
CSC258H Lab 8: Intro to Assembly

1 Introduction

From this week, we are leaving Logisim behind and starting something new — programming in
assembly. We will be learning about a specific architecture called MIPS. MIPS is a RISC (reduced
instruction set computer) family of processors from the early 1980’s. The MIPS assembly language
is well-known for being concise and logically structured, and because of their simplicity and energy
efficiency, MIPS processors are still in use as embedded processors in devices like cell phones and
portable game players.

Since the PCs in the lab are not MIPS machines, we will need to simulate one. The simulator we
are using is called MARS. You can download it from the following link. The filename is Mars4 5.jar

and you can save on the desktop of your computer (a lab PC or your own).

http://courses.missouristate.edu/kenvollmar/mars/download.htm

We’ll be using MARS in all of the remaining labs, so take your time on this lab and ask questions
whenever you see something you don’t understand.

Required Submissions: This lab requires the submission of two assembly files (“lab8a.s”
and “lab8b.s”) and a lab report (“lab8report.pdf”) to MarkUs by Tuesday, March 23, 10:00
PM. Please read the syllabus regarding the late policy. All submitted work must be completed
individually.

2 An Assembly Program

Every assembly program we write will look very similar. Here is an outline of a typical program:

.data

Add your constant and variable declarations here.

.globl main

.text

main:

Add your program code here.

li $v0, 10 # "Exit" is syscall 10. The next line will invoke a

syscall based on the value in $v0.

syscall # Always end your program with an exit.

Every program is separated into two parts: a data section and a code section. The declaration
.data indicates that beginning of the data section and the declaration .text indicates the start of
code. You may add as many constant and global variable declarations as you like in the data section.
Your code should be placed in the main block. The main label specifies where the program’s main
function starts (where MARS should start executing code). You may create other labels as you
like; each label is used to name a specific line of code so that you can branch or jump to it. We’ll
use labels a lot when we implement control flow like branches, loops, and function calls.

The keyword syscall asks the operating system (or the simulator, in this case) to intervene to
run a privileged instruction. You could also print a message on the screen (syscall #4) or get input

1

from the user (syscall #5). The syscall in the example above exits the program (syscall #10). The
constant (“immediate”) 10 is loaded into register $v0 before invoking the syscall; this tells the
systems which syscall number to perform.

3 MIPS Reference

Before you become an assembly programming guru, you almost always need a reference card at
hand, since some instructions implicitly work with specific registers (e.g., syscall implicitly uses $v0
and $a0); and some register values are assigned to specific operations (like different system calls),
which we don’t want to memorize. Download the MIPS reference card from the link below — it
has all the information that you need while programming MIPS assembly.

https://mcs.utm.utoronto.ca/~258/files/assembly-ref.pdf

Below is the detailed documentation for MIPS assembly.

http://pages.cs.wisc.edu/~larus/HP_AppA.pdf

4 MARS Basics

Download the sample MIPS assembly program from the course website:

https://mcs.utm.utoronto.ca/~258/files/sample.s

Load the file into MARS and then “Assemble” it (under the “Run” menu or on the toolbar).
You cannot run your code until it assembles correctly. To test this, add a few random characters to
the code in the “Edit” window, then try to assemble again. You will see an error message printed
in the “MARS Messages” window at the bottom of the screen.

Now, take a moment to familiarize yourself with the layout of MARS. Fix your code, and then
re-assemble it. You’ll be taken to an “Execute” series of windows.

• The top left window contains the text segment – the code in your assembly program. That
window provides you with the addresses of the various instructions, the machine-code value
that is stored at that address, the assembly equivalent, and finally the line of code in the
source file that generated that assembly instruction. You’ll see that some lines of source code
generate multiple lines of assembled code. In some cases, the original assembly instruction is
a pseudo-instruction. In other cases, extra operations are required because of the simulated
machine’s architecture (hardware).

• The middle left window (above the message window) contains a window into memory. Origi-
nally, it is set to the data segment – the constants defined in your assembly program. However,
the pulldown bar lets you select other segments including the heap or stack. Note that you
can also scroll through memory and select how the values are interpreted. ASCII mode is
particularly useful for checking strings.

• The pane on the right contains information about all of the registers in the machine. By
default, the registers in the processor or displayed. “Coproc 1” (co-processor 1) is the floating
point unit, and we will not use it in this course. “Coproc 2” supports the execution of
interrupts, which we will investigate in the last week of lab.

2

Now, step through the code line by line. You can also execute the entire program, if you just
wish to see the result, or step backward, if you wish to investigate a particular instruction more
carefully. Take a few moments to familiarize yourself with how MARS uses highlighting to indicate
the currently executing instruction and the registers that are being accessed.

As you are stepping through the program, you will stop at source line 22. That line of code
executes a syscall that requests user input. Look in the “MARS Messages” window, and you’ll see
that a previous syscall printed a prompt. If you enter an integer, as requested, you will be able to
continue execution.

Reset the simulator through the “Run” menu or by clicking on the “rewind” button in the
toolbar. Now, step through the program line by line and try to answer the questions embedded
in comments in the source file. (The questions are prefaced by the text “TODO”. If you run into
an instruction that doesn’t behave like you expect, make sure to ask your neighbor or the TA for
help.

5 Your First Programs

Write your first assembly program by modifying sample.s. You will create the two following
assembly program files, with filenames being “lab8a.s” and “lab8b.s”.

1. lab8a.s: Prompt the user for A and B, and output results A + 42 and B - A.

2. lab8b.s: Prompt the user for A, B and C and output A + B + C.

This should be pretty simple to do after you fully understand all the lines in sample.s. Show your
TA your working programs after each of them is done.

6 Lab Report

Include the following in your lab report named “lab8report.pdf”.

1. Your name and student number.

2. A screenshot of your MARS console showing that A + 42 and B - A are working correctly.

3. A screenshot of your MARS console showing that A + B + C is working correctly.

7 Summary of TODOs

Below is a short summary of the steps to be completed for this lab:

1. Before the lab, read through the handout and get familiar with the procedure.

2. In the lab, go through sample.s, finish the TODO parts in the code and ask the TA for any
questions you have.

3. Implement the first variation: A + 42 and B - A. Show it to your TA when working. Save
this program file as lab8a.s.

3

4. Implement the second variation: A + B + C. Show it to your TA when working. Save this
program file as lab8b.s.

5. Complete the lab report.

6. Submit lab8a.s, lab8b.s and lab8report.pdf to MarkUs before the deadline.

Evaluation (3 marks in total):

• 2 mark for the code and report for A + 42 and B - A

• 1 mark for the code and report for A + B + C

4

