL-Tree

CSC263 | Jessica Burgner-Kahrs
45

Unmodified AVL-Tree

46

Rank(x)
§ Do inorder traversal, get a sorted list, then go through the

list to find the position of x.
§ Or, starting from x, keep calling Predecessor(x) until it

returns NIL
Select(r)
§ Do inorder traversal, get a sorted list L, then return L[r]

(assuming index starts at 1)
§ Or, first find the minimum node, then call Successor(x)

for r-1 times.
Θ(n) isn’t good enough!

Worst-case runtime

Θ(n)

Θ(n)

Θ(n)

Θ(n)

CSC263 | Jessica Burgner-Kahrs

Idea #2
Augment an AVL-Tree by adding

node.rank to each node

CSC263 | Jessica Burgner-Kahrs
47

65

4

40

2
77

5

81

6
45

3
30

1

Add node.rank to each node

48

Rank(x)
§ just return x.rank

Select(r)
§ do a BST search on r

Maintaining
rank attribute is a problem.
If we insert a new node 29, the rank of
every node in the tree needs to be
updated

Adding node.rank is NOT a
good way of augmentation,

because the attribute cannot
be maintained efficiently.

Θ(n)

O(1)

O(log n)

Worst-case
runtime

CSC263 | Jessica Burgner-Kahrs

Idea #3
Augment an AVL-Tree by adding

node.size to each node

CSC263 | Jessica Burgner-Kahrs
49

Add node.size to each node

50

x.size is the size of the
subtree rooted at x.

65

6

40

2
77

3

81

1
45

1
70

1

CSC263 | Jessica Burgner-Kahrs

node.size
Rank(77)
➔ easy to tell that 77’s left subtree

has 1 node, so 77 is ranked 2nd
in the subtree rooted at 77.

➔ going up, what’s smaller than 77
◆ the parent (1 node), and

◆ the parent’s left subtree (2 nodes),

◆ so the rank of 77 in the whole tree is
1 + 2 + (1+1) = 5

➔ worst-case takes O(log n) time, i.e., going at most from leaf to root.

CSC263 | Jessica Burgner-Kahrs
51

65

6

40

2
77

3

81

1
45

1
70

1

RANK(S, x)
1 r = x.left.size + 1
2 y = x
3 while y.p != NIL:
4 if y == y.p.right: # if y is a right child
7 r = r + y.p.left.size + 1
8 y = y.p
9 return r

Rank(x) Pseudocode

CSC263 | Jessica Burgner-Kahrs
52

65

6

40

2
77

3

81

1
45

1
70

1

node.size
Select(5): find the node with rank 5
➔ Start from the root 65
➔ The root’s rank is 2+1=3,

so the node with rank 5
must be in the right subtree

➔ The target should have
rank 5-3=2 within the right subtree
rooted at 77.

➔ 77 has exactly rank 2 in its the subtree! Found!
➔ worst-case takes O(log n) time, constant work at each level.

53

65

6

40

2
77

3

81

1
45

1
70

1

CSC263 | Jessica Burgner-Kahrs

SELECT(root, r)
1 x = root
2 p = x.left.size + 1 # rank of root
3 if p == r: # found it
4 return x
5 elif r < p: # the target is in left subtree
6 return SELECT(x.left, r)
7 else: # the target is in left subtree
8 return SELECT(x.right, r - p)

Select(r) Pseudocode

CSC263 | Jessica Burgner-Kahrs
54

65

6

40

2
77

3

81

1
45

1
70

1

Maintaining node.size

CSC263 | Jessica Burgner-Kahrs
55

§ If one node’s node.size changes, only need
to update all its ancestors

§ worst case takes O(log n)
§ Since the original AVL-INSERT already takes

O(logn), this maintenance does NOT affect
the overall O(log n) runtime of AVL-INSERT.

