
Data Structures and Analysis
Week 1

1

CSC263 Winter 2020

CSC263 | Jessica Burgner-Kahrs

Sushant Sachdeva (Coordinator)
sachdeva@cs.toronto.edu
Office: DH-3092

Jessica Burgner-Kahrs
jessica.burgnerkahrs@utoronto.ca
Office: DH-3064

2CSC263 | Jessica Burgner-Kahrs

mailto:sachdeva@cs.toronto.edu
mailto:jessica.burgner-kahrs@utoronto.ca

About me

3CSC263 | Jessica Burgner-Kahrs

https://mcs.utm.utoronto.ca/crl/

https://mcs.utm.utoronto.ca/crl/

Outline for Today

Why take CSC263?

What is in CSC263?

How to do well in CSC263?

Start with some basics.

4CSC263 | Jessica Burgner-Kahrs

Why take CSC263?

5CSC263 | Jessica Burgner-Kahrs

Why take CSC263?

6

To nail job interviews!

CSC263 | Jessica Burgner-Kahrs

Scenario: The Interview

Interviewer You are given a set of courses, like CSC236, STA256, CSC258,
CSC263, CSC309, where each course has a list of prerequisites. Devise an
algorithm that returns a valid ordering of taking these courses.
You (think for a minute…) Here is my algorithm:
1. For a valid ordering to exist, there must be a course X that has no

prerequisite.
2. Choose X first. Remove X from the set of courses, and all other courses’

prerequisite list.
3. Find the next course in the set that has no prerequisite.
4. Repeat this until all courses are removed from the set.

(This is actually a correct algorithm)
7

THANKS…
CSC263 | Jessica Burgner-Kahrs

Scenario: The Interview, Take 2

Interviewer You are given a set of courses, like CSC236, STA256,
CSC258, CSC263, CSC309, where each course stores a list of
prerequisites. Devise an algorithm that returns a valid ordering of taking
these courses.

8
YOU GOT IT!

You This is a topological sort problem which
can be solved using DFS.

CSC263 | Jessica Burgner-Kahrs

What’s in CSC263?

9CSC263 | Jessica Burgner-Kahrs

10

(1) Data Structures

and

(2) Analysis

CSC263 | Jessica Burgner-Kahrs

What are Data Structures?

Data structures are smart ways of organizing data / information, to facilitate
access and modifications.

Will allow us to develop efficient algorithms easily, in ways that people who
don’t take CSC263 can’t even imagine.

Design algorithms like a pro!

We will learn the strength and limitations of each data structure,
so that we know which one to use when solving real problems.

11CSC263 | Jessica Burgner-Kahrs

12

“Bad programmers worry about the code.
Good programmers worry about the data
structures and their relationships.”

-- Linus Torvalds

CSC263 | Jessica Burgner-Kahrs

Which Data Structures?

Heaps, Binary search trees -- Data structures for fast priority
queues and sorting
Balanced search trees -- Binary trees that cannot become
unbalanced
Graphs -- powerful algorithms for path-finding and exploration
Hash tables, Disjoint set, ...

13CSC263 | Jessica Burgner-Kahrs

(1) Data Structures

and

(2) Analysis

14CSC263 | Jessica Burgner-Kahrs

What Kind of Analyses?

Worst-case analysis
Worst-case sometimes misses the overall picture of what
usually happens in practice
So we also study
Average-case analysis
Amortized analysis
Expected worst-case analysis for
randomized algorithms ...

15

Math and Proofs

CSC263 | Jessica Burgner-Kahrs

Data structures are fun to learn,

but analyses are the real secret sauce.

Truth

16CSC263 | Jessica Burgner-Kahrs

Cooking

17CSC263 | Jessica Burgner-Kahrs

A data structure is like a dish.

Analysis allows you to discover the effect of each ingredient.

18

Analyses enable you to invent your own dish.

CSC263 | Jessica Burgner-Kahrs

Background (Required)

Theory of Computation
❏ Induction
❏ Recursive functions, Master Theorem
❏ Asymptotic notation, “big-Oh” O, Θ, Ω
Probability Theory
❏ Probabilities and counting
❏ Random variables
❏ Distribution
❏ Expectations

19CSC263 | Jessica Burgner-Kahrs

How to do well in CSC263?

