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Outline for Today

Why take CSC263?

What is in CSC263?

How to do well in CSC263?

Start with some basics.
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Why take CSC263?
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Why take CSC263?

6

To nail job interviews!
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Scenario: The Interview

Interviewer You are given a set of courses, like CSC236, STA256, CSC258, 
CSC263, CSC309, where each course has a list of prerequisites. Devise an 
algorithm that returns a valid ordering of taking these courses.
You (think for a minute… ) Here is my algorithm:
1. For a valid ordering to exist, there must be a course X that has no 

prerequisite.
2. Choose X first. Remove X from the set of courses, and all other courses’ 

prerequisite list.
3. Find the next course in the set that has no prerequisite.
4. Repeat this until all courses are removed from the set.

(This is actually a correct algorithm)
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THANKS…
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Scenario: The Interview, Take 2

Interviewer You are given a set of courses, like CSC236, STA256, 
CSC258, CSC263, CSC309, where each course stores a list of 
prerequisites. Devise an algorithm that returns a valid ordering of taking 
these courses.

8
YOU GOT IT!

You This is a topological sort problem which 
can be solved using DFS.
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What’s in CSC263?
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(1) Data Structures

and

(2) Analysis
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What are Data Structures?

Data structures are smart ways of organizing data / information, to facilitate
access and modifications.

Will allow us to develop efficient algorithms easily, in ways that people who 
don’t take CSC263 can’t even imagine. 

Design algorithms like a pro!

We will learn the strength and limitations of each data structure, 
so that we know which one to use when solving real problems.

11CSC263 | Jessica Burgner-Kahrs



12

“Bad programmers worry about the code. 
Good programmers worry about the data 
structures and their relationships.”      

-- Linus Torvalds
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Which Data Structures?

Heaps, Binary search trees -- Data structures for fast priority 
queues and sorting
Balanced search trees -- Binary trees that cannot become 
unbalanced
Graphs -- powerful algorithms for path-finding and exploration
Hash tables, Disjoint set, ...
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(1) Data Structures

and

(2) Analysis
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What Kind of Analyses?

Worst-case analysis
Worst-case sometimes misses the overall picture of what 
usually happens in practice
So we also study
Average-case analysis
Amortized analysis
Expected worst-case analysis for
randomized algorithms ...
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Math and Proofs
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Data structures are fun to learn, 

but analyses are the real secret sauce. 

Truth
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Cooking
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A data structure is like a dish.

Analysis allows you to discover the effect of each ingredient.

18

Analyses enable you to invent your own dish.
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Background (Required)

Theory of Computation
❏ Induction
❏ Recursive functions, Master Theorem
❏ Asymptotic notation, “big-Oh” O, Θ, Ω
Probability Theory
❏ Probabilities and counting
❏ Random variables
❏ Distribution
❏ Expectations
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How to do well in CSC263?
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Be interested.
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Course Web Page

http://mcs.utm.utoronto.ca/~263/
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All course materials can be found on the 
course web page.
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Textbooks

CSC263 Course Notes by David Liu
Short and easy to read, has good exercises.
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CLRS:  Second and third editions are both fine. 
Available online at UofT library

Reading for each week on course web page.
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Lectures
Sushant Wednesday 9am – 11am (IB-245)

3pm – 5pm (IB-245)
Jessica Friday         11am – 1pm (IB-245)
passive learning mode mostly
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Tutorials
Tuesdays, in various times and places

active learning mode; 
problem solving with the help of TA and your classmates

CSC263 | Jessica Burgner-Kahrs



Lectures & Tutorials: Both Important!

Our ultimate goal is to be able to solve problems!

Lectures will help you understand the material which the problems are 
based on.

Tutorials will help you learn how you can solve problems based on the 
material covered in class.

Lectures and tutorials address different parts of learning. 
It is important to have both!

26CSC263 | Jessica Burgner-Kahrs



Tutorials

Tutorial Problems will be posted shortly before the tutorial, so you may work on 
it beforehand if you want.

Solutions for tutorials will not be posted.

