CSC263 Winter 2020

Dictionary ADT



Today and next two weeks

ADT Dictionary

Data structure Binary search tree (BST)
Balanced BST - AVL tree
Hash Table
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Dictionary

What'’s stored
= words

Supported operations
= Search for a word

= |nsert a word

= Delete a word
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Dictionary, more precisely

What'’s stored

A set S of where each item/node x has a field x.key
(assumption: keys are distinct, unless otherwise specified)

Key k rObOt noun Node / item x

@ Save Word

ro-bot | \'ro-bat @), -bat \
plural robots

Definition of robot

1 :amachine that resembles a living creature in being capable of moving
independently (as by walking or rolling on wheels) and performing complex
actions (such as grasping and moving objects)

/1 When the next space launch heads for Mars, on board will be dozens of tiny
mobile robots that will fan out across the Martian landscape, exploring every
nook and cranny.

— Michael Bowker

often : such a machine built to resemble a human being or animal in appearance
and behavior
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Dictionary ADT

‘Remember: k is a key, x is a node.

What'’s stored

A set S of where each item/node x has a field x.key

(assumption: keys are distinct, unless otherwise specified)

Supported operations

= Search(S, k) returnxin S, s.t., x.key = k
return NIL if no such x

* Insert(S, x) insert node xinto S
iIf already exists node y with same key, replace y with x
= Delete(S, x) delete a given node x from S



More on Delete

Why Delete(S, x) instead of Delete(S, k)?

Delete(S, k) can be implemented by:
X = Search(S, k)
Delete(S, x)

We want to separate different operations,
l.e., each operation focuses on only one job.



Think of use cases for an
ADT Dictionary
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Implementing a Dictionary



40233 218265224225

Unsorted (doubly) linked list

Search (S, k) O(n) worst case |
go through the list to find the key

O(n) worst case
Insert(S,Xx) _ _ _ _
need to check if x.key is already Iin the list

Delete(s,x) O(1)worstcase
just delete, O(1) in a doubly linked list



Sorted array

Search(S,k)

Insert (S, Xx)

Delete(S,x)

[18 , 24,25, 33,40, 65]

O(log n) worst case
binary search!

O(n) worst case
insert at front, everything has to shift to back

O(n) worst case
delete, shift left
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We can do better using smarter data

structures!
uns"c:;ted sorted array BST BalBag_?ed
Search (S, k) O(n) O(log n) O(n) O(log n)
Insert (S, x) O(n) O(n) O(n) O(log n)
Delete (S, x) O(1) O(n) O(n) O(log n)
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Binary Search Tree
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It’s a binary tree, like binary heap

Each node has at most 2 children
, ge
< <
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need NOT be nearly-complete, unlike
binary heap

o L0 P A,
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It has the BST property

For every node x in the tree

All nodes in
the left
subtree have
keys smaller

than < >

X.key

CSC263 | Jessica Burgner-Kahrs

All nodes in
the right
subtree have
keys larger
than

X.key
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BST or NOT?
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Because of BST property,
we can say that the keys in a BST are sorted.

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.
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We pass a BST to a function by
passing its root node.

|

InorderTraversal(x):

# print all keys in BST rooted at x in ascending order

if x # NIL:
InorderTraversal(x.left)
print x.key
InorderTraversal(x.right)

Worst case running time of InorderTraversal:
O(n), because visit each node exactly once
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Operations on a BST



Information at each node x

X.left

Xx.right

X.value

the key
the left child (node)
the right child (node)

the parent (node)

the value
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Operations on a BST

read-only operations

TreeSearch(root, k)
TreeMinimum(x) / TreeMaximum(X)
Successor(x) / Predecessor(x)

modifying operations

TreelInsert(root, Xx)
TreeDelete(root, x)
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TreeSearch(root, k)

Search the BST rooted at root,
return the node with key k;
return NIL if not exist.
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TreeSearch(root , k)

= start from root @

= if kis smaller than the key of the @ @
current node, go left

» if kis larger than the key of the e @ e

current node, go right

= if equal, found ° @

= |f going to NIL, not found
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TreeSearch(root, k) Pseudo-code

TreeSearch(root, k):

i1f root == NIL or k == root.key:
return root
if k < root.key:
return TreeSearch(root.left, k)
else:

return TreeSearch(root.right, k)

