CSC263 Winter 2020

Priority Queues

Week 2

1

CSC263 | Jessica Burgner-Kahrs

Announcements

Probability Worksheet (ungraded)

Assignment 1 out \rightarrow Due Jan 27

Make Groups on MarkUs

https://mcs.utm.utoronto.ca/~263

Today	
ADT	Priority Queue
Data structure	Heap Use it to implement priority queues Also useful for other things, e.g. sorting

An ADT We already Know

First come first serve

Queue

A collection of elements

Supported operations
Dequeue(Q, x)
Dequeue(Q)
PeekFront(Q)

A New ADT

Max-Priority Queue

A collection of elements with priorities, i.e., each element x has x.priority

Applications of Priority Queues

Job scheduling in an operating system

Processes have different priorities (Normal, high...)

Bandwidth management in a router

Delay sensitive traffic has higher priority

Several graph algorithms

Find minimum spanning tree of a graph, find shortest path

Now, let's implement ADT (Max)-Priority Queue

40 -> 33 -> 18 -> 75 -> 24 -> 25

Use an unsorted linked list

Insert(Q,x) # x is a node

• Just insert x at the head, which takes $\Theta(1)$

IncreasePriority(Q,x,k)

Just change x.priority to k, which takes Θ(1)

Max(Q)

• Have to go through the whole list, takes $\Theta(n)$

ExtractMax(Q)

 Go through the whole list to find x with max priority (Θ(n)), then delete it (O(1) if double linked) and return it, so overall Θ(n).

75 -> 40 -> 33 -> 25 -> 24 -> 18

Use a linked list sorted in reverse

Max(Q)

• Just return the head of the list, $\Theta(1)$

ExtractMax(Q)

• Just delete and return the head, $\Theta(1)$

Insert(Q, x)

Linearly search the correct location of insertion which takes
 ^O(n) in worst case.

IncreasePriority(Q,x,k)

After increase, need to move element to a new location in the list, takes
(n) in worst case.

$\Theta(1)$ is good, but $\Theta(n)$ is bad...

unsorted linked list sorted linked list

Can we link these elements in a smarter way, so that we never need to do $\Theta(n)$?

	unsorted list	sorted list
Insert(Q,x)	Θ(1)	Θ(n)
Max(Q)	Θ(n)	Θ(1)
ExtractMax(Q)	Θ(n)	Θ(1)
<pre>IncreasePriority(Q,x,k)</pre>	Θ(1)	Θ(n)

. . .

Yes, we can!

Worst case running times

	unsorted list	sorted list	Неар
Insert(Q,x)	Θ(1)	Θ(n)	Θ(log n)
Max(Q)	Θ(n)	Θ(1)	Θ(1)
ExtractMax(Q)	Θ(n)	Θ(1)	Θ(log n)
<pre>IncreasePriority(Q,x,k)</pre>	Θ(1)	Θ(n)	Θ(log n)

Some operations are worse, from $\Theta(1)$ to $\Theta(\log n)$, but that's a small price to pay for avoiding $\Theta(n)$ costs

Binary Max-Heap

A binary max-heap is a

nearly-complete binary

tree that has the

max-heap property.

It's a binary tree

Each node has at most 2 children

It's a nearly-complete binary tree

Each level is completely filled, except maybe the bottom level where nodes are filled to as far left as possible

Why is it important to be a nearly-complete binary tree?

Because then we can store the tree in an **array**, and each node knows which index has its parent or left/right child.

Why is it important to be a nearly-complete binary tree?

Another reason:

The height of a complete binary tree with n nodes is $\Theta(\log n)$. This is essentially why those operations would have $\Theta(\log n)$ worst-case running time.

Binary Max-Heap

A binary max-heap is a

nearly-complete binary

tree that has the

max-heap property.

The max-heap Property

Every node has a key (priority) greater than or equal to keys of its immediate children.

The max-heap Property

Every node has key (priority) greater than or equal to keys of its immediate children.

Implication: every node is larger than or equal to all its **descendants**, i.e., every subtree of a heap is also a heap.

We have a binary max-heap defined, now let's do operations on it.

- Max(Q)
- Insert(Q,x)
- ExtractMax(Q)
- IncreasePriority(Q,x,k)

Max(Q)

Return the largest key in Q, in O(1) time

Max(Q) Return the maximum element

Return the root of the heap, i.e.,

just return Q[1]

(index starts from 1)

worst case $\Theta(1)$

Insert(Q, x)

Insert node x into heap Q, in O(logn) time

First thing to note:

Which spot to add the new node?

The only spot that keeps it a **nearly complete** binary tree.

Increment heap size

Second thing to note:

Heap property might be broken, how to fix it and maintain the heap property?

"**Bubble-up**" the new node to a proper position, by swapping with parent.

Second thing to note:

Heap property might be broken, how to fix it and maintain the heap property.