You should NOT skip tutorials.

“I'll just skip the gym for this week and work out at home instead” -- this 
almost never works.

27CSC263 | Jessica Burgner-Kahrs



Tips for Lectures and Tutorials...

Get involved in classroom interactions
➔ask /answer a question
➔make a guess / bet / vote
➔back-of-the-envelope calculations
➔ take notes!
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Emotional involvement makes 
the brain learn better!
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Discussion Board (Discourse)

Link is available on the course website

For all course related discussions.

All announcements will be posted on the board.

Daily reading is required.
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Communicate smartly!

Don’t discuss homework solutions before due dates.
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Office Hours

Sushant: Wednesday 11am – noon
1:30pm-2:30pm

Jessica: Friday 2pm - 3pm
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Grading Scheme
3 problem sets: 10% each
Out of class Midterm: 20% (or 25%)
Final exam: 50% (or 45%)
TOTAL 100%

If your midterm is better than your exam, then midterm is worth 25% and exam 
is worth 45%

If your exam is better than your midterm, then midterm is worth 20% and exam 
is worth 50%
Must get at least 40% of the final to pass.
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Problem Sets: Submission

Due typically on Monday, 10pm

Submissions need to be typed using LaTeX

Both the PDF and the TeX source must be submitted to 
MarkUS (link at course web page).

There is typically a programming question in each PS, and you 
will need to submit the code.
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PS: Collaboration

Work in groups of 1-3 students

Collaborate intelligently!

Remember, everyone in the group needs to pass the 
final exam.
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Late Submission Policy

Each of you has total 3 free late days
Can only use entire days, no partial days.

If a group submits an assignment x days late, all group 
members lose x free days each.

A group can use x free days on an assignment only if every 
group member has >=x free days remaining.

34CSC263 | Jessica Burgner-Kahrs



Late Submission Policy

If a submission is delayed beyond the free late days available 
to the group member with the fewest free late days remaining, 
the assignment will be scored as a 0.
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Academic Integrity

You all know what we expect by now

Do not discuss problem sets outside of your group

Please don't “help” others by helping them solve the PS!

Please don't ask others for help on a PS
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What You Can Do to Help

● Discuss examples from lecture and the course materials

● Answer queries on myBB
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Learn LaTeX
We will post our TeX source files, which you can use as templates.

Check the course website for tutorials 

Handy tools that do everything in the browser

◆ www.sharelatex.com

◆ www.overleaf.com
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Problem Set 1 will be posted soon!
Due date: January 27
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Exams

Out of Class Midterm
Friday, March 6, 6pm (IB 110)
Duration: 80 mins
Aid: one page double-sided 8.5” x 11” sheet

Final exam
Date to be announced.
Duration: 3 hours
Aid: one double-sided 8.5x11 sheet
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Anonymous Feedback

Form available on course website.

My first time teaching this course
Constructive feedback  à improved learning experience
Timely feedback à timely improvement

41CSC263 | Jessica Burgner-Kahrs



Checklist: How to do well
ü Be interested.
ü Check course web page and discussion board daily
ü Attend lectures and take effective notes
ü Actively solve problems in tutorials
ü Read textbook and notes.
ü Discuss on Discourse.
ü Go to office hours.
ü Work hard on homeworks, and submit on time.
ü Give feedback
ü Do well in exams.
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We’ll resume in 5 minutes
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Abstract Data Type (ADT) 
and Data Structure
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Two Related But Different Concepts

ADT is a theoretical definition
❏what data is stored
❏what operations are supported
❏ implementation-independent view

Data structure is a concrete and real implementation
❏ how the data is stored
❏ how to perform the operations
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Real-life Example

ADT
❏ It stores ice cream.
❏ Supported operations:

❏ start getting ice cream
❏ stop getting ice cream

46

Data structures
❏ How ice cream is stored.
❏ How are the start and stop 

operations implemented.
❏ It’s the inside of the machine
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A CS Example

Stack is an ADT
❏ It stores a list of elements
❏ supports PUSH(S, v), POP(S), IS_EMPTY(S)

Data structures that can be used to implement Stack
❏ Linked list

❏ PUSH: insert at head of the list
❏ POP: remove at head of the list (if not empty)
❏ IS_EMPTY: return “head == None”

❏ Array with a counter (for size of stack) also works
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In CSC263, we will learn many ADTs and many data 
structures for implementing these ADTs.
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Algorithm Complexity
Review
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Complexity
Amount of resources required by an algorithm, measured as a function of the 
input size.

