
Priority Queues
Week 2

1

CSC263 Winter 2020

CSC263 | Jessica Burgner-Kahrs

Announcements

Probability Worksheet (ungraded)

Assignment 1 out à Due Jan 27

Make Groups on MarkUs

https://mcs.utm.utoronto.ca/~263

2CSC263 | Jessica Burgner-Kahrs

Today

ADT Priority Queue

Data structure Heap
Use it to implement priority queues
...Also useful for other things, e.g. sorting

3CSC263 | Jessica Burgner-Kahrs

Queue
A collection of elements

Supported operations
❏ Enqueue(Q, x)
❏ Dequeue(Q)
❏ PeekFront(Q)

An ADT We already Know

4

First come first serve

CSC263 | Jessica Burgner-Kahrs

Max-Priority Queue
A collection of elements with priorities,
i.e., each element x has x.priority

Supported operations
❏ Insert(Q, x)

❏ like Enqueue(Q, x)
❏ ExtractMax(Q)

❏ like Dequeue(Q)
❏ Max(Q)

❏ like PeekFront(Q)
❏ IncreasePriority(Q, x, k)

❏ increase x.priority to k

A New ADT

5CSC263 | Jessica Burgner-Kahrs

Oldest person first

33 18 25 40 24 75

Applications of Priority Queues

Job scheduling in an operating system

§ Processes have different priorities (Normal, high...)

Bandwidth management in a router

§ Delay sensitive traffic has higher priority

Several graph algorithms

§ Find minimum spanning tree of a graph, find shortest path

6CSC263 | Jessica Burgner-Kahrs

Now, let’s implement
ADT (Max)-Priority Queue

7CSC263 | Jessica Burgner-Kahrs

Use an unsorted linked list

Insert(Q,x) # x is a node
§ Just insert x at the head, which takes Θ(1)

IncreasePriority(Q,x,k)
§ Just change x.priority to k, which takes Θ(1)

Max(Q)
§ Have to go through the whole list, takes Θ(n)

ExtractMax(Q)
§ Go through the whole list to find x with max priority (Θ(n)), then delete it

(O(1) if double linked) and return it, so overall Θ(n).
8CSC263 | Jessica Burgner-Kahrs

40 -> 33 -> 18 -> 75 -> 24 -> 25

Use a linked list sorted in reverse
Max(Q)

§ Just return the head of the list, Θ(1)

ExtractMax(Q)
§ Just delete and return the head, Θ(1)

Insert(Q,x)
§ Linearly search the correct location of insertion which takes Θ(n) in worst

case.

IncreasePriority(Q,x,k)
§ After increase, need to move element to a new location in the list, takes

Θ(n) in worst case.
9CSC263 | Jessica Burgner-Kahrs

75 -> 40 -> 33 -> 25 -> 24 -> 18

10CSC263 | Jessica Burgner-Kahrs

Θ(1) is good,
but Θ(n) is bad...

unsorted linked list
sorted linked list
...
Can we link these
elements in a smarter
way, so that we never
need to do Θ(n)?

unsorted list sorted list

Insert(Q,x) Θ(1) Θ(n)
Max(Q) Θ(n) Θ(1)
ExtractMax(Q) Θ(n) Θ(1)
IncreasePriority(Q,x,k) Θ(1) Θ(n)

Yes, we can!

11CSC263 | Jessica Burgner-Kahrs

Heap
Θ(log n)

Θ(1)
Θ(log n)
Θ(log n)

Worst case running times

Some operations are worse, from Θ(1) to Θ(log n),
but that’s a small price to pay for avoiding Θ(n) costs

unsorted list sorted list

Insert(Q,x) Θ(1) Θ(n)
Max(Q) Θ(n) Θ(1)
ExtractMax(Q) Θ(n) Θ(1)
IncreasePriority(Q,x,k) Θ(1) Θ(n)

Binary Max-Heap

12CSC263 | Jessica Burgner-Kahrs

A binary max-heap is a

nearly-complete binary

tree that has the

max-heap property.

75

2540

182433

It’s a binary tree

Each node has at most 2 children

13CSC263 | Jessica Burgner-Kahrs

It’s a nearly-complete binary tree

Each level is completely filled, except maybe the bottom level where nodes are
filled to as far left as possible

14CSC263 | Jessica Burgner-Kahrs

Why is it important to be a
nearly-complete binary tree?

Because then we can store the tree in an array, and each node
knows which index has its parent or left/right child.

15CSC263 | Jessica Burgner-Kahrs

A

CB

FED

A B C D E F

Left(i) = 2i

Right(i) = 2i + 1 (if exists)

Parent(i) = floor(i/2)

Assume index starts at 1

index: 1 2 3 4 5 6

Why is it important to be a
nearly-complete binary tree?

