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Today and next two weeks

ADT Dictionary

Data structure Binary search tree (BST)
Balanced BST - AVL tree
Hash Table
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Dictionary

What’s stored
§ words

Supported operations
§ Search for a word
§ Insert a word
§ Delete a word

3
CSC263 | Jessica Burgner-Kahrs



Dictionary, more precisely
What’s stored
A set S of where each item/node x has a field x.key
(assumption: keys are distinct, unless otherwise specified)
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Node / item xKey k
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Dictionary ADT

What’s stored

A set S of where each item/node x has a field x.key
(assumption: keys are distinct, unless otherwise specified)

Supported operations
§ Search(S, k) return x in S, s.t., x.key = k

return NIL if no such x
§ Insert(S, x) insert node x into S

if already exists node y with same key, replace y with x
§ Delete(S, x) delete a given node x from S
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Remember: k is a key, x is a node.
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More on Delete

Why Delete(S, x) instead of Delete(S, k)?

Delete(S, k) can be implemented by:
x = Search(S, k)
Delete(S, x)

We want to separate different operations, 
i.e., each operation focuses on only one job.
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Think of use cases for an 
ADT Dictionary

1min > Think for yourself
1 min > Pair with your neighbor and talk about it

Share with the class
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Implementing a Dictionary
using simple data structures
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Unsorted (doubly) linked list 

Search(S,k)

Insert(S,x)

Delete(S,x)
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40 ⇄ 33 ⇄ 18 ⇄ 65 ⇄ 24 ⇄ 25       
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O(n) worst case
go through the list to find the key

O(n) worst case
need to check if x.key is already in the list

O(1) worst case
just delete, O(1) in a doubly linked list



Sorted array 
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[ 18 , 24 , 25 , 33 , 40 , 65 ]

O(log n) worst case
binary search!

O(n) worst case
insert at front, everything has to shift to back

O(n) worst case
delete, shift left
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Search(S,k)

Insert(S,x)

Delete(S,x)



We can do better using smarter data 
structures!
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unsorted 
list sorted array

Search(S,k) O(n) O(log n)

Insert(S,x) O(n) O(n)

Delete(S,x) O(1) O(n)

BST

O(n)

O(n)

O(n)

Balanced 
BST

O(log n)

O(log n)

O(log n)



Binary Search Tree
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It’s a binary tree, like binary heap

Each node has at most 2 children
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need NOT be nearly-complete, unlike 
binary heap
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It has the BST property
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< >

For every node x in the tree

All nodes in 
the left
subtree have 
keys smaller
than 
x.key

All nodes in 
the right
subtree have 
keys larger
than 
x.key
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BST or NOT?
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65

8040

66

6033 82

41

65

8040

64

6033 82

41



Because of BST property, 
we can say that the keys in a BST are sorted.

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.
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InorderTraversal(x):
# print all keys in BST rooted at x in ascending order

if x ≠ NIL:
InorderTraversal(x.left)
print x.key
InorderTraversal(x.right)

We pass a BST to a function by 
passing its root node.

Worst case running time of InorderTraversal:
O(n), because visit each node exactly once
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Operations on a BST
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Information at each node x

x.key the key

x.left the left child (node)

x.right the right child (node)

x.p the parent (node)

x.value the value
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Operations on a BST

read-only operations
TreeSearch(root,k)
TreeMinimum(x) / TreeMaximum(x)
Successor(x) / Predecessor(x)
modifying operations
TreeInsert(root,x)
TreeDelete(root,x)
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TreeSearch(root,k)
Search the BST rooted at root, 

return the node with key k; 
return NIL if not exist.
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TreeSearch(root,k)

§ start from root
§ if k is smaller than the key of the  

current node, go left
§ if k is larger than the key of the 

current node, go right
§ if equal, found
§ if going to NIL, not found
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65

8040

64

6033 82

41
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TreeSearch(root,k) Pseudo-code
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TreeSearch(root, k):

if root == NIL or k == root.key:
return root

if k < root.key:
return TreeSearch(root.left, k)

else:
return TreeSearch(root.right, k)

Worst case running time:
O(h), height of tree, going at most from root to leaf
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TreeMinimum(x)
Return the node with the minimum key of the tree rooted at x
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TreeMinimum(x)

§ start from root
§ keep going to the left, until cannot 
go anymore
§ return that final node
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65

