MIPS Reference

Machine Encoding Aids
Key Instruction Syntax
o/f instruction/function opcodes Encoding Syntax Template
s/t/d first/second/third register ArithLog f d, Ss, St
a/i shift amount/immediate DivMult f S$s, St
Shift f $d, $t, a
Instruction Encoding Formats Register Shiftv £ $d, $t, $s
Register 000000ss sssttttt dddddaaa aaffffff JumpR f $s
Immediate ooooooss sssttttt iiiiiiii iiiiiiii MoveFrom £ $d
Jump oooocooii iiiiiiii iiiiiiii iiiiidiii MoveTo f $s
ArithLogI o $t, $s, 1
LoadIl o $t, immed32
Immediate Branch o s, St, label
Branch?z o $s, label
LoadStore | o $t, 1i($s)
Jump Jump o %abel
Trap o 1
Instruction Reference
Arithmetic and Logical Instructions
Instruction Operation Opcode or | Syntax Comments
Function
add $d, $s, St $d = $s + St 100000 ArithLog
addu $d, $s, $t | $d = $s + St 100001 ArithLog
addi $t, $s, 1 St = $s + 1 001000 ArithLogI i is sign-extended
addiu $t, $s, 1 St = $s + 1 001001 ArithLogI i is sign-extended
and $d, $s, St $d = $s & St 100100 ArithLog
andi $t, $s, 1 St = $s & 1 001100 ArithLogI i is zero-extended
div $s, St lo = $s / $t; hi = $s % St 011010 DivMult
divu $s, St lo = $s / $t; hi = $s % St 011011 DivMult
mult $s, St hi:lo = $s * St 011000 DivMult
multu $s, $t hi:lo = $s x St 011001 DivMult
nor $d, $s, St S$d = " ($s | St) 100111 ArithLog
or d, Ss, St $d = $s | St 100101 ArithLog
ori t, Ss, 1 St = $s | 1 001101 ArithLoglI i is zero-extended
sll $d, $t, a Sd = St << a 000000 Shift Zero is shifted in
sllv $d, $t, $s Sd = $t << S$s 000100 Shiftv Zero 1s shifted in
sra $d, $t, a sd = st >> a 000011 Shift Sign bit is shifted in
srav $d, t, Ss Sd = st >> S$s 000111 Shiftv Sign bit is shifted in
srl $d, $t, a $d = $t >> a 000010 Shift Zero 1s shifted in
srlv $d, $t, Ss $d = $t >> Ss 000110 Shiftv Zero is shifted in
sub $d, $s, St $d = $s - St 100010 ArithLog
subu $d, $s, St $d = $s - St 100011 ArithLog
xor d, Ss, St $d = $s © St 100110 ArithLog
xori $d, $s, 1 sd = $s © i 001110 ArithLogI i is zero—-extended
Movement Instructions
Instruction Operation Opcode or Syntax Comments
Function
lhi $t, i St = 1 << 16 011001 LoadI i is zero-extended
llo $t, 1 St = 1 011000 LoadI i is zero-extended
mfhi $d $d = hi 010000 MoveFrom
mflo $d $d = lo 010010 MoveFrom
mthi $s hi = $s 010001 MoveTo
mtlo $s lo = $s 010011 MoveTo

Comparison Instructions

Instruction Operation Opcode or Syntax Comments

Function
slt $d, $s, St Sd = $s < St 101010 ArithLog
sltu $d, $s, St $d = $s < St 101001 ArithLog
slti $t, $s, 1 Sd = $s < 1 001010 ArithLogI | 1 is sign-extended
sltiu $t, $s, 1 $d = $s < 1 001001 ArithLogI i is sign-extended

Branch and Jump Instructions

Instruction Operation Opcode or Syntax Comments

Function
beq $s, $t, label if ($s == $t) pc += i << 2 000100 Branch label is a line reference in the code
bgtz $s, label if ($s > 0) pc += 1 << 2 000111 Branch?Z label is a line reference in the code
blez $s, label if ($s <= 0) pc += 1 << 2 000110 Branchz label is a line reference in the code
bne $s, $t, label | if ($s != $t) pc += 1 << 2 000101 Branch label is a line reference in the code
j label pc += 1 << 2 000010 Jump label is a line reference in the code
jal label Sra = pc; pc += 1 << 2 000011 Jump label is a line reference in the code
jalr $s Sra = pc; pc = $s 001001 JumpR
jr $s pc = S$s 001000 JumpR

Memory Instructions

Instruction Operation Opcode or Syntax Comments

Function
1b $t, 1($s) St = MEM[Ss + 1] 100000 LoadStore Sign-extends the loaded byte
lbu $t, i($s) St = MEM[$s + 1i] 100100 LoadStore Zero—extends the loaded byte
1h $t, 1($s) St = MEM[Ss + 1] 100001 LoadStore Sign-extends the loaded bytes
lhu $t, i($s) St = MEM[S$s + 1] 100101 LoadStore Zero—-extends the loaded bytes
1w $t, 1($s) St = MEM[Ss + 1] 100011 LoadStore
sb $t, 1($s) MEM[S$s + 1] = $t 101000 LoadStore Lowest order byte is stored
sh $t, 1i(Ss) MEM[S$s + i] = St 101001 LoadStore 2 lowest order bytes are stored
sw $t, 1($s) MEM[S$s + 1] = $t 101011 LoadStore

Exception and Interrupt Instructions

Instruction Operation Opcode or Syntax Comments

Function
trap 1 Exception 0011010 Trap i is a trap code; implements syscall

