
CSC258H Lab 9: Control Flows

1 Introduction

When programming in a high-level language like Python, Java, or even C, we use three main control-
flow constructs: branches, loops, and function calls. Last week, we learned how to create programs
in assembly for the MIPS architecture, but these programs did not include any “control”. This
week, we will write programs with branches and loops to see how these constructs are implemented
in assembly. When we finish this lab, we hope you will have a better appreciation for the structures
a high level language provides!

Like last week, take your time on this lab and ask your neighbors or the TAs questions whenever
you see something you don’t understand. We will be learning how to write functions next week, so
it’s important that you be comfortable with the syntax for system calls and branch and memory
instructions. If you need a reference, please check the extra resources posted on the course webpage.
I’ve found Larus’s guide particularly useful for a high level overview.

This week’s lab assumes that you completed all of the material from last week. Make sure to
complete the tasks in last week’s lab before lab time this week.

Required Submissions: This lab requires the submission of two assembly files (“lab9a.s”,
“lab9b.s”, and “lab9c.s”) and a lab report (“lab9report.pdf”) to MarkUs by Tuesday, March
30, 10:00 PM. Please read the syllabus regarding the late policy. All submitted work must be
completed individually.

2 If-Else

An If-Else statement (or branch or conditional statement) is a control structure that creates con-
ditionally executed code. The structure relies on a predicate – an expression that evaluates to a
Boolean value – True or False. The if is always followed by a block that is executed when the
predicate is True. This is the Then block. The Then block is optionally followed by an Else block
that is executed if the predicate is False.

In assembly, If-Else is implemented using labels and branch operations. If necessary, the
predicate is simplified using normal arithmetic operators. Then, it is evaluated using a branch.
The branch uses a label to specify what the next instruction to execute should be if the predicate
evaluates to True. If it evaluates to False, then the next instruction is executed (as normal). Here
is an assembly implementation of a branch:

if x < 5 {

y = 1

}

else {

y = 2

}

IF: # This label isn’t required but is added for clarity.

addi $t1, $t0, -4 # Prepare to evaluate x - 4 <= 0.

bgtz $t1, ELSE # Branch to the label ELSE if the predicate is False.

1

THEN: # This label isn’t required but is added for clarity.

li $t2, 1

j DONE

ELSE:

li $t2, 2

DONE: # This label marks the end of the If-Else.

Note that the predicate is evaluated in an odd way. Branches in MIPS can only compare if two
values are equal (beq) or not equal (bne), if one value is <= 0 (blez), or if one value is > 0 (bgtz).
Some arithmetic has to be done to make most comparisons into comparisons to zero. Furthermore,
the branch in the example checks whether the predicate is False and then branches to the Else

block. If you want to change the branch to be checking whether the condition is True, you’ll need
to swap the positions of the THEN and ELSE blocks. To better understand the flow, use the
flowchart technique that we used in the lecture (see Week 9 lecture slides).

TODO #1: Make a copy of your program from last week’s lab, which prompted the user for
numbers. Name the file lab9a.s. Modify that program to check whether the number provided by
the user is an odd number or an even number. If the user input is an odd number, print “THIS IS
ODD”; otherwise print “THIS IS EVEN”. (Hint : use andi to check if a number is odd or even.)

3 Loops

Loops are very similar to branches. If we start with a branch with a Then block and no Else block,
then the difference is that we name the Then block the loop’s body and may execute it multiple
times. This means that the bottom of the Then block is an unconditional branch back to the top
of the loop. For example:

x = 0

while x < 5 {

x = x + 1

}

LOOPINIT: # Many loops have an initialization section.

li $t0, 0

WHILE: # The loop checks the condition, then evaluates the body.

addi $t1, $t0, -4

bgtz $t1, DONE

addi $t0, $t0, 1

j WHILE

DONE: # This label marks the end of the loop.

This code breaks the loop into three parts. First, the initialization block sets up loop variables.
Second, the loop’s predicate is evaluated, and if the predicate is false, control jumps to the code

2

after the loop. Third, the loop body is evaluated, and an unconditional branch is made to the top
of the loop.

TODO #2: Make a copy of lab9a.s and name it lab9b.s. Modify your program so that it
repeatedly asks the user for input until the user provides an even number; or if the user has entered
odd numbers for N times, then print “TOO MANY TIMES” and exit. Make N a parameter in
the .data section with value 5. (Hint: Use the .word keyword to create space for an integer. Use
lw to load the word into a register.)

4 TODO #3: Product

Write a new program lab9c.s that first asks the user for an integer N . N represents the number
of integers to be multiplied. After getting a legal value N , the program asks for an integer N times
and then prints their product. (You may, for simplicity, assume that the user only provides positive
integers and their product is small enough to be represented by 32 bits.)

5 Lab Report

Include the following in your lab report named “lab9report.pdf”.

1. Your name and student number.

2. A screenshot of your MARS console showing that lab9a.s is working correctly.

3. A screenshot of your MARS console showing that lab9b.s is working correctly.

4. A screenshot of your MARS console showing that lab9c.s is working correctly.

6 Summary of TODOs

Below is a short summary of the steps to be completed for this lab:

1. Before the lab, read through the handout and get familiar with the procedure.

2. Implement the If-Else program that checks parity.

3. Implement the Loop program that promotes until getting an even number.

4. Implement the Product program, and show it to your TA.

5. Complete the lab report.

6. Submit lab9a.s, lab9b.s, lab9c.s, and lab9report.pdf to MarkUs before the deadline.

Evaluation (3 marks in total):

• 1 mark for the code and report for If-Else;

• 1 mark for the code and report for Loop;

• 1 mark for the code and report for Product.

3