8040

64

6033 82

41
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TreeMinimum(x) Pseudo-code
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TreeMinimum(x):

while x.left ≠ NIL:
x = x.left

return x

Worst case running time:
O(h), height of tree, going at most from root to leaf

TreeMaximum(x) is exactly the same, except 
that it goes to the right instead of to the left.
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Successor(x)
Find the node which is the successor of x 

in the sorted list obtained by inorder traversal

or, node with the smallest key larger than x
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Successor(x)

§ The successor of 33 is... 
§ The successor of 40 is… 
§ The successor of 64 is… 
§ The successor of 65 is … 
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65

8040

64

6033 82

43

62

40
43
65
80
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Successor(x)
Organize into two cases
§ x has a right child (easy)

§ x does not have a right child (less easy)
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x has a right child

Successor(x) must be in x’s right 
subtree (the nodes right after x in 

the inorder traversal)

It’s the minimum of x’s right subtree, 

i.e., TreeMinimum(x.right)
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65

8040

64

6033 82

43

62

The first (smallest) node among 
what’s right after x.
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x does not have a right child

How to find

§ go up to x.p

§ if x is a right child of x.p, 
keep going up

§ if x is a left child of x.p, stop, 
x.p is the guy!
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65

8040

64

6033 82

43

62

Find this guy!

97

99
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x does not have a right child

Consider the inorder traversal
(left subtree -> root -> right subtree)
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y

A
x

Find this guy!

x is the last one visited in some node y’s left 
subtree A (because no right child)

The successor y of x is the lowest ancestor
of x whose left subtree contains x
(y is visited right after finishing subtree A in 
inorder traversal)
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Summary of the two cases of 
Successor(x)
If x has a right child

return TreeMinimum(x.right)

If x does not have a right child
§ keep going up to x.p while x is a right child, stop when x 

is a left child, then return x.p
§ if already gone up to the root and still not  finding it, 

return NIL.
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Successor(x) Pseudo-code
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Successor(x):
if x.right ≠ NIL:

return TreeMinimum(x.right)
y = x.p
while y ≠ NIL and x == y.right: #x is right child

x = y
y = y.p # keep going up

return y

Worst case running time
O(h), Case 1: TreeMin is O(h); Case 2: at most leaf to root

CSC263 | Jessica Burgner-Kahrs



36

Predecessor(x)
works symmetrically the same way as

Successor(x)
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Agenda Recap

ADT: Dictionary
Data structure: BST
read-only operations
TreeSearch(root, k)
TreeMinimum(x) / TreeMaximum(x)
Successor(x) / Predecessor(x)

modifying operations
TreeInsert(root, x)
TreeDelete(root, x)
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7 min



TreeInsert(root, x)
Insert node x into the BST rooted at root
return the new root of the modified tree

if exists y, s.t. y.key = x.key, replace y with x
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TreeInsert(root, x)

Go down, left and right 
like what we do in 
TreeSearch

When next position is NIL, 
insert there

If find equal key, 
replace the node

40

65

8040

64

6033 82

43

62

42

42
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Exercise

41

65

8040

61

6033 82

43

62

81

81

64

64
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Ex 2: Insert sequence into an empty tree

42

Insert sequence 1:
11, 5, 13, 12, 6, 3, 14

Insert sequence 2:
3, 5, 6, 11, 14, 13, 12

11

5 13

12 143 6

3

5

6

13

11

12

Different insert sequences result in 
different “shapes”  (heights) of the BST.

14
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TreeInsert(root, x): Pseudo-code
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TreeInsert(root, x):
# insert and return the new root

if root == NIL:
root = x

elif x.key < root.key:
root.left = TreeInsert(root.left, x)

elif x.key > root.key:
root.right = TreeInsert(root.right, x)

else # x.key == root.key:
replace root with x # update x.left, x.right

return root

Worst case 
running time:
O(h)
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TreeDelete(root, x)
Delete node x from BST rooted at root while maintaining BST property, 

return the new root of the modified tree
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What’s tricky about deletion?

Tree might be disconnected
after deleting a node, 
need to connect them back 
together, 
while maintaining the BST 
property.
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65

8040

64

6033 82

43

62
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Delete(root, x): Organize into 3 cases

Case 1: x has no child

Case 2: x has one child

Case 3: x has two children
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Easy

Easy

Less easy
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Case 1: x has no child
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65

8040

64

6033 82

43

62

Just delete it, 
nothing else need 
to be changed.
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Case 2: x has one child

First delete that node, which 
makes an open spot.

Then promote x’s only 
child to the spot, together 
with the only child’s subtree.
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65

8040

58

5533 82

57 62
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Case 2: x has one child

49

65

8040

5833 82

57 62

First delete that node, which 
makes an open spot.

