
Dictionary ADT
Week 3

CSC263 | Jessica Burgner-Kahrs
1

CSC263 Winter 2020

Today and next two weeks

ADT Dictionary

Data structure Binary search tree (BST)
Balanced BST - AVL tree
Hash Table

2
CSC263 | Jessica Burgner-Kahrs

Dictionary

What’s stored
§ words

Supported operations
§ Search for a word
§ Insert a word
§ Delete a word

3
CSC263 | Jessica Burgner-Kahrs

Dictionary, more precisely
What’s stored
A set S of where each item/node x has a field x.key
(assumption: keys are distinct, unless otherwise specified)

4

Node / item xKey k

CSC263 | Jessica Burgner-Kahrs

Dictionary ADT

What’s stored

A set S of where each item/node x has a field x.key
(assumption: keys are distinct, unless otherwise specified)

Supported operations
§ Search(S, k) return x in S, s.t., x.key = k

return NIL if no such x
§ Insert(S, x) insert node x into S

if already exists node y with same key, replace y with x
§ Delete(S, x) delete a given node x from S

5

Remember: k is a key, x is a node.

CSC263 | Jessica Burgner-Kahrs

More on Delete

Why Delete(S, x) instead of Delete(S, k)?

Delete(S, k) can be implemented by:
x = Search(S, k)
Delete(S, x)

We want to separate different operations,
i.e., each operation focuses on only one job.

6
CSC263 | Jessica Burgner-Kahrs

Think of use cases for an
ADT Dictionary

1min > Think for yourself
1 min > Pair with your neighbor and talk about it

Share with the class

CSC263 | Jessica Burgner-Kahrs
7

Implementing a Dictionary
using simple data structures

CSC263 | Jessica Burgner-Kahrs
8

Unsorted (doubly) linked list

Search(S,k)

Insert(S,x)

Delete(S,x)

9

40 ⇄ 33 ⇄ 18 ⇄ 65 ⇄ 24 ⇄ 25

CSC263 | Jessica Burgner-Kahrs

O(n) worst case
go through the list to find the key

O(n) worst case
need to check if x.key is already in the list

O(1) worst case
just delete, O(1) in a doubly linked list

Sorted array

10

[18 , 24 , 25 , 33 , 40 , 65]

O(log n) worst case
binary search!

O(n) worst case
insert at front, everything has to shift to back

O(n) worst case
delete, shift left

CSC263 | Jessica Burgner-Kahrs

Search(S,k)

Insert(S,x)

Delete(S,x)

We can do better using smarter data
structures!

CSC263 | Jessica Burgner-Kahrs
11

unsorted
list sorted array

Search(S,k) O(n) O(log n)

Insert(S,x) O(n) O(n)

Delete(S,x) O(1) O(n)

BST

O(n)

O(n)

O(n)

Balanced
BST

O(log n)

O(log n)

O(log n)

Binary Search Tree

CSC263 | Jessica Burgner-Kahrs
12

It’s a binary tree, like binary heap

Each node has at most 2 children

13
CSC263 | Jessica Burgner-Kahrs

need NOT be nearly-complete, unlike
binary heap

14
CSC263 | Jessica Burgner-Kahrs

It has the BST property

15

< >

For every node x in the tree

All nodes in
the left
subtree have
keys smaller
than
x.key

All nodes in
the right
subtree have
keys larger
than
x.key

CSC263 | Jessica Burgner-Kahrs

BST or NOT?

CSC263 | Jessica Burgner-Kahrs
16

65

8040

66

6033 82

41

65

8040

64

6033 82

41

Because of BST property,
we can say that the keys in a BST are sorted.

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.

17
CSC263 | Jessica Burgner-Kahrs

18

InorderTraversal(x):
print all keys in BST rooted at x in ascending order

if x ≠ NIL:
InorderTraversal(x.left)
print x.key
InorderTraversal(x.right)

We pass a BST to a function by
passing its root node.

