
CSC258 Week 9

1

We are here

Assembly Language

Processors
Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors

2

Programming the processor

§ Things to learn:
ú Control unit signals to the datapath
ú Machine code instructions
ú Assembly language

instructions
ú Programming in

assembly language

3

Machine Code Instructions

4

Intro to Machine Code
§ Machine code are the 32-bit binary instructions which the

processor can understand (you can now understand, too)

§ All programs (C, Java, Python) are eventually translated into
machine code (by a compiler or interpreter).

§ While executing, the instructions of the program are loaded
into the instruction register one by one

§ For each instruction loaded, the Control Unit reads the
opcode and sets the signals to control the datapath, so that
the processor works as instructed.

5

Assembly language
§ Each line of assembly code corresponds to one line of

32-bit long machine code.

§ Basically, assembly is a user-friendly way to write
machine code.

§ Example: C = A + B

ú Store A in $t1, B in $t2, C in $t3

ú Assembly language instruction:

ú Machine code instruction:

add $t3, $t1, $t2

000000 01001 01010 01011 XXXXX 100000

Note: There is a 1-

to-1 mapping for

all assembly code

and machine code

instructions!

6

Why learn assembly?
§ You’ll understand how your program really works.

§ You’ll understand your program’s performance better by knowing its real “runtime”.

§ You’ll understand how control flows (if / else / for / while) are implemented.

§ You’ll understand why eliminating if statements makes your code faster.

§ You’ll understand why pointer is such a natural concept for programming.

§ You’ll understand the cost of making function calls.

§ You’ll understand why stack can overflow

§ You’ll understand there is no “recursion” in the hardware, and how it’s actually done.

§ You’ll understand why memory need to be managed.

§ You’ll understand why people spend so much time creating operating systems.

§ You’ll appreciate more the constructs in high-level programming languages.

§ And much more…

7

8

And, you’ll be able to read
this book.

Donald Knuth “The Art of
Computer Programming”

“All algorithms in this book
are written in assembly for
clarity.”

About register names

§ In machine code with have register 0 to register 31,
specified by 5 bits of the instruction.

§ In assembly we have names like $t1, $t2, $s1, $v0, etc.

§ What’s the relation between these two?

9

Machine code + registers
§ MIPS is register-to-register.

ú Every operation operates on data in registers.

§ MIPS provides 32 registers.
ú Several have special values (conventions):

 Register 0 ($zero): value 0 -- always.
 Register 1 ($at): reserved for the assembler.
 Registers 2-3 ($v0, $v1): return values
 Registers 4-7 ($a0-$a3): function arguments
 Registers 8-15, 24-25 ($t0-$t9): temporaries
 Registers 16-23 ($s0-$s7): saved temporaries
 Registers 28-31 ($gp, $sp, $fp, $ra): memory and function support
 Registers 26-27: reserved for OS kernel

ú Also three special registers (PC, HI, LO) that are not directly accessible.
 HI and LO are used in multiplication and division, and have special instructions for accessing them.

$v0, $t2, $a3,
etc are the
registers’
nicknames in
assembly

Technically
you can use
any register
for anything,
but this is the
convention

10

Translate assembly to machine code

§ When writing machine code instructions (or
interpreting them), we need to know which
register values to encode (or decode).

§ e.g.
add $t3, $t1, $t2

000000

000000 01001 01010 01011 XXXXX 100000

100000

01001 0101101010

11

Machine code details

§ Things to note about machine code:

ú R-type instructions have an opcode of 000000, with a
6-bit function listed at the end.

ú Although we specify “don’t care” bits as X values, the
assembly language interpreter always assigns them to
some value (like 0)

ú In exams, we want you to write X instead of 0, to show
that you know we don’t care those bits

12

Try this at home
Below is the content of an executable file “mystery.exe”,
what does this program do?

1000 1110 0000 1000 0101 1010 1111 0001
1000 1110 0010 1001 1101 0010 0011 0010
0000 0001 0000 1001 0101 0000 0010 0000
1000 1110 0100 1011 1111 0011 0011 0111
0000 0000 0000 1100 0011 0001 0000 0000
0000 0010 0110 1010 1010 0000 0010 0010
1010 1101 1101 0100 0000 1111 0101 1010

13

Then try this one

14

Now you can totally program an executable like this
(don’t even need a compiler).

15

Assembly Language Instructions

16

Assembly language
§ Assembly language is the

lowest-level language that
you’ll ever program in.

§ Many compilers translate
their high-level program
commands into assembly commands, which
are then converted into machine code and
used by the processor.