§ Same for AVL-DELETE

65

6

40

2
77

3

81

1
45

1
70

1

node.size can be maintained efficiently
upon insertion and deletion

An important question for
augmentation:

How can we tell (quickly) whether
an additional attribute can be
efficiently maintained or not?

CSC263 | Jessica Burgner-Kahrs
56

A useful theorem about AVL tree
(or red-black tree) augmentation
Theorem 14.1 of CLRS
If the additional information of a node only
depends on the information stored in its
children and itself,
then this information can be maintained
efficiently during Insert() and Delete() without
affecting their O(log n) worst-case runtime.

57

size(x) = 1 + size(x.left)
+ size(x.right)

CSC263 | Jessica Burgner-Kahrs

A useful theorem about AVL tree
(or red-black tree) augmentation

58

The change of info at
this node only affects
the info stored in its
ancestors (at most
O(log n) of them)

Theorem 14.1 of CLRS
If the additional information of a node only
depends on the information stored in its
children and itself,
then this information can be maintained
efficiently during Insert() and Delete() without
affecting their O(log n) worst-case runtime.

CSC263 | Jessica Burgner-Kahrs

Extra reading

Another cool augmentation:

Interval Tree (CLRS: Chapter 14.3)

Adding a pair of additional attributes to each node.

Can efficient find overlapping intervals, very useful for solving
scheduling problems

59
CSC263 | Jessica Burgner-Kahrs

60

Today we learned

➔ AVL tree, a balanced BST

➔ Search, Insert on AVL tree

➔ Augmenting data structures

Next tutorial

➔AVL-Delete

Next week

➔Hash tables

CSC263 | Jessica Burgner-Kahrs

APPENDIX

AVL-Delete(root,x)
Delete node x from the AVL tree rooted at root

CSC263 | Jessica Burgner-Kahrs
61

AVL-Delete: General idea

62

§ First do a normal BST Tree-Delete
§ The deletion may cause changes of subtree heights,

and may cause certain nodes to lose AVL-ness
(BF(x) is 0, 1 or -1)

§ Then rebalance by single or double rotations,
similar to what we did for AVL-Insert.

§ Then update BFs of affected nodes.

CSC263 | Jessica Burgner-Kahrs

Cases that need rebalancing.

63

Case 2
Deletion reduces the height of a
node’s left subtree, and that
node was right heavy.

Case 1
Deletion reduces the height of a
node’s right subtree, and that
node was left heavy.

A

h
h+2

A

h h+2

Note 2
height of the
“whole subtree”
rooted at A
before deletion
is h + 3

Note 1
node A is the
lowest
ancestor that
becomes
unbalanced.

Just need to handle Case 1, Case 2 is symmetric.
CSC263 | Jessica Burgner-Kahrs

Case 1.1 and Case 1.2 in refined pictures

64

A

h
h+1

B

This one can be h or
h+1, doesn’t matter

A

h

h

B

A single right rotation
would fix it

The long part in the
middle, need double left-
right rotations

h+1

Case 1.1 Case 1.2

CSC263 | Jessica Burgner-Kahrs

Case 1.1: Single right rotation

65

A

h
h+1

B

right rotation

A

h
h+1

B

Balanced!

Note: after deletion, the height of the
whole subtree could be h+3 (same as
before) or h+2 (different from before)
depending on whether the yellow box
exists or not.

CSC263 | Jessica Burgner-Kahrs

Case 2: Refine the picture

66

A

h

h

B

refined picture

A

h
h

B

C h

Only one of the two yellow
boxes needs to exist.

CSC263 | Jessica Burgner-Kahrs

Case 2: Double left-right rotation

67

A

h
h

B

C h

double left
right rotation

A

hh

B

C

h

Beautifully balanced!

Note: In this case, the height of
the whole subtree after deletion
must be h+2 (guaranteed to be
different from before).

CSC263 | Jessica Burgner-Kahrs

Height of subtree rooted at A

Before deletion: h+3
After deletion: h+2

What happens in subtree does NOT stay in subtree
anymore!

68

