CSC258 Week 8



The Blueprint of

a microprocessor

/FFC CWriteCon
PCWrite

The Controller Thing

0 Instruction [ >
Address [25-21]
—>| 1 Instruction
Memory [20-16]
data

Instruction | ¢

v

1

Write
reg

WS
data

ead ,|
Read reg Eata A

—|

i

d_,l
stap B

11l
\wmn—-o

W) Write -
data [15-0]
Instructi
Memor on .
Yy Register
Memory

ata
register

extdhd

The Storage Thing

— TorD
MemRead biosocn
MemWritg Wr'ct
ri
MemtoRe Rqu " =
egDs
IRWritel O] code 9
kd
—
»| O
1
JShift left B! 2
— 1
I[lb[rU(.[IOl:ll
31-2
(@] S?n:r‘l rng > P
o

LU
ut

The Arithmetic Thing




The “Controller Thing”

aka: the Control Unit




The Control Unit controls how data flows
in the datapath.

Different executions have different flows.



Processor Datapath

= The datapath of a processor is a description/
illustration of how the data flows between

processor components during the execution of an
operation.



Note: this is just

Datapath example " onavcion®

v
= The simplified I Address (PC) I

datapath for v
most processor r——— : EI:I
operations has Memory ‘ >{ Instruction | 4
S’F]ages as ) J VVIvvvvevy |
>hown in the I Sign ext. I ‘ Register File ‘
diagram: |

Instruction v \Lw

fetch Mux Mux

Instruction

decode &

register fetch ALU

Address/data ¥

calculation ‘ Data Mux

Memory Memory

access

Write back. Mux




What happens when you run an
executable on your computer?

"./a.out”, "Is”, "amongus.exe”, ...

. The OS loads a bunch of instructions into
the memory at certain location.

. CPU finds that location and executes the
instructions stored there one by one.



What does an instruction look like?

‘ 00000000 00000001 00111000 00100011 ‘

It's a 32-bit (4-byte) binary string.



How do we remember the location of
the current instruction?

= The program counter (PC) is a special register
that stores the location of the current
Instruction.

Each instruction is 4 bytes long, thus we do +4 to
increments the current PC location.

PC values can also be loaded from the result of an
ALU operation (e.g. jumps to a memory address).



So, here is the instruction. Do it!

‘ 00000000 00000001 00111000 00100011 ‘

nat does the instruction mean?
nat operations do 1 do?
nere do | get the inputs and put the output?

===

We need to decode the instruction.



Instruction decoding

= The instructions themselves can be broken
down into sections that contain all the

information needed to execute the operation.

Also known as a control word.

= Example: unsigned subtraction

‘ 00000000 00000001 00111000 00100011 ‘

‘ 000000ss sssttttt ddddde66—-L6100011 ‘

‘ Register 7 = Register 0 - Register 1 ‘

11



Instruction registers

= The instruction register takes in the 32-bit
instruction fetched from memory, and reads
the first 6 bits (known as the opcode) to
determine what operation to perform.

‘ 00000000 00000001 00111000 00100011 ‘

‘l/_l

Instruction register

1
Y Y

‘ 000000 ‘ ‘ 00 00000001 00111000 00100011 ‘

‘ 00000 ‘ ‘ 00001 ‘ ‘ 00111 ‘ ‘ 100011 ‘




Opcodes

= The first six digits
of the instruction
(the opcode) will
determine the
Instruction type.
Except for "R-type”

Instructions
(marked in yellow)

For these, opcode
iS000000, and last
six digits denote
the function.

o

(Instruction Op/Func Instruction OpIFua
add 100000 srav 000111
addu 100001 srl 000010
addi 001000 srlv 000110
addiu 001001 beg 000100
div 011010 bgtz 000111
divu 011011 blez 000110
mult 011000 bne 000101
multu 011001
sub 100010
subu 100011 Jalr 001001
and 100100 Jr 001000
andi 001100 1b 100000
nor 100111 lbu 100100
or 100101 1h 100001
ori 001101 lhu 100101
XOr 100110 1w 100011
XOori 001110 sb 101000
sll 000000 sh 101001
sllv 000100 SW 101011

000011 mflo

0100%8/

13



MIPS instruction types

= R-type:
‘ opcode ‘ rs ‘ rt ‘ rd ‘ shamt‘ funct ‘
< 5 > i > i > i > i > < 5 >
= |-type:
‘ opcode ‘ rs ‘ rt ‘ immediate ‘
< : >< i >< i >< v >
= J-type:
‘ opcode ‘ address ‘
< : >< —c >

Read the first 6 bits first, then you know how to break it down.