Worst case running time:
O(h), height of tree, going at most from root to leaf
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TreeMinimum(X)

Return the node with the minimum key of the tree rooted at x
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TreeMinimum(X)

= start from root

= keep going to the left, until cannot
go anymore

= return that final node
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TreeMinimum(x) Pseudo-code

TreeMinimum(Xx) :

while x.left # NIL:

X = X.left
return X

Worst case running time:
O(h), height of tree, going at most from root to leaf

TreeMaximum(x) is exactly the same, except
that it goes to the right instead of to the left.
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Successor (xX)

Find the node which is the successor of x
In the sorted list obtained by inorder traversal

or, node with the smallest key larger than x
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Successor (x)

= The successor of 33 is... 40
= The successorof40is... 43
= The successorof 64 is... 65
= The successorof65is ... 80

AN
ITS ALL OVER THE PLACE!
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Successor (x)
Organize into two cases

= X has a right child (easy)

= x does not have a right child (less easy)
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x has a right child

Successor (x) must be in X’s right
subtree (the nodes right after x in
the inorder traversal)

It's the minimum of Xx’s right subtree,
l.e., TreeMinimum(x.right)

The first (smallest) node among
what’s right after x.
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x does not have a right child

How to find Find this guy! @

* go up to X.p @/

= if X is a right child of x.p, \
keep going up @ @ \

= if x is a left child of x.p, stop, @ @
X.p is the guy!
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x does not have a right child

Consider the inorder traversal
(left subtree -> root -> right subtree)

The successor y of x is the lowest ancestor
of x whose left subtree contains x

(y is visited right after finishing subtree A in
inorder traversal)

Y.

x is the last one visited in some node y’s left
subtree A (because no right child)

Find this guy!
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Summary of the two cases of
Successor (x)

If X has a right child
return TreeMinimum(x.right)

If Xx does not have a right child

= keep going up to x.p while x is a right child, stop when x
IS a left child, then return x.p

= |f already gone up to the root and still not finding it,
return NIL.
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Successor (x) Pseudo-code

Successor(x):

1f x.right # NIL:
return TreeMinimum(x.right)

y = X.p

while y # NIL and x == y.right: #x is right child
X =Y
y = v.p # keep going up

return y

Worst case running time
O(h), Case 1: TreeMin is O(h); Case 2: at most leaf to root
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Predecessor (Xx)
works symmetrically the same way as

sSuccessor (x)
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Agenda Recap

ADT: Dictionary
Data structure: BST
read-only operations

TreeSearch(root, k)\"b "'

TreeMinimum(x) / TreeMaximum(X)

Successor(x) / Predecessor(x)"'
modifying operations

TreelInsert(root, X)

TreeDelete(root, X)
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Treelnsert(root,

Insert node x into the BST rooted at root
return the new root of the modified tree
If exists y, s.t. y.key = x.key, replace y with x
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X)
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Treelnsert(root, x)

Go down, left and right
like what we do In
TreeSearch

When next position is NIL,
insert there

If find equal key,
replace the node
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Exercise
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Ex 2: Insert sequence into an empty tree

Insert sequence 1: Insert sequence 2:
11, 5,13, 12,6, 3, 14 3,5,6,11,14,13, 12

Different insert sequences result in
different "shapes” (heights) of the BST.

SC263 | Jessica'Burgner-Ka




Treelnsert(root, x): Pseudo-code

Treelnsert(root, X): Worst case
# insert and return the new root running time:
if root == NIL: O(h)
root = X

elif x.key < root.key:
root.left = TreelInsert(root.left, Xx)
elif x.key > root.key:
root.right = TreeInsert(root.right, Xx)
else # x.key == root.key:
replace root with x # update x.left, x.right

return root
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(o)

~

TreeDelete(root, X)

Delete node x from BST rooted at root while maintaining BST property,
return the new root of the modified tree
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What’s tricky about deletion?

Tree might be disconnected (o)

after deleting a node, (10

need to connect them back
together, e .

while maintaining the BST e e
property. e
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Delete(root, x): Organize into 3 cases

Case 1: x has no child < Easy |

Case 2: x has one child <! Easy ‘

Case 3: x has two children % Less easy ‘
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Case 1: x has no child

Just delete i,
nothing else need
to be changed.

CSC263 | Jessica Burgner-Kahrs



Case 2: x has one child

First delete that node, which
makes an open spot.