Time Complexity - Number of steps (“running time”) executed by an 
algorithm

Space Complexity - Number of units of space required by an algorithm

❏ e.g., number of elements in a list

❏ number of nodes in a tree
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Example: Search a Linked List
SearchFortyTwo(L):
1.   z = L.head
2.   while z != None and z.key != 42:
3.      z = z.next
4.   return z
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Let input L = 41→51→12→42→20→88
How many times Line #2 will be executed?

Now let L = 41→51→12→24→20→88
How many times Line #2 will be run?

7 (the last one is z == None)
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Note

Running time can be measured by counting the number of 
times all lines are executed, or the number of times some 
important lines (such as Line #2 in SearchFortyTwo) 
are executed.

It’s up to the problem, or what the question asks, so always 
read the question carefully.
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worst-case 
best-case

average-case
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Worst-case Running Time

tA(x) running time of algorithm A with input x
When A is understood, we simply write t(x)

The worst-case running time T(n) is defined as
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Slow is bad!
“worst-case” is the case with the longest running time.
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Best-case Running Time
Similarly to worst-case, best-case is the case with the shortest running time. 
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Best case is not very interesting, and is rarely studied.

Because we want the algorithm 

to do well on ALL inputs!
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Example: Search a Linked List (again)

What is the worst-case running time among all possible L
with length n, i.e., T(n)?
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SearchFortyTwo(L):
1.   z = L.head
2.   while z != None and z.key != 42:
3.      z = z.next
4.   return z

T(n) = n + 1 
the case where 42 is not in L 
(compare all n nodes plus a final None)
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Average-case Running Time
In reality, the running time is NOT always the best case, 

and is NOT always the worst case.

The running time is distributed
between the best and the worst.

For our SearchFortyTwo(L) algorithm the running time is 
distributed between …

1 and n+1, inclusive
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Average-case Running Time

So, the average-case running time is the expectation of the 
running time which is distributed between 1 and n+1, i.e.,...
tn = random variable for the running time on inputs of length n.
It takes values between 1 and n+1
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We need to know this!
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Average-case Running Time

To know Pr( tn = t ), we need to know the probability 
distribution on the inputs.
e.g. by specifying how inputs are generated
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Example Distribution
For each key in the linked list, we pick an integer 
between 1 and 100 (inclusive), independently, 
uniformly at random.
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For each key in the linked list, we pick an integer 
between 1 and 100 (inclusive), uniformly at random.

when head is 42

head is not 42 and the 
second one is

none of the n
keys is 42.

the first t keys are not 42 
and the t-th is

...

Figure Out Pr( tn = t )
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Compute Average-case Running Time

61

This sum needs a little 
work, but can be done!
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Calculate the Sum (After-class Reading)

62

sum of geometric series 

take the difference of the above two equations

You should be comfortable with this type of calculations.
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The Final Result
Input distribution: Each key in the list is an integer picked {1,2,...,99,100}, 
independently uniformly at random.
The average-case running time of SearchFortyTwo(L) (measured by 
counting Line #2) is: 
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If n = 0, then E[tn] = 1, since it’s always 1 comparison

If n is very large (e.g., 106), E[tn] is close to 100, i.e., the 
algorithm is expected to finish within 100
comparisons, even if the worse-case is 106+1comps.
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Average-case Running Time

Need to have insight on the relative probability of potential 
inputs to our algorithm.

Limited scope of average-case running time of an algorithm as 
it may not be apparent how an “average” input looks like.