"**Bubble-up**" the new node to a proper position, by swapping with parent.

Second thing to note: **Heap property** might be broken, how to fix it and maintain the heap property.

"**Bubble-up**" the new node to a proper position, by swapping with parent.

Worst-case Θ(height) = Θ(log n)

ExtractMax(Q)

Delete and return the largest key in Q, in O(logn) time

First thing to note: Which spot to remove? The root?

NO! Will break into 2 heaps!

First thing to note: Which spot to remove?

The only spot that keeps it a **nearly complete** binary tree.

Decrement heap size

Now the heap property is broken again..., need to fix it.

"Bubble-down" by swapping with a child

Which child to swap with?

so that, after the swap, max-heap property is satisfied

Now the heap property is broken again..., need to fix it.

"Bubble-down" by swapping with

the elder child

Now the heap property is broken again..., need to fix it.

"Bubble-down" by swapping with...

the elder child

Worst case running time: Θ(height) + some constant work Θ(log n)
Quick Summary

Insert(Q, x)

→ Bubble-up, swapping with parent

ExtractMax(Q)

→ Bubble-down, swapping elder child

Bubble up/down is also called percolate up/down, or sift up down, or trickle up/down, or heapify up/down, or cascade up/down.

IncreasePriority(Q, x, k)

Increases the key of node x to k, in O(logn) time IncreasePriority(Q, x, k)
Increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.

IncreasePriority(Q, x, k)
Increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.

Worst case running time: Θ(height) + some constant work Θ(log n) Now we have learned how implement a priority queue using a heap

- \rightarrow Max(Q)
- \rightarrow Insert(Q, x)
- \rightarrow ExtractMax(Q)
- \rightarrow IncreasePriority(Q, x, k)

Next

- → How to use heap for sorting
- → How to build a heap from an unsorted array

C parameter

HeapSort

Sorts an array, in O(n logn) time

The Idea

Worst-case running time: each ExtractMax is O(log n), we do it n times, so overall it's... O(n log n) How to get a sorted list out of a heap with n nodes?

Keep extracting max for n times, the keys extracted will be sorted in non-ascending order.

Now let's be more precise

What's needed: modify a max-heap-ordered array into a sorted array

We want to do this "in-place" without using any extra array space, i.e., just by swapping things around.

CSC263 | Jessica Burgner-Kahrs

Valid heaps are green rectangled

HeapSort - The Pseudo-code

It ONLY works for an array A that is initially heapordered, it does NOT work for any array!

BuildMaxHeap(A)

Converts an array into a max-heap ordered array, in O(n) time

Convert any Array into a Heap Ordered One

In other words...


```
BuildMaxHeap(A):
```

```
B ← empty array # empty heap
for x in A:
    Insert(B, x) # heap insert
A ← B # overwrite A with B
```

Running time:

Each Insert takes O(log n), there are n inserts... so it's O(n log n), not very exciting. Not in-place, needs a second array.

a better idea for BuildMaxHeap

To make the whole thing a valid heap, all you need to do is ... **bubbling-down the root**.

CSC263 | Jessica Burgner-Kahrs

Fix heap order, from bottom up.

Idea #2: The starting index

Idea #2: The starting index

Idea #2: Pseudo-code!

BuildMaxHeap(A):

for i ← floor(n/2) downto 1:
 BubbleDown(A, i)

- → It's in-place, no need for extra array (we did nothing but bubble-down, which is basically swappings).
- → How about runtime?
 - Each bubble down is O(log n)
 - we do it roughly n/2 times
 - so overall it is O(n log n), ... Right?

Analysis Worst-case running time of BuildMaxHeap(A)

So, total number of swaps

The Power of Analysis

```
BuildMaxHeap(A):
```

```
for i ← floor(n/2) downto 1:
   BubbleDown(A, i)
```


This 2-line simple algorithm for BuildMaxHeap, which is easier to implement than the insert-n-times algorithm, by analysis, can be **proven** to be an order of magnitude faster (O(n) instead of O(n logn)).

One can never design such an elegant algorithm without the ability to perform **analysis**.

BuildMaxHeap: my second favourite algorithm in CLRS.

--Larry Zhang

Summary

HeapSort(A)

- → Sort an unsorted array in-place
- \rightarrow O(n log n) worst-case running time

BuildMaxHeap(A)

- → Convert an unsorted array into a heap, in-place
- → Fix heap property from bottom up, do bubbling down on each sub-root
- \rightarrow O(n) worst-case running time

Algorithm visualizer

https://visualgo.net/en/heap

Today we learned

- → ADT: Priority Queue
- \rightarrow Heap: a data structure for implementing priority queue efficiently.
- \rightarrow How to sort with heap
- \rightarrow How to build a heap, elegantly.

Next week

- → ADT: Dictionary
- → Data structure: Binary Search Tree