Worst case running time of InorderTraversal:
O(n), because visit each node exactly once

CSC263 | Jessica Burgner-Kahrs

Operations on a BST

CSC263 | Jessica Burgner-Kahrs
19

Information at each node x

x.key the key

x.left the left child (node)

x.right the right child (node)

x.p the parent (node)

x.value the value

20
CSC263 | Jessica Burgner-Kahrs

Operations on a BST

read-only operations
TreeSearch(root,k)
TreeMinimum(x) / TreeMaximum(x)
Successor(x) / Predecessor(x)
modifying operations
TreeInsert(root,x)
TreeDelete(root,x)

21
CSC263 | Jessica Burgner-Kahrs

TreeSearch(root,k)
Search the BST rooted at root,

return the node with key k;
return NIL if not exist.

CSC263 | Jessica Burgner-Kahrs
22

TreeSearch(root,k)

§ start from root
§ if k is smaller than the key of the

current node, go left
§ if k is larger than the key of the

current node, go right
§ if equal, found
§ if going to NIL, not found

23

65

8040

64

6033 82

41

CSC263 | Jessica Burgner-Kahrs

TreeSearch(root,k) Pseudo-code

24

TreeSearch(root, k):

if root == NIL or k == root.key:
return root

if k < root.key:
return TreeSearch(root.left, k)

else:
return TreeSearch(root.right, k)

Worst case running time:
O(h), height of tree, going at most from root to leaf

CSC263 | Jessica Burgner-Kahrs

TreeMinimum(x)
Return the node with the minimum key of the tree rooted at x

CSC263 | Jessica Burgner-Kahrs
25

TreeMinimum(x)

§ start from root
§ keep going to the left, until cannot
go anymore
§ return that final node

26

65

8040

64

6033 82

41

CSC263 | Jessica Burgner-Kahrs

TreeMinimum(x) Pseudo-code

27

TreeMinimum(x):

while x.left ≠ NIL:
x = x.left

return x

Worst case running time:
O(h), height of tree, going at most from root to leaf

TreeMaximum(x) is exactly the same, except
that it goes to the right instead of to the left.

CSC263 | Jessica Burgner-Kahrs

Successor(x)
Find the node which is the successor of x

in the sorted list obtained by inorder traversal

or, node with the smallest key larger than x

CSC263 | Jessica Burgner-Kahrs
28

Successor(x)

§ The successor of 33 is...
§ The successor of 40 is…
§ The successor of 64 is…
§ The successor of 65 is …

29

65

8040

64

6033 82

43

62

40
43
65
80

CSC263 | Jessica Burgner-Kahrs

Successor(x)
Organize into two cases
§ x has a right child (easy)

§ x does not have a right child (less easy)

30
CSC263 | Jessica Burgner-Kahrs

x has a right child

Successor(x) must be in x’s right
subtree (the nodes right after x in

the inorder traversal)

It’s the minimum of x’s right subtree,

i.e., TreeMinimum(x.right)

31

65

8040

64

6033 82

43

62

The first (smallest) node among
what’s right after x.
CSC263 | Jessica Burgner-Kahrs

x does not have a right child

How to find

§ go up to x.p

§ if x is a right child of x.p,
keep going up

§ if x is a left child of x.p, stop,
x.p is the guy!

32

65

8040

64

6033 82

43

62

Find this guy!

97

99

CSC263 | Jessica Burgner-Kahrs

x does not have a right child

Consider the inorder traversal
(left subtree -> root -> right subtree)

33

y

A
x

Find this guy!

x is the last one visited in some node y’s left
subtree A (because no right child)

The successor y of x is the lowest ancestor
of x whose left subtree contains x
(y is visited right after finishing subtree A in
inorder traversal)

CSC263 | Jessica Burgner-Kahrs

Summary of the two cases of
Successor(x)
If x has a right child

return TreeMinimum(x.right)

If x does not have a right child
§ keep going up to x.p while x is a right child, stop when x

is a left child, then return x.p
§ if already gone up to the root and still not finding it,

return NIL.