§ Note: There are multiple types of assembly
language, especially for different architectures!

17

Trivia

The thing that converts assembly code to
executable is NOT called a compiler.

It’s called an assembler, because there is
no fancy complication needed, it just
assembles the lines!

You should be able to write one easily
(e.g., for the processor created in Lab 7)

18

A little about MIPS

§ MIPS
ú Short for Microprocessor without Interlocked Pipeline Stages

 A type of RISC (Reduced Instruction Set Computer) architecture.

ú Provides a set of simple and fast instructions
 Compiler translates instructions into 32-bit instructions for instruction

memory.
 Complex instructions are built out of simple ones by the compiler and

assembler.

19

The layout of assembly code

20

Code sectioning syntax: example

.data
A: .space 400 # array of 100 integers
B: .space 400 # array of 100 integers

.text
main: add $t0, $zero, $zero # load “0” into $t0

addi $t1, $zero, 400 # load “400" into $t1
addi $t9, $zero, B # store address of B
addi $t8, $zero, A # store address of A

loop: add $t4, $t8, $t0 # $t4 = addr(A) + i
add $t3, $t9, $t0 # $t3 = addr(B) + i
lw $s4, 0($t3) # $s4 = B[i]
addi $t6, $s4, 1 # $t6 = B[i] + 1
sw $t6, 0($t4) # A[i] = $t6
addi $t0, $t0, 4 # $t0 = $t0++
bne $t0, $t1, loop # branch back if $t0<400

end:

21

Code sectioning syntax

§ .data
ú Indicates the start of the data declarations.

§ .text
ú Indicates the start of the program instructions.

§ main:
ú The initial line to run when executing the program.

§ You can create other labels as needed.

22

MIPS Instructions

§ Things to note about
MIPS instructions:
ú Instruction are written

as: <instr> <parameters>
ú Each instruction is written on its own line
ú All instructions are 32 bits (4 bytes) long
ú Instruction addresses are measured in bytes,

starting from the instruction at address 0.
§ The following tables show the most common

MIPS instructions, the syntax for their
parameters, and what operation they perform.

23

Arithmetic instructions
Instruction Opcode/Function Syntax Operation

add 100000 $d, $s, $t $d = $s + $t

addu 100001 $d, $s, $t $d = $s + $t

addi 001000 $t, $s, i $t = $s + SE(i)

addiu 001001 $t, $s, i $t = $s + SE(i)

div 011010 $s, $t lo = $s / $t; hi = $s % $t

divu 011011 $s, $t lo = $s / $t; hi = $s % $t

mult 011000 $s, $t hi:lo = $s * $t

multu 011001 $s, $t hi:lo = $s * $t

sub 100010 $d, $s, $t $d = $s - $t

subu 100011 $d, $s, $t $d = $s - $t

Note: “hi” and “lo” refer to the high and low bits referred to in the register slide.
“SE” = “sign extend”.

24

ALU instructions
§ Note that for ALU instruction, most are R-type instructions.

ú The six-digit codes in the tables are therefore the function codes
(opcodes are 000000).

ú Exceptions are the I-type instructions (addi, andi, ori, etc.)

§ Not all R-type instructions have an I-type equivalent.
ú RISC architectures dictate that an operation doesn’t need an

instruction if it can be performed through multiple existing operations.
ú Example: divi $t0, 42 can be done by
ú addi $t1, $zero, 42
ú div $t0 $t1

25

Logical instructions

Instruction Opcode/Function Syntax Operation

and 100100 $d, $s, $t $d = $s & $t

andi 001100 $t, $s, i $t = $s & ZE(i)

nor 100111 $d, $s, $t $d = ~($s | $t)

or 100101 $d, $s, $t $d = $s | $t

ori 001101 $t, $s, i $t = $s | ZE(i)

xor 100110 $d, $s, $t $d = $s ^ $t

xori 001110 $t, $s, i $t = $s ^ ZE(i)

Note: ZE = zero extend (pad upper bits with 0 value).

26

Shift instructions

Instruction Opcode/Function Syntax Operation

sll 000000 $d, $t, a $d = $t << a

sllv 000100 $d, $t, $s $d = $t << $s

sra 000011 $d, $t, a $d = $t >> a

srav 000111 $d, $t, $s $d = $t >> $s

srl 000010 $d, $t, a $d = $t >>> a

srlv 000110 $d, $t, $s $d = $t >>> $s

Note: srl = “shift right logical”, and sra = “shift right arithmetic”.
The “v” denotes a variable number of bits, specified by $s.

