CSC263 Winter 2020

Dictionary ADT



Today and next two weeks

ADT Dictionary

Data structure Binary search tree (BST)
Balanced BST - AVL tree
Hash Table

CSC263 | Jessica Burgner-Kahrs



Dictionary

What'’s stored
= words

Supported operations
= Search for a word

= |nsert a word

= Delete a word

CSC263 | Jessica Burgner-Kahrs




Dictionary, more precisely

What'’s stored

A set S of where each item/node x has a field x.key
(assumption: keys are distinct, unless otherwise specified)

Key k rObOt noun Node / item x

@ Save Word

ro-bot | \'ro-bat @), -bat \
plural robots

Definition of robot

1 :amachine that resembles a living creature in being capable of moving
independently (as by walking or rolling on wheels) and performing complex
actions (such as grasping and moving objects)

/1 When the next space launch heads for Mars, on board will be dozens of tiny
mobile robots that will fan out across the Martian landscape, exploring every
nook and cranny.

— Michael Bowker

often : such a machine built to resemble a human being or animal in appearance
and behavior

CSC263 | Jessica Burgner-Kahrs



Dictionary ADT

‘Remember: k is a key, x is a node.

What'’s stored

A set S of where each item/node x has a field x.key

(assumption: keys are distinct, unless otherwise specified)

Supported operations

= Search(S, k) returnxin S, s.t., x.key = k
return NIL if no such x

* Insert(S, x) insert node xinto S
iIf already exists node y with same key, replace y with x
= Delete(S, x) delete a given node x from S



More on Delete

Why Delete(S, x) instead of Delete(S, k)?

Delete(S, k) can be implemented by:
X = Search(S, k)
Delete(S, x)

We want to separate different operations,
l.e., each operation focuses on only one job.



Think of use cases for an
ADT Dictionary
5



Implementing a Dictionary



40233 218265224225

Unsorted (doubly) linked list

Search (S, k) O(n) worst case |
go through the list to find the key

O(n) worst case
Insert(S,Xx) _ _ _ _
need to check if x.key is already Iin the list

Delete(s,x) O(1)worstcase
just delete, O(1) in a doubly linked list



Sorted array

Search(S,k)

Insert (S, Xx)

Delete(S,x)

[18 , 24,25, 33,40, 65]

O(log n) worst case
binary search!

O(n) worst case
insert at front, everything has to shift to back

O(n) worst case
delete, shift left

10



We can do better using smarter data

structures!
uns"c:;ted sorted array BST BalBag_?ed
Search (S, k) O(n) O(log n) O(n) O(log n)
Insert (S, x) O(n) O(n) O(n) O(log n)
Delete (S, x) O(1) O(n) O(n) O(log n)

CSC263 | Jessica Burgner-Kahrs

O©-0

—

11



Binary Search Tree

CSC263 | Jessica Burgner-Kahrs



It’s a binary tree, like binary heap

Each node has at most 2 children
, ge
< <

CSC263 | Jessica Burgner-Kahrs

13



need NOT be nearly-complete, unlike
binary heap

o L0 P A,

CSC263 | Jessica Burgner-Kahrs



It has the BST property

For every node x in the tree

All nodes in
the left
subtree have
keys smaller

than < >

X.key

CSC263 | Jessica Burgner-Kahrs

All nodes in
the right
subtree have
keys larger
than

X.key

15



BST or NOT?

CSC263 | Jessica Burgner-Kahrs



Because of BST property,
we can say that the keys in a BST are sorted.

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.

CSC263 | Jessica Burgner-Kahrs

17



We pass a BST to a function by
passing its root node.

|

InorderTraversal(x):

# print all keys in BST rooted at x in ascending order

if x # NIL:
InorderTraversal(x.left)
print x.key
InorderTraversal(x.right)

Worst case running time of InorderTraversal:
O(n), because visit each node exactly once

CSC263 | Jessica Burgner-Kahrs

18



Operations on a BST



Information at each node x

X.left

Xx.right

X.value

the key
the left child (node)
the right child (node)

the parent (node)

the value

20



Operations on a BST

read-only operations

TreeSearch(root, k)
TreeMinimum(x) / TreeMaximum(X)
Successor(x) / Predecessor(x)

modifying operations

TreelInsert(root, Xx)
TreeDelete(root, x)

CSC263 | Jessica Burgner-Kahrs

21



TreeSearch(root, k)

Search the BST rooted at root,
return the node with key k;
return NIL if not exist.

CSC263 | Jessica Burgner-Kahrs

22



TreeSearch(root , k)

= start from root @

= if kis smaller than the key of the @ @
current node, go left

» if kis larger than the key of the e @ e

current node, go right

= if equal, found ° @

= |f going to NIL, not found

CSC263 | Jessica Burgner-Kahrs



TreeSearch(root, k) Pseudo-code

TreeSearch(root, k):

i1f root == NIL or k == root.key:
return root
if k < root.key:
return TreeSearch(root.left, k)
else:

return TreeSearch(root.right, k)

Worst case running time:
O(h), height of tree, going at most from root to leaf

24



TreeMinimum(X)

Return the node with the minimum key of the tree rooted at x

CSC263 | Jessica Burgner-Kahrs

25



TreeMinimum(X)

= start from root

= keep going to the left, until cannot
go anymore

= return that final node

CSC263 | Jessica Burgner-Kahrs

26



TreeMinimum(x) Pseudo-code

TreeMinimum(Xx) :

while x.left # NIL:

X = X.left
return X

Worst case running time:
O(h), height of tree, going at most from root to leaf

TreeMaximum(x) is exactly the same, except
that it goes to the right instead of to the left.