34
CSC263 | Jessica Burgner-Kahrs

Successor(x) Pseudo-code

35

Successor(x):
if x.right ≠ NIL:

return TreeMinimum(x.right)
y = x.p
while y ≠ NIL and x == y.right: #x is right child

x = y
y = y.p # keep going up

return y

Worst case running time
O(h), Case 1: TreeMin is O(h); Case 2: at most leaf to root

CSC263 | Jessica Burgner-Kahrs

36

Predecessor(x)
works symmetrically the same way as

Successor(x)

CSC263 | Jessica Burgner-Kahrs

Agenda Recap

ADT: Dictionary
Data structure: BST
read-only operations
TreeSearch(root, k)
TreeMinimum(x) / TreeMaximum(x)
Successor(x) / Predecessor(x)

modifying operations
TreeInsert(root, x)
TreeDelete(root, x)

37
CSC263 | Jessica Burgner-Kahrs

38
CSC263 | Jessica Burgner-Kahrs

7 min

TreeInsert(root, x)
Insert node x into the BST rooted at root
return the new root of the modified tree

if exists y, s.t. y.key = x.key, replace y with x

CSC263 | Jessica Burgner-Kahrs
39

TreeInsert(root, x)

Go down, left and right
like what we do in
TreeSearch

When next position is NIL,
insert there

If find equal key,
replace the node

40

65

8040

64

6033 82

43

62

42

42

CSC263 | Jessica Burgner-Kahrs

Exercise

41

65

8040

61

6033 82

43

62

81

81

64

64

CSC263 | Jessica Burgner-Kahrs

Ex 2: Insert sequence into an empty tree

42

Insert sequence 1:
11, 5, 13, 12, 6, 3, 14

Insert sequence 2:
3, 5, 6, 11, 14, 13, 12

11

5 13

12 143 6

3

5

6

13

11

12

Different insert sequences result in
different “shapes” (heights) of the BST.

14

CSC263 | Jessica Burgner-Kahrs

TreeInsert(root, x): Pseudo-code

43

TreeInsert(root, x):
insert and return the new root

if root == NIL:
root = x

elif x.key < root.key:
root.left = TreeInsert(root.left, x)

elif x.key > root.key:
root.right = TreeInsert(root.right, x)

else # x.key == root.key:
replace root with x # update x.left, x.right

return root

Worst case
running time:
O(h)

CSC263 | Jessica Burgner-Kahrs

TreeDelete(root, x)
Delete node x from BST rooted at root while maintaining BST property,

return the new root of the modified tree

CSC263 | Jessica Burgner-Kahrs
44

What’s tricky about deletion?

Tree might be disconnected
after deleting a node,
need to connect them back
together,
while maintaining the BST
property.

45

65

8040

64

6033 82

43

62

CSC263 | Jessica Burgner-Kahrs

Delete(root, x): Organize into 3 cases

Case 1: x has no child

Case 2: x has one child

Case 3: x has two children

46

Easy

Easy

Less easy

CSC263 | Jessica Burgner-Kahrs

Case 1: x has no child

47

65

8040

64

6033 82

43

62

Just delete it,
nothing else need
to be changed.

CSC263 | Jessica Burgner-Kahrs

Case 2: x has one child

First delete that node, which
makes an open spot.

Then promote x’s only
child to the spot, together
with the only child’s subtree.

48

65

8040

58

5533 82

57 62

CSC263 | Jessica Burgner-Kahrs

Case 2: x has one child

49

65

8040

5833 82

57 62

First delete that node, which
makes an open spot.

Then promote x’s only
child to the spot, together
with the only child’s subtree.

CSC263 | Jessica Burgner-Kahrs

Case 3: x has two children

Delete x, which makes an
open spot.

A node y should fill this
spot, such that L < y < R.
Which one should be y?

50

x

L R

y ← the minimum of R, i.e., Successor(x)
L < y because y is in R, y < R because it’s minimum

CSC263 | Jessica Burgner-Kahrs

Further divide into two cases

51

Case 3.1:
y happens to be
the right child of x

Case 3.2:
y is not the right
child of x

x

L

y

x

L

z

yno left child,
coz y is min

no left child
coz y is min

CSC263 | Jessica Burgner-Kahrs

Case 3.1: y is x’s right child

Easy, just promote
y to x’s spot

52

x

L

y

CSC263 | Jessica Burgner-Kahrs

L

y

Case 3.1: y is x’s right child

Easy, just promote
y to x’s spot

53
CSC263 | Jessica Burgner-Kahrs

Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot,
y becomes free.

54

x

L

z

y

w

Order: y < w < z

CSC263 | Jessica Burgner-Kahrs

Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot,
y becomes free.

55

2. Make z be y’s right child
(y adopts z)

x

L

z
y

w

Order: y < w < z

CSC263 | Jessica Burgner-Kahrs

Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot,
y becomes free.