Then promote x’s only 
child to the spot, together 
with the only child’s subtree.
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Case 3: x has two children

Delete x, which makes an 
open spot.

A node y should fill this 
spot, such that L < y < R.
Which one should be y?
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x

L R

y ← the minimum of R, i.e., Successor(x)
L < y because y is in R, y < R because it’s minimum
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Further divide into two cases

51

Case 3.1:
y happens to be 
the right child of x

Case 3.2:
y is not the right 
child of x

x

L

y

x

L

z

yno left child, 
coz y is min

no left child 
coz y is min
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Case 3.1: y is x’s right child

Easy, just promote
y to x’s spot

52

x

L

y
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L

y

Case 3.1: y is x’s right child

Easy, just promote
y to x’s spot
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Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot, 
y becomes free.
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x

L

z

y

w

Order: y < w < z
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Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot, 
y becomes free.

55

2. Make z be y’s right child
(y adopts z)

x

L

z
y

w

Order: y < w < z
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Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot, 
y becomes free.

56

2. Make z be y’s right child
(y adopts z)

Order: y < w < z

x

L
z

y

w
3. Promote y to x’s spot
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Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot, 
y becomes free.

57

2. Make z be y’s right child
(y adopts z)

Order: y < w < z

L

z

y

w
3. Promote y to x’s spot

x deleted
BST order maintained, all is good.
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More thinking about Case 3.2
Okay, promote, adopt, promote... I can see that it works, pretty clever.

But HOW ON EARTH can I come up with this kind of clever 
algorithms!

Thinking Process: understand the BST property (the invariant), 
predict the final shape of the tree, and see how to get there.
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Order: y < w < z
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x

L

z

y

w L

z

y

w



Summarize TreeDelete(root, x)
Case 1: x has no child, just delete
Case 2: x has one child, promote
Case 3: x has two children, y = Successor(x)

Case 3.1: y is x’s right child, promote
Case 3.2: y is NOT x’s right child

§ promote y’s right child
§ y adopt x’s right child
§ promote y
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TreeDelete(root,x) Pseudo-code
CLRS Chapter 12.3
Key: Understand Transplant(root,u,v)
# v takes away u’s parent

60

u v u v

used for promoting 
v and deleting u
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Transplant(root, u, v):
# v takes away u’s parent
if u.p == NIL: # if u is root

root = v  # v replaces u as root
elif u == u.p.left:# if u is parent’s left child

u.p.left = v #parent accepts v as left child
else: # if u is parent’s right child

u.p.right = v #parent accepts v as right child
if v ≠ NIL:

v.p = u.p # v accepts new parent
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TreeDelete(root, x):
if x.left == NIL:

Transplant(root, x, x.right)
elif x.right == NIL:

Transplant(root, x, x.left)
else:

y = TreeMinimum(x.right)
if y.p ≠ x:

Transplant(root, y, y.right)
y.right = x.right
y.right.p = y

Transplant(root, x, y)
y.left = x.left
y.left.p = y

return root

Promote right child

Promote left child

get Successor(x)

y is not right child of x 

promote w

y adopts z

promote y

update pointers

Case 
1 & 2

Case 3

Case 
3.2
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TreeDelete(root, x) worst case running time

O(h) (time spent on TreeMinimum)
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Now, about that h
(height of tree)
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Definition: Height of a tree 

The longest path from the 
root to a leaf, in terms of 
number of edges.
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65

8040

64

6033 82

43

62
h = 4
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Consider a BST with n nodes, 
what’s the highest it can be?
h = n-1

i.e, in worst case 
h ∈ Θ(n)

so all the operations we learned with O(h)
runtime, they are O(n) in worst case

66
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So, what’s the best case for h ?

In best case, h ∈ Θ(log n)

A Balanced BST 
guarantees to have height in 
Θ(log n)
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Therefore, all the O(h) become O(log n)
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Recap Quiz
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Question 1

How to visit the nodes in a BST in a sorted order?

q inorder traversal
q preorder traversal
q postorder traversal
q level-by-level traversal
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Question 2

Node x has two children. The predecessor of x is 
the tree _________ in x’s _________ subtree.

q maximum, right
q maximum, left
q minimum, left
q minimum, right
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Question 3

Insert three keys into a BST in this order: 2, 6, 3.
What is the height of the resulting tree?

q 0
q 1
q 2
q 3
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Next week

A Balanced BST called AVL tree
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