Then promote x’s only
child to the spot, together
with the only child’s subtree.
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Case 2: x has one child

First delete that node, which
makes an open spot.

Then promote x’s only
child to the spot, together
with the only child’s subtree.
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Case 3: x has two children

Delete x, which makes an

open spot.
&
A node y should fill this '
spot, such that L <y <R. 1 R

Which one should be y?

y < the minimum of R, i.e., Successor (x)
L <y becauseyisin R,y <R because it's minimum
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Further divide into two cases

Case 3.1: Case 3.2:
y happens to be y is not the right
the right child of x child of x

A

no left child,
coz Yy is min

[EA

no left child

coz y is min
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Case 3.1:y is x’s right child

Easy, just promote

y to X's spot
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Case 3.1:y is x’s right child

Easy, just promote

y to X's spot
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Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y’s spot,
y becomes free.
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Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y's spot,
y becomes free.

2. Make z be y'’s right child
(y adopts z)
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Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y's spot,
y becomes free.

2. Make z be y's right child
(y adopts z)

3. Promote y to x’'s spot
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Case 3.2: y is NOT Xx’s right child

‘Order: y<w<z

1. Promote w to y's spot,
y becomes free.

2. Make z be y'’s right child
(y adopts z)

3. Promote y to x’'s spot

L
x deleted
BST order maintained, all is good.
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More thinking about Case 3.2 © @

Okay, promote, adopt, promote... | can see that it works, pretty clever.

But HOW ON EARTH can | come up with this kind of clever
algorithms!

Thinking Process: understand the BST property (the invariant),
predict the final shape of the tree, and see how to get there.

‘ Order:y<w<z ‘
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Summarize TreeDelete(root, X)

Case 1: x has no child, just delete
Case 2: x has one child, promote

Case 3: x has two children, y = Successor (x)
Case 3.1: y is x's right child, promote
Case 3.2: y is NOT x’s right child
= promote y’s right child
= y adopt x’s right child
" promotey
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TreeDelete(root,x) Pseudo-code

CLRS Chapter 12.3
Key: Understand Transplant (root,u,v)

# v takes away u’s parent

used for promoting
n v and deleting u A
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Transplant(root, u, v):
# v takes away u’s parent

1f u.p == NIL: # if u is root
root = v # v replaces u as root

elif u == u.p.left:4 if u is parent’s left child
u.p.left = V #parent accepts v as left child

else: # if u is parent’s right child
u.p.right = V #parent accepts v as right child
1f v # NIL:

VeP = U.P # v accepts new parent
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Case
1&2

Case 3

TreeDelete(root, x):

e

— if

X.left == NIL:
Transplant(root,

elif x.right == NIL:

Transplant(root,

else:

g—

Case
3.2

—

y = TreeMinimum(xXx.right)

Promote right child

L

X, X.right)

Promote left child

X, X.left)——

‘4JgetSuccessor(x)

if y.p # Xty

is not right child of x

Transplant (root, vy, y.right)‘S§>\‘
y.right = x.right

y.right.p = y
Transplant(root,
y.left = x.left

y.left.p = y \\promotey

return root

promote w
X, yﬁptsl

update pointers
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TreeDelete(root, x) worst case running time

O(h) (time spent on TreeMinimum)
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Now, about that h
(height of tree)



Definition: Height of a tree

The longest path from the
root to a leaf, in terms of
number of edges.

h=4
O
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Consider a BST with n nodes,
what’s the highest it can be?

h = n-1

l.e, In worst case
h € O(n)

so all the operations we learned with O(h)
runtime, they are O(n) in worst case
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So, what’s the best case for h ?
In best case, h € O(log n)

A Balanced BST
guarantees to have height in
©(log n)

Therefore, all the O(h) become O(log n)
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Recap Quiz



Question 1

How to visit the nodes in a BST in a sorted order?

d inorder traversal

J preorder traversal

J postorder traversal
 level-by-level traversal
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Question 2

Node x has two children. The predecessor of x is
the tree in X’s subtree.

J maximum, right
J maximum, left
J minimum, left
1 minimum, right
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Question 3

Insert three keys into a BST in this order: 2, 6, 3.
What is the height of the resulting tree?

Jd 0
J 1
Jd 2
Jd 3
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Next week

A Balanced BST called AVL tree
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