CSC263 Winter 2020

Dictionary ADT

Week 3

1

CSC263 | Jessica Burgner-Kahrs

Today and next two weeks

ADT Dictionary

Data structure

Binary search tree (BST) Balanced BST - AVL tree Hash Table

Dictionary

What's stored

words

Supported operations

- Search for a word
- Insert a word
- Delete a word

Dictionary, more precisely

What's stored

A set **S** of where each item/node **x** has a field **x.key** (assumption: keys are distinct, unless otherwise specified)

Dictionary ADT

Remember: k is a key, x is a node.

What's stored

A set **S** of where each item/node **x** has a field **x.key**

(assumption: keys are **distinct**, unless otherwise specified)

Supported operations

- Search(S, k) return x in S, s.t., x.key = k return NIL if no such x
- Insert(S, x) insert node x into S
 if already exists node y with same key, replace y with x
- Delete(S, x) delete a given node x from S

More on Delete

Why Delete(S, x) instead of Delete(S, k)?

Delete(S, k) can be implemented by: x = Search(S, k) Delete(S, x)

We want to separate different operations, i.e., each operation focuses on only one job.

Think of use cases for an ADT Dictionary

1min > Think for yourself 1 min > Pair with your neighbor and talk about it Share with the class

Implementing a Dictionary

using simple data structures

$\mathbf{40} \rightleftarrows \mathbf{33} \rightleftarrows \mathbf{18} \rightleftarrows \mathbf{65} \rightleftarrows \mathbf{24} \rightleftarrows \mathbf{25}$

Unsorted (doubly) linked list

O(n) worst case go through the list to find the key

Insert(S,x)

Search(S,k)

O(n) worst case need to check if **x.key** is already in the list

Delete(S, x)

O(1) worst case just delete, O(1) in a doubly linked list

Sorted array

[18,24,25,33,40,65]

Search(S,k)

O(log n) worst case binary search!

Insert(S, x)

O(n) worst case insert at front, everything has to shift to back

Delete(S,x)

O(n) worst case delete, shift left

We can do better using smarter data structures!

	unsorted list	sorted array	BST	Balanced BST
Search(S,k)	O(n)	O(log n)	O(n)	O(log n)
<pre>Insert(S,x)</pre>	O(n)	O(n)	O(n)	O(log n)
Delete(S,x)	O(1)	O(n)	O(n)	O(log n)

Binary Search Tree

It's a binary tree, like binary heap

Each node has at most 2 children

need NOT be nearly-complete, unlike binary heap

It has the BST property

For every node x in the tree

All nodes in the left subtree have keys smaller than x.key

All nodes in the right subtree have keys larger than x.key

BST or NOT?

Because of BST property, we can say that the keys in a BST are sorted.

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.

Worst case running time of InorderTraversal: **O(n)**, because visit each node exactly once

Operations on a BST

Information at each node x

x.key the key

x.left the left child (node)

x.right the right child (node)

x.p the parent (node)

x.value the value

Operations on a BST

read-only operations

TreeSearch(root,k)
TreeMinimum(x) / TreeMaximum(x)
Successor(x) / Predecessor(x)

modifying operations

TreeInsert(root,x)
TreeDelete(root,x)

TreeSearch(root,k)

Search the BST rooted at root, return the node with key k; return NIL if not exist.

TreeSearch(root,k)

- start from root
- if k is smaller than the key of the current node, go left
- if k is larger than the key of the current node, go right
- if equal, found
- if going to NIL, not found

TreeSearch(root,k) Pseudo-code

```
TreeSearch(root, k):
```

```
if root == NIL or k == root.key:
```

```
return root
```

```
if k < root.key:</pre>
```

return TreeSearch(root.left, k)

else:

return TreeSearch(root.right, k)

Worst case running time:

O(h), height of tree, going at most from root to leaf

TreeMinimum(x)

Return the node with the minimum key of the tree rooted at x

TreeMinimum(x)

- start from root
- keep going to the left, until cannot go anymore
- return that final node

TreeMinimum(x) Pseudo-code

```
TreeMinimum(x):
while x.left ≠ NIL:
x = x.left
return x
```

Worst case running time:

O(h), height of tree, going at most from root to leaf

TreeMaximum(x) is exactly the same, except that it goes to the right instead of to the left.

Successor(x)

Find the node which is the successor of x in the sorted list obtained by inorder traversal

or, node with the smallest key larger than x

Successor(x)

- The successor of 33 is... 40
- The successor of 40 is... 43
- The successor of 64 is... 65
- The successor of 65 is ... 80

Successor(x) Organize into two cases

- x has a right child (easy)
- x does not have a right child (less easy)

x has a right child

Successor(x) must be in x's **right subtree** (the nodes **right after x** in the inorder traversal)

It's the minimum of x's right subtree, i.e., TreeMinimum(x.right)

The first (smallest) node among what's right after x.

x does not have a right child

How to find

- go up to x.p
- if x is a right child of x.p,
 keep going up
- if x is a left child of x.p, stop,
 x.p is the guy!

x does not have a right child

Successor(x)

If x has a right child
 return TreeMinimum(x.right)

If x does not have a right child

- keep going up to x.p while x is a right child, stop when x is a left child, then return x.p
- if already gone up to the root and still not finding it, return NIL.