Another reason:

The height of a complete binary tree with n nodes is Θ(log n).

16CSC263 | Jessica Burgner-Kahrs

This is essentially why those
operations would have Θ(log n)
worst-case running time.

Binary Max-Heap

17CSC263 | Jessica Burgner-Kahrs

A binary max-heap is a

nearly-complete binary

tree that has the

max-heap property.

75

2540

182433

The max-heap Property

Every node has a key (priority) greater than or equal
to keys of its immediate children.

18CSC263 | Jessica Burgner-Kahrs

75

40 25

75

2540

182431 20

12 33

75

2540

182433 20

12 31

The max-heap Property

Every node has key (priority) greater than or equal to
keys of its immediate children.

19CSC263 | Jessica Burgner-Kahrs

75

40 25

75

2540

182433 20

12 31

Implication: every node is
larger than or equal to all
its descendants, i.e.,
every subtree of a heap
is also a heap.

20CSC263 | Jessica Burgner-Kahrs

We have a binary max-heap defined,
now let’s do operations on it.
§ Max(Q)
§ Insert(Q,x)
§ ExtractMax(Q)
§ IncreasePriority(Q,x,k)

Max(Q)
Return the largest key in Q,

in O(1) time

21CSC263 | Jessica Burgner-Kahrs

Max(Q)
Return the maximum element

22CSC263 | Jessica Burgner-Kahrs

75

2540

182433

75 40 25 33 24 18Q
Return the root of the
heap, i.e.,

just return Q[1]

(index starts from 1)

worst case Θ(1)

Insert(Q, x)
Insert node x into heap Q,

in O(logn) time

23CSC263 | Jessica Burgner-Kahrs

Insert(Q,x)
Insert a node to a heap

First thing to note:

Which spot to add the new
node?

The only spot that keeps it a
nearly complete binary tree.

24CSC263 | Jessica Burgner-Kahrs

Increment heap size

Insert(Q,x)
Insert a node to a heap

Second thing to note:
Heap property might be broken, how to
fix it and maintain the heap property?

“Bubble-up” the new node to a proper
position, by swapping with parent.

25CSC263 | Jessica Burgner-Kahrs

75

2540

182433 20

12 31 42

swap

Insert(Q,x)
Insert a node to a heap

Second thing to note:
Heap property might be broken, how to
fix it and maintain the heap property.

“Bubble-up” the new node to a proper
position, by swapping with parent.

26CSC263 | Jessica Burgner-Kahrs

75

2540

184233 20

12 31 24

swap

Insert(Q,x)
Insert a node to a heap

Second thing to note:
Heap property might be broken,
how to fix it and maintain the heap
property.

“Bubble-up” the new node to a
proper position, by swapping with
parent.

27CSC263 | Jessica Burgner-Kahrs

75

2542

184033 20

12 31 24

Worst-case
Θ(height) = Θ(log n)

ExtractMax(Q)
Delete and return the largest key in Q,

in O(logn) time

28CSC263 | Jessica Burgner-Kahrs

ExtractMax(Q)
Delete and return the maximum element

First thing to note:
Which spot to remove?
The root?

29CSC263 | Jessica Burgner-Kahrs

NO!
Will break into 2 heaps!

ExtractMax(Q)
Delete and return the maximum element

First thing to note:
Which spot to remove?

30CSC263 | Jessica Burgner-Kahrs

The only spot that keeps
it a nearly complete
binary tree.

Decrement heap size

ExtractMax(Q)
Delete and return the maximum element

First thing to note:

Which spot to remove?
The only spot that keeps it a nearly
complete binary tree.

31CSC263 | Jessica Burgner-Kahrs

75

3840

183332 20

12 31

65 40 28 32 33 18 20 12 31

Decrement heap size

But the last guy’s key
should NOT be deleted.

THIS guy’s key (root)
should be deleted.

Overwrite root with the last
guy’s key, then delete the last
guy (decrement heap size).

ExtractMax(Q)
Delete and return the maximum element

Now the heap property is
broken again…, need to fix it.

“Bubble-down” by swapping
with
a child

32CSC263 | Jessica Burgner-Kahrs

31

3840

183332 20

12

Which child to swap with?

so that, after the swap, max-heap property is satisfied

33CSC263 | Jessica Burgner-Kahrs

3840

31

The “elder” child!
because it is the largest among the three

3831

40

ExtractMax(Q):
Delete and return the maximum element

Now the heap property is
broken again…, need to fix it.

“Bubble-down” by swapping
with
the elder child

34CSC263 | Jessica Burgner-Kahrs

31

3840

183332 20

12

swap

ExtractMax(Q):
Delete and return the maximum element

Now the heap property is broken
again…, need to fix it.