Probabilistic analysis to yield expected running time.
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asymptotic
upper bound
lower bound
tight bound
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O

Ω

Θ
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Asymptotic Notations

O( f(n) ): the set of functions that grow 
at most as fast as f(n)
➔ if g ∈ O(f), then we say  g is asymptotically upper bounded

by f

Ω( f(n) ): the set of functions that grow 
at least as fast as f(n)
➔ if g ∈ Ω(f), then we say  g is asymptotically lower bounded

by f
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Asymptotic Notations

if g ∈ O(f) and g ∈ Ω(f),
then we say g ∈ Θ(f)

Θ( f(n) ): the set of functions that grow as fast as f(n)

we call it an asymptotically tight bound.
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Key Ideas behind Asymptotic Notations

We only care about the rate of growth, so constant factors
don’t matter.

100n² and n² have the same rate of growth 

(both are quadrupled when n is doubled)

We only care about large inputs, so only the highest-degree
term matters.

n² and n² + 26n + 320 are nearly the same 

when n is very large
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Growth Rate Ranking of Typical Functions

70
grows slowly

grows fast
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A high-level Look at Asymptotic Notations

Simplification of the “real” running time

➔ it does not tell the whole story about how fast a program runs in real life. 

◆ in real-world applications, constant factor matters! hardware matters! 
implementation matters!

➔ this simplification permits the development of the whole theory of 
computational complexity. 

◆ HUGE idea!
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O is for describing worst-case running time

Ω is for describing best-case running time
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O and Ω can both be used to upper-bound and lower-bound 
worst / best / average case running time

Runtime (best/worst/average case) is a function of n, and any 
function can be asymptotically upper or lower bounded.

74CSC263 | Jessica Burgner-Kahrs



How to argue algorithm A(x)’s worst-case
running time is in O(n²)

We need to argue that, ___________________ input x of size n, 
the running time of A with input x, i.e., t(x) is ______________ 
than cn², where c > 0 is a constant.

75

A. for every
B. there exists an
C. no larger
D. no smaller

for every
no larger
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Example

To prove “the tallest person in the room is at most 2 
metres”.

You need to show every person in the room is no taller than 2 
metres.
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How to argue algorithm A(x)’s worst-case
running time is in Ω(n²)

We need to argue that, ___________________ input x of size n, 
the running time of A with input x, i.e., t(x) is ______________ 
than cn², where c > 0 is a constant.

77

there exists an
no smaller

A. for every
B. there exists an
C. no larger
D. no smaller
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Example

To prove “the tallest person in the room is at least 2 metres
tall”.

You just need to find one person in the room is no shorter
than 2 metres.

This person may not even be the tallest one in the room.
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How to argue algorithm A(x)’s best-case running 
time is in O(n²)

We need to argue that, ___________________ input x of size n, 
the running time of A with input x, i.e., t(x) is ______________ 
than cn², where c > 0 is a constant.
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there exists an
no larger

A. for every
B. there exists an
C. no larger
D. no smaller
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How to argue algorithm A(x)’s best-case running 
time is in Ω(n²)

We need to argue that, ___________________ input x of size n, 
the running time of A with input x, i.e., t(x) is ______________ 
than cn², where c > 0 is a constant.
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A. for every
B. there exists an
C. no larger
D. no smaller

for every
no smaller
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In CSC263
We usually study upper-bounds on worst-case running time.

We will try to get a tight bound Θ if we can.

We also study the upper/lower bounds on average-case 
running time.
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Note: exact form & asymptotic notations

In CSC263 homework and exam questions, we’ll sometimes 
ask you to express the running time in exact forms, and 
sometime, we’ll ask you to express running time in asymptotic 
notations, so again, always read the question carefully.
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If you feel rusty with probabilities, please read the Appendix C
of the textbook. It is only about 20 pages, and is highly relevant 
to what we need for CSC263.

Appendix A and B are also worth reading.
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Today we learned / reviewed
ADT and Data structures
Best-case, worst-case, average-case analysis
Asymptotic upper/lower bounds

Next week 
ADT: Priority queue
Data structure: Heap
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