Successor(x) Pseudo-code

```
Successor(x):
   if x.right \neq NIL:
      return TreeMinimum(x.right)
   y = x.p
   while y \neq NIL and x == y.right: #x is right child
      x = y
      y = y.p # keep going up
   return y
```

Worst case running time **O(h)**, Case 1: TreeMin is O(h); Case 2: at most leaf to root

Predecessor(x)
works symmetrically the same way as
 Successor(x)
Agenda Recap

ADT: **Dictionary** Data structure: **BST** read-only operations TreeSearch(root, k) TreeMinimum(x) / TreeMaximum(x) Successor(x) / Predecessor(x) modifying operations TreeInsert(root, x) TreeDelete(root, x)

C parameter

TreeInsert(root, x)

Insert node x into the BST rooted at root return the new root of the modified tree if exists y, s.t. y.key = x.key, replace y with x

TreeInsert(root, x)

Go down, left and right like what we do in TreeSearch

When next position is NIL, insert there

If find equal key, replace the node

Ex 2: Insert sequence into an empty tree

Insert sequence 1:

11, 5, 13, 12, 6, 3, 14

Different insert sequences result in different "shapes" (heights) of the BST.

Insert sequence 2:

TreeInsert(root, x): Pseudo-code

```
Worst case
TreeInsert(root, x):
                                        running time:
# insert and return the new root
                                        O(h)
   if root == NIL:
      root = x
   elif x.key < root.key:
      root.left = TreeInsert(root.left, x)
   elif x.key > root.key:
      root.right = TreeInsert(root.right, x)
   else # x.key == root.key:
      replace root with x # update x.left, x.right
   return root
```


TreeDelete(root, x)

Delete node x from BST rooted at root while maintaining BST property, return the new root of the modified tree

What's tricky about deletion?

Tree might be **disconnected** after deleting a node, need to **connect** them back

together,

while maintaining the **BST**

property.

Delete(root, x): Organize into 3 cases

Case 1: x has no child Easy

Case 2: x has one child _____ Easy

Case 3: x has two children ____ Less easy

Case 1: x has no child

Just delete it, nothing else need to be changed.

Case 2: x has one child

First delete that node, which makes an **open spot**.

Then **promote x's only child** to the spot, together with the only child's subtree.

Case 2: x has one child

First delete that node, which makes an **open spot**.

Then **promote x's only child** to the spot, together with the only child's subtree.

Case 3: x has two children

Delete **x**, which makes an open spot.

A node y should fill this spot, such that L < y < R. Which one should be y?

y ← the minimum of R, i.e., Successor(x) L < y because y is in R, y < R because it's minimum

Further divide into two cases

Case 3.1: y happens to be the right child of **x** X У no left child, coz y is min

Case 3.2:

y is not the right child of **x**

Easy, just promote

y to x's spot

Easy, just promote

y to x's spot

Promote w to y's spot,
 y becomes free.

- Promote w to y's spot,
 y becomes free.
- Make z be y's right child (y adopts z)

- Promote w to y's spot,
 y becomes free.
- Make z be y's right child (y adopts z)
- 3. Promote y to x's spot

- Promote w to y's spot,
 y becomes free.
- Make z be y's right child (y adopts z)
- 3. Promote y to x's spot

x deleted **BST order maintained, all is good.**

Order: y < w < z

Ζ

W

More thinking about Case 3.2

Okay, promote, adopt, promote... I can see that it works, pretty clever.

But **HOW ON EARTH** can I **come up** with this kind of clever algorithms!

Thinking Process: understand the BST property (the invariant), predict the final shape of the tree, and see how to get there.

Summarize TreeDelete(root, x)

- Case 1: x has no child, just delete
- Case 2: x has one child, promote
- **Case 3**: x has two children, y = Successor(x)
 - Case 3.1: y is x's right child, promote
 - Case 3.2: y is NOT x's right child
 - promote y's right child
 - y adopt x's right child
 - promote y

TreeDelete(root,x) Pseudo-code

CLRS Chapter 12.3
Key: Understand Transplant(root,u,v)
v takes away u's parent

Transplant(root, u, v): # v takes away u's parent if u.p == NIL: # if u is root root = V # v replaces u as root elif u == u.p.left:# if u is parent's left child u.p.left = V #parent accepts v as left child else: # if u is parent's right child u.p.right = v #parent accepts v as right child if $v \neq NIL$: $v \cdot p = u \cdot p \# v \text{ accepts new parent}$

TreeDelete(root, x) worst case running time O(h) (time spent on TreeMinimum)

Now, about that h (height of tree)

Definition: Height of a tree

The longest path from the root to a leaf, in terms of number of edges.

Consider a BST with n nodes, what's the highest it can be?

h = n-1

i.e, in worst case **h** ∈ **Θ**(n)

so all the operations we learned with **O(h)** runtime, they are **O(n)** in worst case

So, what's the best case for h?

In best case, $h \in \Theta(\log n)$

A Balanced BST

guarantees to have height in $\Theta(\log n)$

Therefore, all the O(h) become O(log n)

Recap Quiz

Question 1

How to visit the nodes in a BST in a sorted order?

inorder traversal

- preorder traversal
- postorder traversal
- Ievel-by-level traversal

Question 2

Node x has two children. The predecessor of x is the tree _____ in x's _____ subtree.

maximum, right
maximum, left
minimum, left
minimum, right

Insert three keys into a BST in this order: 2, 6, 3. What is the height of the resulting tree?

A Balanced BST called AVL tree