27

Logic shift vs Arithmetic shift

Left shift: same, fill empty spot (lower
bits) with zeros
(that’s why we have sll but no sla)

Right shift: different
• Logic shift fills empty spot(higher

bits) with zeros
• Arithmetic shift fills empty spot

(higher bits) with the MSB of the
original number.

Logic

Arithmetic
28

Data movement instructions

Instruction Opcode/Function Syntax Operation

mfhi 010000 $d $d = hi

mflo 010010 $d $d = lo

mthi 010001 $s hi = $s

mtlo 010011 $s lo = $s

§ These are instructions for operating on the HI and
LO registers described earlier.

29

Time for more
instructions!

30

Flow control:
Branch and loop

31

Control flow in assembly

§ Not all programs follow a linear set of instructions.
ú Some operations require the code to branch to one

section of code or another (if/else).
ú Some require the code to jump back and repeat a section

of code again (for/while).

§ For this, we have labels on the left-hand side that
indicate the points that the program flow might
need to jump to.
ú References to these points in the assembly code are

resolved at compile time to offset values for the program
counter.

32

Code sectioning syntax: example

.data
A: .space 400 # array of 100 integers
B: .space 400 # array of 100 integers

.text
main: add $t0, $zero, $zero # load “0” into $t0

addi $t1, $zero, 400 # load “400" into $t1
addi $t9, $zero, B # store address of B
addi $t8, $zero, A # store address of A

loop: add $t4, $t8, $t0 # $t4 = addr(A) + i
add $t3, $t9, $t0 # $t3 = addr(B) + i
lw $s4, 0($t3) # $s4 = B[i]
addi $t6, $s4, 1 # $t6 = B[i] + 1
sw $t6, 0($t4) # A[i] = $t6
addi $t0, $t0, 4 # $t0 = $t0++
bne $t0, $t1, loop # branch back if $t0<400

end:

33

Branch instructions

Instruction Opcode/Function Syntax Operation

beq 000100 $s, $t, label if ($s == $t) pc += i << 2

bgtz 000111 $s, label if ($s > 0) pc += i << 2

blez 000110 $s, label if ($s <= 0) pc += i << 2

bne 000101 $s, $t, label if ($s != $t) pc += i << 2

§ Branch operations are key when implementing if statements
and while loops.

§ The labels are memory locations, assigned to each label at
compile time.
ú Note: i is calculated as (label - (current PC + 4)) >> 2

34

Comparison instructions

Instruction Opcode/Function Syntax Operation

slt 101010 $d, $s, $t $d = ($s < $t)

sltu 101001 $d, $s, $t $d = ($s < $t)

slti 001010 $t, $s, i $t = ($s < SE(i))

sltiu 001001 $t, $s, i $t = ($s < SE(i))

Note: Comparison operation stores a one in the destination register if the
less-than comparison is true, and stores a zero in that location
otherwise.

35

Note: Real vs Pseudo instructions

What we list in the slides are all real instructions, i.e., each one has an
opcode corresponding to it.

There are some pseudo-instructions, which don’t have their own
opcode, but is implemented using real instructions; they are
provided for coding convenience.

For example:
§ bge $t0,$t1,Label is actually
§ slt $t2,$t0,$t1; beq $t2,$zero,Label

36

Jump instructions

Instruction Opcode/Function Syntax Operation

j 000010 label pc += i << 2

jal 000011 label $31 = pc; pc += i << 2

jalr 001001 $s $31 = pc; pc = $s

jr 001000 $s pc = $s

§ jal = “jump and link”.
ú Register $31 (aka $ra) stores the address that’s used when

returning from a subroutine.

§ Note: jr and jalr are not j-type instructions.

37

If/Else statements in MIPS

§ Strategy for if/else statements:
ú Test condition, and jump to if logic block

whenever condition is true.
ú Otherwise, perform else logic block, and jump to

first line after if logic block.