56

2. Make z be y’s right child
(y adopts z)

Order: y < w < z

x

L
z

y

w
3. Promote y to x’s spot

CSC263 | Jessica Burgner-Kahrs

Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot,
y becomes free.

57

2. Make z be y’s right child
(y adopts z)

Order: y < w < z

L

z

y

w
3. Promote y to x’s spot

x deleted
BST order maintained, all is good.
CSC263 | Jessica Burgner-Kahrs

More thinking about Case 3.2
Okay, promote, adopt, promote... I can see that it works, pretty clever.

But HOW ON EARTH can I come up with this kind of clever
algorithms!

Thinking Process: understand the BST property (the invariant),
predict the final shape of the tree, and see how to get there.

58

Order: y < w < z

CSC263 | Jessica Burgner-Kahrs

x

L

z

y

w L

z

y

w

Summarize TreeDelete(root, x)
Case 1: x has no child, just delete
Case 2: x has one child, promote
Case 3: x has two children, y = Successor(x)

Case 3.1: y is x’s right child, promote
Case 3.2: y is NOT x’s right child

§ promote y’s right child
§ y adopt x’s right child
§ promote y

59
CSC263 | Jessica Burgner-Kahrs

TreeDelete(root,x) Pseudo-code
CLRS Chapter 12.3
Key: Understand Transplant(root,u,v)
v takes away u’s parent

60

u v u v

used for promoting
v and deleting u

CSC263 | Jessica Burgner-Kahrs

Transplant(root, u, v):
v takes away u’s parent
if u.p == NIL: # if u is root

root = v # v replaces u as root
elif u == u.p.left:# if u is parent’s left child

u.p.left = v #parent accepts v as left child
else: # if u is parent’s right child

u.p.right = v #parent accepts v as right child
if v ≠ NIL:

v.p = u.p # v accepts new parent

61CSC263 | Jessica Burgner-Kahrs

TreeDelete(root, x):
if x.left == NIL:

Transplant(root, x, x.right)
elif x.right == NIL:

Transplant(root, x, x.left)
else:

y = TreeMinimum(x.right)
if y.p ≠ x:

Transplant(root, y, y.right)
y.right = x.right
y.right.p = y

Transplant(root, x, y)
y.left = x.left
y.left.p = y

return root

Promote right child

Promote left child

get Successor(x)

y is not right child of x

promote w

y adopts z

promote y

update pointers

Case
1 & 2

Case 3

Case
3.2

62CSC263 | Jessica Burgner-Kahrs

TreeDelete(root, x) worst case running time

O(h) (time spent on TreeMinimum)

63CSC263 | Jessica Burgner-Kahrs

Now, about that h
(height of tree)

CSC263 | Jessica Burgner-Kahrs
64

Definition: Height of a tree

The longest path from the
root to a leaf, in terms of
number of edges.

65

65

8040

64

6033 82

43

62
h = 4

CSC263 | Jessica Burgner-Kahrs

Consider a BST with n nodes,
what’s the highest it can be?
h = n-1

i.e, in worst case
h ∈ Θ(n)

so all the operations we learned with O(h)
runtime, they are O(n) in worst case

66
CSC263 | Jessica Burgner-Kahrs

So, what’s the best case for h ?

In best case, h ∈ Θ(log n)

A Balanced BST
guarantees to have height in
Θ(log n)

67

Therefore, all the O(h) become O(log n)
CSC263 | Jessica Burgner-Kahrs

Recap Quiz

CSC263 | Jessica Burgner-Kahrs
68

Question 1

How to visit the nodes in a BST in a sorted order?

q inorder traversal
q preorder traversal
q postorder traversal
q level-by-level traversal

CSC263 | Jessica Burgner-Kahrs
69

Question 2

Node x has two children. The predecessor of x is
the tree _________ in x’s _________ subtree.

q maximum, right
q maximum, left
q minimum, left
q minimum, right

CSC263 | Jessica Burgner-Kahrs
70

Question 3

Insert three keys into a BST in this order: 2, 6, 3.
What is the height of the resulting tree?

q 0
q 1
q 2
q 3

CSC263 | Jessica Burgner-Kahrs
71

Next week

A Balanced BST called AVL tree

72
CSC263 | Jessica Burgner-Kahrs