“Bubble-down” by swapping
with...
the elder child

35CSC263 | Jessica Burgner-Kahrs

40

3831

183332 20

12

swap

ExtractMax(Q):
Delete and return the maximum element

Now the heap property is broken
again…, need to fix it.

“Bubble-down” by swapping with
the elder child

36CSC263 | Jessica Burgner-Kahrs

40

3833

183132 20

12

Worst case running time: Θ(height) + some constant work
Θ(log n)

Quick Summary

Insert(Q, x)
➔Bubble-up, swapping with parent

ExtractMax(Q)
➔Bubble-down, swapping elder child

37CSC263 | Jessica Burgner-Kahrs

Bubble up/down is also called
percolate up/down, or sift up down, or trickle up/down,

or heapify up/down, or cascade up/down.

IncreasePriority(Q, x, k)
Increases the key of node x to k,

in O(logn) time

38CSC263 | Jessica Burgner-Kahrs

IncreasePriority(Q, x, k)
Increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with
parents, to proper location.

39CSC263 | Jessica Burgner-Kahrs

75

3840

183332 20

12 31

Increase this
guy to 80

80

IncreasePriority(Q, x, k)
Increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with
parents, to proper location.

40CSC263 | Jessica Burgner-Kahrs

65

3875

183340 20

12 32

80

Worst case running time: Θ(height) + some constant work
Θ(log n)

Now we have learned how implement
a priority queue using a heap
➔ Max(Q)
➔ Insert(Q, x)
➔ ExtractMax(Q)
➔ IncreasePriority(Q, x, k)

Next
➔How to use heap for sorting
➔How to build a heap from an unsorted array

41CSC263 | Jessica Burgner-Kahrs

42CSC263 | Jessica Burgner-Kahrs

5 min

HeapSort
Sorts an array, in O(n logn) time

43CSC263 | Jessica Burgner-Kahrs

The Idea

How to get a sorted list out of a
heap with n nodes?

Keep extracting max for n times,
the keys extracted will be sorted
in non-ascending order.

44CSC263 | Jessica Burgner-Kahrs

75

2540

241833

Worst-case running time:
each ExtractMax is O(log n), we
do it n times, so overall it’s...

O(n log n)

Now let’s be more precise

What’s needed: modify a max-heap-ordered array
into a sorted array

45CSC263 | Jessica Burgner-Kahrs

75

2540

241833

75 40 25 33 18 24

18 24 25 33 40 75

We want to do this “in-place” without using any extra
array space, i.e., just by swapping things around.

Before:

After:

75 40 25 33 18 24

24 40 25 33 18 75

24 40 25 33 18 75

This node is like deleted from the
heap, not touched any more.40 33 25 24 18 75

Repeat Step 1-3 until the array is
fully sorted (at most n iterations).

18 33 25 24 40 75

33 24 25 18 40 75

25 24 18 33 40 75

Step 1: swap first (75) and
last (24), since the tail is
where 75 (max) belongs to.

Step 2: decrement heap size

24 18 25 33 40 75

18 24 25 33 40 75

Step 3: fix the heap by
bubbling down 24

18 24 25 33 40 75

Valid heaps are green rectangled 46CSC263 | Jessica Burgner-Kahrs

HeapSort - The Pseudo-code

47CSC263 | Jessica Burgner-Kahrs

HeapSort(A)
‘’’sort any array A into non-descending order ’’’

for i ← A.size downto 2:
swap A[1] and A[i] # Step 1: swap the first and the last

A.size ← A.size - 1 # Step 2: decrement size of heap

BubbleDown(A, 1) # Step 3: bubble down the 1st element in A

Does it work?
It ONLY works for an array A that is initially heap-
ordered, it does NOT work for any array!

BuildMaxHeap(A) # convert any array A into a heap-ordered one

Missing!

BuildMaxHeap(A)
Converts an array into a max-heap ordered array,

in O(n) time

48CSC263 | Jessica Burgner-Kahrs

Convert any Array into a Heap Ordered One

49CSC263 | Jessica Burgner-Kahrs

65 40 25 33 18 2418 33 25 65 24 40

any array heap ordered array

In other words...

18

2533

402465

65

2540

241833

Idea #1

50CSC263 | Jessica Burgner-Kahrs

BuildMaxHeap(A):

B ← empty array # empty heap
for x in A:

Insert(B, x) # heap insert
A ← B # overwrite A with B

Running time:
Each Insert takes O(log n), there are n inserts...
so it’s O(n log n), not very exciting.
Not in-place, needs a second array.

a better idea for BuildMaxHeap

51CSC263 | Jessica Burgner-Kahrs

Key Observation

52CSC263 | Jessica Burgner-Kahrs

If this is a
valid heap

and this is also
a valid heap

only the root is out
of heap-order

To make the whole thing a valid heap, all you need to do is …
bubbling-down the root.

