CSC258H Lab 10: Arrays and Functions

1 Introduction

Last week, we built branches and loops in MIPS assembly using labels and branches. This week,
we will write some programs with arrays and functions.

This week’s lab assumes that you completed all of the material from last week. If you did not
get the programs working last week, finish them before this lab. Also, since this week’s tasks are
more challenging than the previous weeks, you may want to start working on the code before the
lab to be better prepared.

Required Submissions: This lab requires the submission of two assembly files (“lab10a.s”,
“lab10b.s”, and “labl0c.s”) and a lab report (“lablOreport.pdf”) to MarkUs by Monday,
April 12, 10:00 PM. Please read the syllabus regarding the late policy. All submitted work must
be completed individually.

2 Arrays

As we discussed in the lecture, arrays are declared in the .data section of the assembly code. For
example, the following segment of code declares an array of 6 integers.

.data
arrayl: .word 5, 8, 3,4, 7, 2

The array data locates in the memory, so in order to access the elements of the array, we need
to perform memory access instructions such as 1w and sw. To access each element, you need to
correctly calculate the memory address of it before accessing it. The basic way to compute the
memory address of an element is “base + offset”, where base is the address of the first element
of the array (value of “array1”), and offset is the index of the element multiplied by the size (in
bytes) of each element of the array. Read the lecture slides for more details.

Make a copy of the “product” program that you wrote in last week’s lab, and name it 1ab10a.s.
Modify the code so that instead of asking the user for input, it iterates through the above array
(arrayl) and computes the product of all elements in the array.

3 Omne-Level Function Calls

Just like any high level programming language, modularization (separating code into well defined
procedures/functions) is an important idea for assembly programming. Conceptually, making func-
tion call is actually simple: we need to “jump” to another portion of code (the function body) then
start executing the instructions in the function body. When we reach the end of that function,
another “jump” is needed to go back to the caller.

In terms of passing arguments and return values, it can be done in many different ways, therefore
certain conventions need to be defined to make sure that all programmers in the same project are
on the same page. In this lab, we use a very simple convention (which is different from what we
discussed in the lecture): Use registers $a0 and $al for storing the function arguments, and use
$v0 for storing the return value.

Download starter code 1ab10b.s from the following link:
https://mcs.utm.utoronto.ca/"258/files/labl0b.s

The starter code is trying to implement the following piece of pseudocode. Read the comments
in the starter code and complete the TODO parts.

def main():
A=5
B=3
print "Before function"
print "A + B = ", doAdd(A, B)
print "A - B = ", doSub(A, B)

def doAdd(A, B):
return A + B

def doSub(A, B):
return A - B

Note: You are NOT allowed to add any label to your code.

4 Multi-Level Function Calls: Recursion

Things get more interesting when we have multi-level function calls, especially when you are imple-
menting a recursive function. Since the return address is automatically stored in the $ra register
when jal is executed, when a function calls another function, the content of $ra will be overwritten
and the calling function’s return address will be forgotten. To avoid this, we need to remember the
return address of each level of function somewhere, namely, the stack.

We can access the stack using the stack pointer value stored in register $sp. To push a word
onto the stack, you can do:

addi $sp, $sp, -4 # move the stack pointer to increase stack size
sw $r, 0($sp) # put the value in $r on the allocated space

To pop a word from the stack:

lw $r, 0($sp) # load the word at the top of the stack
addi $sp, $sp, 4 # decrease the size of the stack

Other things also need to be remembered on and passed through the stack, such as the argument
passed to the function being called, the return value of a function call, and the temporary values
which need to be used after returning from the recursive call. The orders of the pushes and pops
need to be design carefully so that you are always correctly passing and restoring the value that
you expect.

Create a new file named 1ab10c.s and implement in assembly the following piece of pseudocode,
which involves a recursive function mystery. This task could take longer time than others to finish,
so you might want to start working on it before the lab to better prepare for the lab. You may
refer to the factorial example in class for explanations of the work flow of the recursive function.

However, do NOT copy-and-paste code from the slides since that may cause you to skip important
details that you should learn about. Type every line of your code by yourself to take full advantage
of this learning experience.

def main():
n = input("Enter a number: ")
print ("The result is:", mystery(n))

def mystery(n):
if n ==
return O
return mystery(n-1) + 2x*n - 1

Once your get it to work, show it to your TA, and be ready to answer questions about how
your code works. In particular, try to break your code by passing a very large input value n. How
large does n need to be to cause an error? What kind of error is raised? Can you explain why this
error is being raised?

5 Lab Report

Include the following in your lab report named “lablOreport.pdf”.
1. Your name and student number.
2. A screenshot of your MARS console showing that 1ab10a.s is working correctly.
3. A screenshot of your MARS console showing that 1ab10b.s is working correctly.

4. A screenshot of your MARS console showing that 1ab10c.s is working correctly.

6 Summary of TODOs

Below is a short summary of the steps to be completed for this lab:

1. Before the lab, read through the handout and get familiar with the procedure, and already
start working on the code to be prepared since the tasks are more challenging than previous
labs.

2. Create and complete labl0a.s which implements the Array code.
3. Complete 1ab10b.s for one-level function calls.

4. Create and complete 1ab10c.s which implements the pseudocode with the recursive function
mystery.

5. Complete the lab report.

6. Submit 1labl0a.s, labl0Ob.s, labl0c.s, and lablOreport.pdf to MarkUs before the dead-
line.

Evaluation (3 marks in total):
e 1 mark for the code and report for Array;
e 1 mark for the code and report for One-Level Function;

e 1 mark for the code and report for Recursion.

Congratulations! You just finished your final lab of CSC258! Thank your TAs for their work
throughout the term!