20CSC263 | Jessica Burgner-Kahrs

Be interested.

21CSC263 | Jessica Burgner-Kahrs

22CSC263 | Jessica Burgner-Kahrs

Course Web Page

http://mcs.utm.utoronto.ca/~263/

23

All course materials can be found on the
course web page.

CSC263 | Jessica Burgner-Kahrs

http://mcs.utm.utoronto.ca/~263/

Textbooks

CSC263 Course Notes by David Liu
Short and easy to read, has good exercises.

24

CLRS: Second and third editions are both fine.
Available online at UofT library

Reading for each week on course web page.

CSC263 | Jessica Burgner-Kahrs

Lectures
Sushant Wednesday 9am – 11am (IB-245)

3pm – 5pm (IB-245)
Jessica Friday 11am – 1pm (IB-245)
passive learning mode mostly

25

Tutorials
Tuesdays, in various times and places

active learning mode;
problem solving with the help of TA and your classmates

CSC263 | Jessica Burgner-Kahrs

Lectures & Tutorials: Both Important!

Our ultimate goal is to be able to solve problems!

Lectures will help you understand the material which the problems are
based on.

Tutorials will help you learn how you can solve problems based on the
material covered in class.

Lectures and tutorials address different parts of learning.
It is important to have both!

26CSC263 | Jessica Burgner-Kahrs

Tutorials

Tutorial Problems will be posted shortly before the tutorial, so you may work on
it beforehand if you want.

Solutions for tutorials will not be posted.

You should NOT skip tutorials.

“I'll just skip the gym for this week and work out at home instead” -- this
almost never works.

27CSC263 | Jessica Burgner-Kahrs

Tips for Lectures and Tutorials...

Get involved in classroom interactions
➔ask /answer a question
➔make a guess / bet / vote
➔back-of-the-envelope calculations
➔ take notes!

28

Emotional involvement makes
the brain learn better!

CSC263 | Jessica Burgner-Kahrs

Discussion Board (Discourse)

Link is available on the course website

For all course related discussions.

All announcements will be posted on the board.

Daily reading is required.

29

Communicate smartly!

Don’t discuss homework solutions before due dates.

CSC263 | Jessica Burgner-Kahrs

Office Hours

Sushant: Wednesday 11am – noon
1:30pm-2:30pm

Jessica: Friday 2pm - 3pm

30CSC263 | Jessica Burgner-Kahrs

Grading Scheme
3 problem sets: 10% each
Out of class Midterm: 20% (or 25%)
Final exam: 50% (or 45%)
TOTAL 100%

If your midterm is better than your exam, then midterm is worth 25% and exam
is worth 45%

If your exam is better than your midterm, then midterm is worth 20% and exam
is worth 50%
Must get at least 40% of the final to pass.

31CSC263 | Jessica Burgner-Kahrs

Problem Sets: Submission

Due typically on Monday, 10pm

Submissions need to be typed using LaTeX

Both the PDF and the TeX source must be submitted to
MarkUS (link at course web page).

There is typically a programming question in each PS, and you
will need to submit the code.

32CSC263 | Jessica Burgner-Kahrs

PS: Collaboration

Work in groups of 1-3 students

Collaborate intelligently!

Remember, everyone in the group needs to pass the
final exam.

33CSC263 | Jessica Burgner-Kahrs

Late Submission Policy

Each of you has total 3 free late days
Can only use entire days, no partial days.

If a group submits an assignment x days late, all group
members lose x free days each.

A group can use x free days on an assignment only if every
group member has >=x free days remaining.

34CSC263 | Jessica Burgner-Kahrs

Late Submission Policy

If a submission is delayed beyond the free late days available
to the group member with the fewest free late days remaining,
the assignment will be scored as a 0.

35CSC263 | Jessica Burgner-Kahrs

Academic Integrity

You all know what we expect by now

Do not discuss problem sets outside of your group

Please don't “help” others by helping them solve the PS!