§ A flowchart can be helpful here

if (i == j)
i++;

else
j--;

j += i;

38

if (i == j)
i++;

else
j--;

j += i;

i=j

if
block

else
block

end

true
false

If statement

jump

Only problem: branch instructions
jump on TRUE instead of FALSE, so

negate the checked condition to i != j

39

if (i == j)
i++;

else
j--;

j += i;

i!=j

if
block

else
block

end

false
true

$t1 = i, $t2 = j
main: bne $t1, $t2, ELSE

addi $t1, $t1, 1
j END

ELSE: addi $t2, $t2, -1
END: add $t2, $t2, $t1

If statement flowcharts

jump

40

Translated if/else statements

§ If we change BNE to BEQ, then we also need
to swap the IF and ELSE blocks

$t1 = i, $t2 = j
main: beq $t1, $t2, IF # branch if (i == j)

addi $t2, $t2, -1 # j--
j END # jump over IF

IF: addi $t1, $t1, 1 # i++
END: add $t2, $t2, $t1 # j += i

$t1 = i, $t2 = j
main: bne $t1, $t2, ELSE # branch if ! (i == j)

addi $t1, $t1, 1 # i++
j END # jump over ELSE

ELSE: addi $t2, $t2, -1 # j--
END: add $t2, $t2, $t1 # j += i

41

Multiple if conditions

if (i == j || i == k)
i++ ; // if-body

else
j-- ; // else-body

j = i + k ;

if
block

i=j

i=k

else
block

end

false true

true
false

Branch on FALSE!

42

Multiple if conditions

if (i == j || i == k)
i++ ; // if-body

else
j-- ; // else-body

j = i + k ;

if
block

i=j

i!=k

else
block

end

false true

false
true

$t1 = i, $t2 = j, $t3 = k
main: beq $t1, $t2, IF

bne $t1, $t3, ELSE
IF: addi $t1, $t1, 1

j END
ELSE: addi $t2, $t2, -1
END: add $t2, $t1, $t3

43

Loops

44

Loops in MIPS (while loop)
§ Example of a simple loop, in assembly:

§ …which is the same as saying (in C):

$t0 = i, $t1 = n
main: add $t0, $zero, $zero # i = 0

addi $t1, $zero, 100 # n = 100
START: beq $t0, $t1, END # if i == n, END

addi $t0, $t0, 1 # i++
j START

END:

while (i != 100) {
i++;

}

45

For loop

§ For loops (such as above) are usually
implemented with the following structure:

for (<init> ; <cond> ; <update>) {
<for body>

}

main: <init>
START: if (!<cond>) branch to END

<for-body>
UPDATE: <update>

jump to START
END:

46

Exercise:

$t0 = i, $t1 = j
main: add $t1, $zero, $zero # set j = 0

add $t0, $zero, $zero # set i = 0
addi $t9, $zero, 100 # set $t9 to 100

START: beq $t0, $t9, EXIT # branch if i==100
add $t1, $t1, $t0 # j = j + i

UPDATE: addi $t0, $t0, 1 # i++
j START

EXIT:

j = 0
for (_____ ; _____ ; _____)
{

j = j + i;
}

47

Answer

§ This translates to:

§ while loops are the same, without the
initialization and update sections.

j = 0
for (i=0 ; i!=100 ; i++)
{

j = j + i;
}

$t0 = i, $t1 = j
main: add $t1, $zero, $zero # set j = 0

add $t0, $zero, $zero # set i = 0
addi $t9, $zero, 100 # set $t9 to 100

START: beq $t0, $t9, EXIT # branch if i==100
add $t1, $t1, $t0 # j = j + i

UPDATE: addi $t0, $t0, 1 # i++
j START

EXIT:

48

Another exercise
§ Fibonacci sequence:

ú How would you convert this into assembly?

int fib(void) {
int n = 10;
int f1 = 1, f2 = -1;

while (n != 0) {
f1 = f1 + f2;
f2 = f1 – f2;
n = n – 1;

}
return f1;

}

49

Assembly code example
§ Fibonacci sequence in assembly code:

fib.asm
register usage: $t3=n, $t4=f1, $t5=f2
RES refers to memory address of result
FIB: addi $t3, $zero, 10 # initialize n=10

addi $t4, $zero, 1 # initialize f1=1
addi $t5, $zero, -1 # initialize f2=-1

LOOP: beq $t3, $zero, END # done loop if n==0
add $t4, $t4, $t5 # f1 = f1 + f2
sub $t5, $t4, $t5 # f2 = f1 - f2
addi $t3, $t3, -1 # n = n – 1
j LOOP # repeat until done

END: sb $t4, RES # store result

50

int fib(void) {
int n = 10;
int f1 = 1, f2 = -1;

while (n != 0) {
f1 = f1 + f2;
f2 = f1 – f2;
n = n – 1;

}
return f1;

}

Making an assembly program

§ Assembly language programs typically have
structure similar to simple Python or C
programs:
ú They set aside registers to store data.
ú They have sections of instructions that manipulate

this data.

§ It is always good to decide at the beginning
which registers will be used for what purpose!
ú More on this later J

51