27



CSC263 | Jessica Burgner-Kahrs

Successor (xX)

Find the node which is the successor of x
In the sorted list obtained by inorder traversal

or, node with the smallest key larger than x

28



Successor (x)

= The successor of 33 is... 40
= The successorof40is... 43
= The successorof 64 is... 65
= The successorof65is ... 80

AN
ITS ALL OVER THE PLACE!

CSC263 | Jessica Burgner-Kahrs



Successor (x)
Organize into two cases

= X has a right child (easy)

= x does not have a right child (less easy)

30



x has a right child

Successor (x) must be in X’s right
subtree (the nodes right after x in
the inorder traversal)

It's the minimum of Xx’s right subtree,
l.e., TreeMinimum(x.right)

The first (smallest) node among
what’s right after x.

CSC263 | Jessica Burgner-Kahrs

31



x does not have a right child

How to find Find this guy! @

* go up to X.p @/

= if X is a right child of x.p, \
keep going up @ @ \

= if x is a left child of x.p, stop, @ @
X.p is the guy!

CSC263 | Jessica Burgner-Kahrs a

32



x does not have a right child

Consider the inorder traversal
(left subtree -> root -> right subtree)

The successor y of x is the lowest ancestor
of x whose left subtree contains x

(y is visited right after finishing subtree A in
inorder traversal)

Y.

x is the last one visited in some node y’s left
subtree A (because no right child)

Find this guy!

33



Summary of the two cases of
Successor (x)

If X has a right child
return TreeMinimum(x.right)

If Xx does not have a right child

= keep going up to x.p while x is a right child, stop when x
IS a left child, then return x.p

= |f already gone up to the root and still not finding it,
return NIL.

34



Successor (x) Pseudo-code

Successor(x):

1f x.right # NIL:
return TreeMinimum(x.right)

y = X.p

while y # NIL and x == y.right: #x is right child
X =Y
y = v.p # keep going up

return y

Worst case running time
O(h), Case 1: TreeMin is O(h); Case 2: at most leaf to root

35



Predecessor (Xx)
works symmetrically the same way as

sSuccessor (x)

36



Agenda Recap

ADT: Dictionary
Data structure: BST
read-only operations

TreeSearch(root, k)\"b "'

TreeMinimum(x) / TreeMaximum(X)

Successor(x) / Predecessor(x)"'
modifying operations

TreelInsert(root, X)

TreeDelete(root, X)

CSC263 | Jessica Burgner-Kahrs

37



CSC263 | Jessica Burgner-Kahrs

38



Treelnsert(root,

Insert node x into the BST rooted at root
return the new root of the modified tree
If exists y, s.t. y.key = x.key, replace y with x

CSC263 | Jessica Burgner-Kahrs

X)

39



Treelnsert(root, x)

Go down, left and right
like what we do In
TreeSearch

When next position is NIL,
insert there

If find equal key,
replace the node

CSC263 | Jessica Burgner-Kahrs

40



Exercise

CSC263 | Jessica Burgner-Kahrs

41



Ex 2: Insert sequence into an empty tree

Insert sequence 1: Insert sequence 2:
11, 5,13, 12,6, 3, 14 3,5,6,11,14,13, 12

Different insert sequences result in
different "shapes” (heights) of the BST.

SC263 | Jessica'Burgner-Ka




Treelnsert(root, x): Pseudo-code

Treelnsert(root, X): Worst case
# insert and return the new root running time:
if root == NIL: O(h)
root = X

elif x.key < root.key:
root.left = TreelInsert(root.left, Xx)
elif x.key > root.key:
root.right = TreeInsert(root.right, Xx)
else # x.key == root.key:
replace root with x # update x.left, x.right

return root

CSC263 | Jessica Burgner-Kahrs



(o)

~

TreeDelete(root, X)

Delete node x from BST rooted at root while maintaining BST property,
return the new root of the modified tree

CSC263 | Jessica Burgner-Kahrs

44



What’s tricky about deletion?

Tree might be disconnected (o)

after deleting a node, (10

need to connect them back
together, e .

while maintaining the BST e e
property. e

45



Delete(root, x): Organize into 3 cases

Case 1: x has no child < Easy |

Case 2: x has one child <! Easy ‘

Case 3: x has two children % Less easy ‘

46



Case 1: x has no child

Just delete i,
nothing else need
to be changed.

CSC263 | Jessica Burgner-Kahrs



Case 2: x has one child

First delete that node, which
makes an open spot.