Please don't ask others for help on a PS

36CSC263 | Jessica Burgner-Kahrs

What You Can Do to Help

● Discuss examples from lecture and the course materials

● Answer queries on myBB

37CSC263 | Jessica Burgner-Kahrs

Learn LaTeX
We will post our TeX source files, which you can use as templates.

Check the course website for tutorials

Handy tools that do everything in the browser

◆ www.sharelatex.com

◆ www.overleaf.com

38CSC263 | Jessica Burgner-Kahrs

http://www.sharelatex.com
http://www.overleaf.com

Problem Set 1 will be posted soon!
Due date: January 27

39CSC263 | Jessica Burgner-Kahrs

Exams

Out of Class Midterm
Friday, March 6, 6pm (IB 110)
Duration: 80 mins
Aid: one page double-sided 8.5” x 11” sheet

Final exam
Date to be announced.
Duration: 3 hours
Aid: one double-sided 8.5x11 sheet

40CSC263 | Jessica Burgner-Kahrs

Anonymous Feedback

Form available on course website.

My first time teaching this course
Constructive feedback à improved learning experience
Timely feedback à timely improvement

41CSC263 | Jessica Burgner-Kahrs

Checklist: How to do well
ü Be interested.
ü Check course web page and discussion board daily
ü Attend lectures and take effective notes
ü Actively solve problems in tutorials
ü Read textbook and notes.
ü Discuss on Discourse.
ü Go to office hours.
ü Work hard on homeworks, and submit on time.
ü Give feedback
ü Do well in exams.

42CSC263 | Jessica Burgner-Kahrs

43

We’ll resume in 5 minutes

CSC263 | Jessica Burgner-Kahrs

Abstract Data Type (ADT)
and Data Structure

44CSC263 | Jessica Burgner-Kahrs

Two Related But Different Concepts

ADT is a theoretical definition
❏what data is stored
❏what operations are supported
❏ implementation-independent view

Data structure is a concrete and real implementation
❏ how the data is stored
❏ how to perform the operations

45CSC263 | Jessica Burgner-Kahrs

Real-life Example

ADT
❏ It stores ice cream.
❏ Supported operations:

❏ start getting ice cream
❏ stop getting ice cream

46

Data structures
❏ How ice cream is stored.
❏ How are the start and stop

operations implemented.
❏ It’s the inside of the machine
CSC263 | Jessica Burgner-Kahrs

A CS Example

Stack is an ADT
❏ It stores a list of elements
❏ supports PUSH(S, v), POP(S), IS_EMPTY(S)

Data structures that can be used to implement Stack
❏ Linked list

❏ PUSH: insert at head of the list
❏ POP: remove at head of the list (if not empty)
❏ IS_EMPTY: return “head == None”

❏ Array with a counter (for size of stack) also works
47CSC263 | Jessica Burgner-Kahrs

In CSC263, we will learn many ADTs and many data
structures for implementing these ADTs.

48CSC263 | Jessica Burgner-Kahrs

Algorithm Complexity
Review

49CSC263 | Jessica Burgner-Kahrs

Complexity
Amount of resources required by an algorithm, measured as a function of the
input size.

Time Complexity - Number of steps (“running time”) executed by an
algorithm

Space Complexity - Number of units of space required by an algorithm

❏ e.g., number of elements in a list

❏ number of nodes in a tree

50CSC263 | Jessica Burgner-Kahrs

Example: Search a Linked List
SearchFortyTwo(L):
1. z = L.head
2. while z != None and z.key != 42:
3. z = z.next
4. return z

51

Let input L = 41→51→12→42→20→88
How many times Line #2 will be executed?

Now let L = 41→51→12→24→20→88
How many times Line #2 will be run?

7 (the last one is z == None)

CSC263 | Jessica Burgner-Kahrs

4

Note

Running time can be measured by counting the number of
times all lines are executed, or the number of times some
important lines (such as Line #2 in SearchFortyTwo)
are executed.

It’s up to the problem, or what the question asks, so always
read the question carefully.

