
MIPS Reference

Machine Encoding Aids

Key Instruction Syntax
o/f instruction/function opcodes Encoding Syntax Template
s/t/d first/second/third register

Register

ArithLog f $d, $s, $t
a/i shift amount/immediate DivMult f $s, $t

Shift f $d, $t, a
Instruction Encoding Formats ShiftV f $d, $t, $s
Register 000000ss sssttttt dddddaaa aaffffff JumpR f $s
Immediate ooooooss sssttttt iiiiiiii iiiiiiii MoveFrom f $d
Jump ooooooii iiiiiiii iiiiiiii iiiiiiii MoveTo f $s

Immediate

ArithLogI o $t, $s, i
LoadI o $t, immed32
Branch o $s, $t, label
BranchZ o $s, label
LoadStore o $t, i($s)

Jump
Jump o label
Trap o i

Instruction Reference

Arithmetic and Logical Instructions
Instruction Operation Opcode or Syntax Comments

Function
add $d, $s, $t $d = $s + $t 100000 ArithLog
addu $d, $s, $t $d = $s + $t 100001 ArithLog
addi $t, $s, i $t = $s + i 001000 ArithLogI i is sign-extended
addiu $t, $s, i $t = $s + i 001001 ArithLogI i is sign-extended
and $d, $s, $t $d = $s & $t 100100 ArithLog
andi $t, $s, i $t = $s & i 001100 ArithLogI i is zero-extended
div $s, $t lo = $s / $t; hi = $s % $t 011010 DivMult
divu $s, $t lo = $s / $t; hi = $s % $t 011011 DivMult
mult $s, $t hi:lo = $s * $t 011000 DivMult
multu $s, $t hi:lo = $s * $t 011001 DivMult
nor $d, $s, $t $d = ˜($s | $t) 100111 ArithLog
or $d, $s, $t $d = $s | $t 100101 ArithLog
ori $t, $s, i $t = $s | i 001101 ArithLogI i is zero-extended
sll $d, $t, a $d = $t << a 000000 Shift Zero is shifted in
sllv $d, $t, $s $d = $t << $s 000100 ShiftV Zero is shifted in
sra $d, $t, a $d = $t >> a 000011 Shift Sign bit is shifted in
srav $d, $t, $s $d = $t >> $s 000111 ShiftV Sign bit is shifted in
srl $d, $t, a $d = $t >> a 000010 Shift Zero is shifted in
srlv $d, $t, $s $d = $t >> $s 000110 ShiftV Zero is shifted in
sub $d, $s, $t $d = $s - $t 100010 ArithLog
subu $d, $s, $t $d = $s - $t 100011 ArithLog
xor $d, $s, $t $d = $s ˆ $t 100110 ArithLog
xori $d, $s, i $d = $s ˆ i 001110 ArithLogI i is zero-extended

Movement Instructions
Instruction Operation Opcode or Syntax Comments

Function
lhi $t, i $t = i << 16 011001 LoadI i is zero-extended
llo $t, i $t = i 011000 LoadI i is zero-extended
mfhi $d $d = hi 010000 MoveFrom
mflo $d $d = lo 010010 MoveFrom
mthi $s hi = $s 010001 MoveTo
mtlo $s lo = $s 010011 MoveTo

Comparison Instructions
Instruction Operation Opcode or Syntax Comments

Function
slt $d, $s, $t $d = $s < $t 101010 ArithLog
sltu $d, $s, $t $d = $s < $t 101001 ArithLog
slti $t, $s, i $d = $s < i 001010 ArithLogI i is sign-extended
sltiu $t, $s, i $d = $s < i 001001 ArithLogI i is sign-extended

Branch and Jump Instructions
Instruction Operation Opcode or Syntax Comments

Function
beq $s, $t, label if ($s == $t) pc += i << 2 000100 Branch label is a line reference in the code
bgtz $s, label if ($s > 0) pc += i << 2 000111 BranchZ label is a line reference in the code
blez $s, label if ($s <= 0) pc += i << 2 000110 BranchZ label is a line reference in the code
bne $s, $t, label if ($s != $t) pc += i << 2 000101 Branch label is a line reference in the code
j label pc += i << 2 000010 Jump label is a line reference in the code
jal label $ra = pc; pc += i << 2 000011 Jump label is a line reference in the code
jalr $s $ra = pc; pc = $s 001001 JumpR
jr $s pc = $s 001000 JumpR

Memory Instructions
Instruction Operation Opcode or Syntax Comments

Function
lb $t, i($s) $t = MEM[$s + i] 100000 LoadStore Sign-extends the loaded byte
lbu $t, i($s) $t = MEM[$s + i] 100100 LoadStore Zero-extends the loaded byte
lh $t, i($s) $t = MEM[$s + i] 100001 LoadStore Sign-extends the loaded bytes
lhu $t, i($s) $t = MEM[$s + i] 100101 LoadStore Zero-extends the loaded bytes
lw $t, i($s) $t = MEM[$s + i] 100011 LoadStore
sb $t, i($s) MEM[$s + i] = $t 101000 LoadStore Lowest order byte is stored
sh $t, i($s) MEM[$s + i] = $t 101001 LoadStore 2 lowest order bytes are stored
sw $t, i($s) MEM[$s + i] = $t 101011 LoadStore

Exception and Interrupt Instructions
Instruction Operation Opcode or Syntax Comments

Function
trap i Exception 0011010 Trap i is a trap code; implements syscall