Then promote x’s only
child to the spot, together
with the only child’s subtree.

CSC263 | Jessica Burgner-Kahrs

48



Case 2: x has one child

First delete that node, which
makes an open spot.

Then promote x’s only
child to the spot, together
with the only child’s subtree.

CSC263 | Jessica Burgner-Kahrs

49



Case 3: x has two children

Delete x, which makes an

open spot.
&
A node y should fill this '
spot, such that L <y <R. 1 R

Which one should be y?

y < the minimum of R, i.e., Successor (x)
L <y becauseyisin R,y <R because it's minimum

CSC263 | Jessica Burgner-Kahrs

50



Further divide into two cases

Case 3.1: Case 3.2:
y happens to be y is not the right
the right child of x child of x

A

no left child,
coz Yy is min

[EA

no left child

coz y is min

CSC263 | Jessica Burgner-Kahrs

51



Case 3.1:y is x’s right child

Easy, just promote

y to X's spot

CSC263 | Jessica Burgner-Kahrs

52



Case 3.1:y is x’s right child

Easy, just promote

y to X's spot

CSC263 | Jessica Burgner-Kahrs

53



Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y’s spot,
y becomes free.

CSC263 | Jessica Burgner-Kahrs

54



Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y's spot,
y becomes free.

2. Make z be y'’s right child
(y adopts z)

CSC263 | Jessica Burgner-Kahrs

95



Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y's spot,
y becomes free.

2. Make z be y's right child
(y adopts z)

3. Promote y to x’'s spot

CSC263 | Jessica Burgner-Kahrs

56



Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y's spot,
y becomes free.

2. Make z be y'’s right child
(y adopts z)

3. Promote y to x’'s spot

L
x deleted
BST order maintained, all is good.

CSC263 | Jessica Burgner-Kahrs

57



More thinking about Case 3.2 © @

Okay, promote, adopt, promote... | can see that it works, pretty clever.

But HOW ON EARTH can | come up with this kind of clever
algorithms!

Thinking Process: understand the BST property (the invariant),
predict the final shape of the tree, and see how to get there.

‘ Order:y<w<z ‘

CSC263 | Jessica Burgner-Kahrs

58



Summarize TreeDelete(root, X)

Case 1: x has no child, just delete
Case 2: x has one child, promote

Case 3: x has two children, y = Successor (x)
Case 3.1: y is x's right child, promote
Case 3.2: y is NOT x’s right child
= promote y’s right child
= y adopt x’s right child
" promotey

CSC263 | Jessica Burgner-Kahrs 59



TreeDelete(root,x) Pseudo-code

CLRS Chapter 12.3
Key: Understand Transplant (root,u,v)

# v takes away u’s parent

used for promoting
n v and deleting u A

CSC263 | Jessica Burgner-Kahrs



Transplant(root, u, v):
# v takes away u’s parent

1f u.p == NIL: # if u is root
root = v # v replaces u as root

elif u == u.p.left:4 if u is parent’s left child
u.p.left = V #parent accepts v as left child

else: # if u is parent’s right child
u.p.right = V #parent accepts v as right child
1f v # NIL:

VeP = U.P # v accepts new parent

CSC263 | Jessica Burgner-Kahrs 61



Case
1&2

Case 3

TreeDelete(root, x):

e

— if

X.left == NIL:
Transplant(root,

elif x.right == NIL:

Transplant(root,

else:

g—

Case
3.2

—

y = TreeMinimum(xXx.right)

Promote right child

L

X, X.right)

Promote left child

X, X.left)——

‘4JgetSuccessor(x)

if y.p # Xty

is not right child of x

Transplant (root, vy, y.right)‘S§>\‘
y.right = x.right

y.right.p = y
Transplant(root,
y.left = x.left

y.left.p = y \\promotey

return root

promote w
X, yﬁptsl

update pointers

62




TreeDelete(root, x) worst case running time

O(h) (time spent on TreeMinimum)

63



Now, about that h
(height of tree)



Definition: Height of a tree

The longest path from the
root to a leaf, in terms of
number of edges.

h=4
O

CSC263 | Jessica Burgner-Kahrs



Consider a BST with n nodes,
what’s the highest it can be?

h = n-1

l.e, In worst case
h € O(n)

so all the operations we learned with O(h)
runtime, they are O(n) in worst case

66



So, what’s the best case for h ?
In best case, h € O(log n)

A Balanced BST
guarantees to have height in
©(log n)

Therefore, all the O(h) become O(log n)

67



Recap Quiz



Question 1

How to visit the nodes in a BST in a sorted order?

d inorder traversal

J preorder traversal

J postorder traversal
 level-by-level traversal

69



Question 2

Node x has two children. The predecessor of x is
the tree in X’s subtree.

J maximum, right
J maximum, left
J minimum, left
1 minimum, right

70



Question 3

Insert three keys into a BST in this order: 2, 6, 3.
What is the height of the resulting tree?

Jd 0
J 1
Jd 2
Jd 3

71



Next week

A Balanced BST called AVL tree

CSC263 | Jessica Burgner-Kahrs

72