52CSC263 | Jessica Burgner-Kahrs

worst-case
best-case

average-case

53CSC263 | Jessica Burgner-Kahrs

Worst-case Running Time

tA(x) running time of algorithm A with input x
When A is understood, we simply write t(x)

The worst-case running time T(n) is defined as

54

Slow is bad!
“worst-case” is the case with the longest running time.

CSC263 | Jessica Burgner-Kahrs

Best-case Running Time
Similarly to worst-case, best-case is the case with the shortest running time.

55

Best case is not very interesting, and is rarely studied.

Because we want the algorithm

to do well on ALL inputs!

CSC263 | Jessica Burgner-Kahrs

Example: Search a Linked List (again)

What is the worst-case running time among all possible L
with length n, i.e., T(n)?

56

SearchFortyTwo(L):
1. z = L.head
2. while z != None and z.key != 42:
3. z = z.next
4. return z

T(n) = n + 1
the case where 42 is not in L
(compare all n nodes plus a final None)

CSC263 | Jessica Burgner-Kahrs

Average-case Running Time
In reality, the running time is NOT always the best case,

and is NOT always the worst case.

The running time is distributed
between the best and the worst.

For our SearchFortyTwo(L) algorithm the running time is
distributed between …

1 and n+1, inclusive
57CSC263 | Jessica Burgner-Kahrs

Average-case Running Time

So, the average-case running time is the expectation of the
running time which is distributed between 1 and n+1, i.e.,...
tn = random variable for the running time on inputs of length n.
It takes values between 1 and n+1

58

We need to know this!
CSC263 | Jessica Burgner-Kahrs

Average-case Running Time

To know Pr(tn = t), we need to know the probability
distribution on the inputs.
e.g. by specifying how inputs are generated

59

Example Distribution
For each key in the linked list, we pick an integer
between 1 and 100 (inclusive), independently,
uniformly at random.

CSC263 | Jessica Burgner-Kahrs

For each key in the linked list, we pick an integer
between 1 and 100 (inclusive), uniformly at random.

when head is 42

head is not 42 and the
second one is

none of the n
keys is 42.

the first t keys are not 42
and the t-th is

...

Figure Out Pr(tn = t)

60CSC263 | Jessica Burgner-Kahrs

Compute Average-case Running Time

61

This sum needs a little
work, but can be done!

CSC263 | Jessica Burgner-Kahrs

Calculate the Sum (After-class Reading)

62

sum of geometric series

take the difference of the above two equations

You should be comfortable with this type of calculations.
CSC263 | Jessica Burgner-Kahrs

The Final Result
Input distribution: Each key in the list is an integer picked {1,2,...,99,100},
independently uniformly at random.
The average-case running time of SearchFortyTwo(L) (measured by
counting Line #2) is:

63

If n = 0, then E[tn] = 1, since it’s always 1 comparison

If n is very large (e.g., 106), E[tn] is close to 100, i.e., the
algorithm is expected to finish within 100
comparisons, even if the worse-case is 106+1comps.

CSC263 | Jessica Burgner-Kahrs

Average-case Running Time

Need to have insight on the relative probability of potential
inputs to our algorithm.

Limited scope of average-case running time of an algorithm as
it may not be apparent how an “average” input looks like.

Probabilistic analysis to yield expected running time.

64CSC263 | Jessica Burgner-Kahrs

asymptotic
upper bound
lower bound
tight bound

65CSC263 | Jessica Burgner-Kahrs

O

Ω

Θ
66CSC263 | Jessica Burgner-Kahrs

Asymptotic Notations

O(f(n)): the set of functions that grow
at most as fast as f(n)
➔ if g ∈ O(f), then we say g is asymptotically upper bounded

by f

Ω(f(n)): the set of functions that grow
at least as fast as f(n)
➔ if g ∈ Ω(f), then we say g is asymptotically lower bounded

by f
67CSC263 | Jessica Burgner-Kahrs

Asymptotic Notations

if g ∈ O(f) and g ∈ Ω(f),
then we say g ∈ Θ(f)

Θ(f(n)): the set of functions that grow as fast as f(n)

we call it an asymptotically tight bound.