Idea #2

53CSC263 | Jessica Burgner-Kahrs

23

4533

514431 20

65 37 18 12 70 49 28 29

Fix heap order, from bottom up.

Idea #2

54CSC263 | Jessica Burgner-Kahrs

23

4533

514431 20

65 37 18 12 70 49 28 29

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

55CSC263 | Jessica Burgner-Kahrs

23

4533

514431 29

65 37 18 12 70 49 28 20

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

56CSC263 | Jessica Burgner-Kahrs

23

4533

704431 29

65 37 18 12 51 49 28 20

Adjust heap order, from bottom up.

Idea #2

57CSC263 | Jessica Burgner-Kahrs

23

4533

704431 29

65 37 18 12 51 49 28 20

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

58CSC263 | Jessica Burgner-Kahrs

23

4533

704465 29

31 37 18 12 51 49 28 20

Adjust heap order, from bottom up.
NOT a heap only because
root is out of order, so fix it
by bubble-down the root

already a
fixed heap,
not to worry
about!

Idea #2

59CSC263 | Jessica Burgner-Kahrs

23

7033

514465 29

31 37 18 12 45 49 28 20

Adjust heap order, from bottom up.
NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

60CSC263 | Jessica Burgner-Kahrs

23

7065

514437 29

31 33 18 12 45 49 28 20

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

61CSC263 | Jessica Burgner-Kahrs

70

5165

494437 29

31 33 18 12 45 23 28 20

Adjust heap order, from bottom up.

Heap Built!We did nothing but
bubbling-down

Idea #2: The starting index

62CSC263 | Jessica Burgner-Kahrs

70

5165

494437 29

31 33 18 12 45 23 28 20

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

We started here,
where the index is
floor(n/2)

Idea #2: The starting index

63CSC263 | Jessica Burgner-Kahrs

70

5165

494437 29

31 33 18 12 45 23

1

2 3

4 5 6 7

8 9 10 11 12 13

Even the bottom
level is not fully
filled, we still start
from floor(n/2)

We always start from
floor(n/2), and go
down to 1.

Idea #2: Pseudo-code!

64CSC263 | Jessica Burgner-Kahrs

BuildMaxHeap(A):

for i ← floor(n/2) downto 1:
BubbleDown(A, i)

➔ It’s in-place, no need for extra array (we did nothing
but bubble-down, which is basically swappings).

➔ How about runtime?
§ Each bubble down is O(log n)
§ we do it roughly n/2 times
§ so overall it is O(n log n), … Right?

Analysis
Worst-case running time of

BuildMaxHeap(A)

65CSC263 | Jessica Burgner-Kahrs

Intuition

66CSC263 | Jessica Burgner-Kahrs

A complete binary tree with n nodes...

~ n/2 nodes, and
no work done at
this level.

~ n/4 nodes

of swaps per
bubble-down: ≤1

n/8 nodes, and #
of swaps per
bubble-down: ≤2

n/16 nodes, and #
of swaps per
bubble-down: ≤3

How many
levels?
~ log n

So, total number of swaps

67CSC263 | Jessica Burgner-Kahrs

=1 same trick as
Week 1’s sum

The Power of Analysis

68CSC263 | Jessica Burgner-Kahrs

This 2-line simple algorithm for BuildMaxHeap, which is
easier to implement than the insert-n-times algorithm, by
analysis, can be proven to be an order of magnitude faster
(O(n) instead of O(n logn)).

One can never design such an elegant algorithm without
the ability to perform analysis.

BuildMaxHeap(A):

for i ← floor(n/2) downto 1:
BubbleDown(A, i)

BuildMaxHeap: my second favourite
algorithm in CLRS.

--Larry Zhang

69CSC263 | Jessica Burgner-Kahrs

Summary

HeapSort(A)
➔ Sort an unsorted array in-place

➔ O(n log n) worst-case running time

BuildMaxHeap(A)
➔ Convert an unsorted array into a heap, in-place

➔ Fix heap property from bottom up, do bubbling down on each sub-root

➔ O(n) worst-case running time

70CSC263 | Jessica Burgner-Kahrs

Algorithm visualizer

71CSC263 | Jessica Burgner-Kahrs

https://visualgo.net/en/heap

https://visualgo.net/en/heap

Today we learned
➔ ADT: Priority Queue

➔ Heap: a data structure for implementing priority queue efficiently.

➔ How to sort with heap

➔ How to build a heap, elegantly.

Next week
➔ ADT: Dictionary

➔ Data structure: Binary Search Tree

72CSC263 | Jessica Burgner-Kahrs