68CSC263 | Jessica Burgner-Kahrs

Key Ideas behind Asymptotic Notations

We only care about the rate of growth, so constant factors
don’t matter.

100n² and n² have the same rate of growth

(both are quadrupled when n is doubled)

We only care about large inputs, so only the highest-degree
term matters.

n² and n² + 26n + 320 are nearly the same

when n is very large
69CSC263 | Jessica Burgner-Kahrs

Growth Rate Ranking of Typical Functions

70
grows slowly

grows fast

CSC263 | Jessica Burgner-Kahrs

A high-level Look at Asymptotic Notations

Simplification of the “real” running time

➔ it does not tell the whole story about how fast a program runs in real life.

◆ in real-world applications, constant factor matters! hardware matters!
implementation matters!

➔ this simplification permits the development of the whole theory of
computational complexity.

◆ HUGE idea!

71CSC263 | Jessica Burgner-Kahrs

72CSC263 | Jessica Burgner-Kahrs

73

O is for describing worst-case running time

Ω is for describing best-case running time

CSC263 | Jessica Burgner-Kahrs

O and Ω can both be used to upper-bound and lower-bound
worst / best / average case running time

Runtime (best/worst/average case) is a function of n, and any
function can be asymptotically upper or lower bounded.

74CSC263 | Jessica Burgner-Kahrs

How to argue algorithm A(x)’s worst-case
running time is in O(n²)

We need to argue that, ___________________ input x of size n,
the running time of A with input x, i.e., t(x) is ______________
than cn², where c > 0 is a constant.

75

A. for every
B. there exists an
C. no larger
D. no smaller

for every
no larger

CSC263 | Jessica Burgner-Kahrs

Example

To prove “the tallest person in the room is at most 2
metres”.

You need to show every person in the room is no taller than 2
metres.

76CSC263 | Jessica Burgner-Kahrs

How to argue algorithm A(x)’s worst-case
running time is in Ω(n²)

We need to argue that, ___________________ input x of size n,
the running time of A with input x, i.e., t(x) is ______________
than cn², where c > 0 is a constant.

77

there exists an
no smaller

A. for every
B. there exists an
C. no larger
D. no smaller

CSC263 | Jessica Burgner-Kahrs

Example

To prove “the tallest person in the room is at least 2 metres
tall”.

You just need to find one person in the room is no shorter
than 2 metres.

This person may not even be the tallest one in the room.

78CSC263 | Jessica Burgner-Kahrs

How to argue algorithm A(x)’s best-case running
time is in O(n²)

We need to argue that, ___________________ input x of size n,
the running time of A with input x, i.e., t(x) is ______________
than cn², where c > 0 is a constant.

79

there exists an
no larger

A. for every
B. there exists an
C. no larger
D. no smaller

CSC263 | Jessica Burgner-Kahrs

How to argue algorithm A(x)’s best-case running
time is in Ω(n²)

We need to argue that, ___________________ input x of size n,
the running time of A with input x, i.e., t(x) is ______________
than cn², where c > 0 is a constant.

80

A. for every
B. there exists an
C. no larger
D. no smaller

for every
no smaller

CSC263 | Jessica Burgner-Kahrs

In CSC263
We usually study upper-bounds on worst-case running time.

We will try to get a tight bound Θ if we can.

We also study the upper/lower bounds on average-case
running time.

81CSC263 | Jessica Burgner-Kahrs

Note: exact form & asymptotic notations

In CSC263 homework and exam questions, we’ll sometimes
ask you to express the running time in exact forms, and
sometime, we’ll ask you to express running time in asymptotic
notations, so again, always read the question carefully.

82CSC263 | Jessica Burgner-Kahrs

If you feel rusty with probabilities, please read the Appendix C
of the textbook. It is only about 20 pages, and is highly relevant
to what we need for CSC263.

Appendix A and B are also worth reading.

83CSC263 | Jessica Burgner-Kahrs

Today we learned / reviewed
ADT and Data structures
Best-case, worst-case, average-case analysis
Asymptotic upper/lower bounds

Next week
ADT: Priority queue
Data structure: Heap

84CSC263 | Jessica Burgner-Kahrs