14



R-type instructions

‘opcode‘ rs ‘ rt ‘ rd ‘shamt‘ funct ‘

pd >~ 2 S 2 S 2 >~ 2 > 2 ~
~ 7 N 7 N 7 N 7 N 7 N 7

6 5 5 5 5 6

= Short for “register-type” instructions.
Because they operate on the registers, naturally.
* These instructions have fields for specifying up to
three registers and a shift amount.

Three registers: two source registers (rs & rt) and one
destination register (rd).

A field is usually coded with all 0 bits when not being used.

* The opcode for all R-type instructions is 000000.

» The function field specifies the type of operation
being performed (add, sub, and, etc).

15



Examples ‘opcode‘ rs ‘ rt ‘ rd ‘shamt‘ funct ‘

pd > & P4 4 > & > & N
7 N 7 N 7 N 7 N 7 N 7

6 5 5 5 5 6

‘ 00000000 1101000100101 000 00100110 ‘

R-type! Reg6! Regiz! Regs! XOR!

|Reg_5 = Reg_6 XOR Reg_17

‘ 00000000 11010001}00101pP11 O0OOOOOO

R-type! Reg17! Reg5! 15 bits! ghift left (SLL)!

Left shift what’s in Reg 17 by 12 bits
and store result in Reg 5




R-type instruction datapath

For the most
part, the funct
field tells the
ALU what
operation to
perform.

rsand rt are
sent to the
register file, to
specify the ALU
operands.

rd is also sent
to the register
file, to specify
the location of
the result.

v
I Address (PC) I
; o]
Instruction -
Memory I—-—>| Instruction I +4
v EXEXXEXXXR’
ISign ext.I ‘ Register File ‘
|
3 v 4V
Mux Mux
ALU
' \4
Mux

2
Data
Memory

Mux

17



I-type instructions

‘opcode‘ rs ‘ rt ‘ immediate

| 4 Se——

pd >~ 2 S 2 S 2
~ 7 N 7 N 7 N

6 5 5 16

» These instructions have a 16-bit immediate field.

= This field a constant value, which is used for:
an immediate operand,
a branch target offset (e.g., in branch if equal op), or
an offset for a memory operand (e.g., in load op).



I-type instructions

‘opcode‘ rs ‘ rt ‘ immediate

v

pd >~ 2 S 2 S 2
~ 7 N 7 N 7 N

6 5 5 16

= For branch target offset operations, the immediate field
contains the signed difference between the current address
stored in the PC and the address of the target instruction.

This offset is stored with the two low order bits dropped. The
dropped bits are always 0 since instructions are word-aligned.



Word-aligned o o 8 iz [s6 ]

Every instruction is 4-byte (2 word) long,

so the starting address of each instruction is always a multiple of 4,
like

RCLL)

4 (0100)

8 (1000)

12 (1100)

444 (110111100)

Note that the two lowest bits are always 00.
Since we know they are always 00, we don’t need to use two bits to remember them.

20



Examp|es ‘opcode‘ rs ‘ rt ‘ immediate

\/_

pd S 2 >~ 2 S 2
~ 7 N 7 N 7 N

6 5 5 16

‘ 00010000 11010001 00000000 00100110 ‘

Branchonequal Reg6! Rega7! Offset = 10011000 = 152
(BEQ)
If Reg 6 == Reg 17:
PC += 152
Else:
PC += 4




Examp|es ‘ opcode ‘ rs ‘ rt ‘ immediate ‘
) 6 A 5 5 A 16 i
‘ 10000000 1110001 00000000 00100110 ‘
Load byte! Reg6! Regaiy! Offset = 100110 = 38
(LB)

Load one byte from MEM[Reg 6+38] to Reg 17




I-type instruction datapath

y
I Address (PC) I
= Example #1: 7
immediate | "amection L[ nstruction | |f:|+4
arithmetic J YVVVVIvyy |
operations, [Signext.] | RegisterFile |
" |
with result 3 v ¥
stored in ey \hdex
registers.
ALU
¥ v
Data Mux
Memory

NMUX;




Interlude: Sign extension

Sign ext.

The immediately value we get from an I-type instruction is 16-

bit long.

But all operands of ALU are supposed to be 32-bit long.
So fill the upper 16 bits of the number with the sign-bit

E.g., 11001000 1000 1000 becomes
1111 1111 1111 1111 1100 1000 1000 1000




I-type instruction datapath

¥
I Address (PC) I
= Example #2: 7
Immediate Instruction |—[ instruction | |f:|+4
arithmetic J VIV Ivvy |
operations, [Signext.] | RegisterFile |
' |
with result 3 ¢ ¥
stored in Ay e
memory.
ALU
¥ A4
Data Mux
Memory

gMux?




I-type instruction datapath

. 4
I Address (PC) I
= Example #3: .
Branch In&g:gi;“ I—-—>| Instruction I | +4 I
Instructions. 7 A AAARRE VA
Output is ISign ext.I ‘ Register File ‘
written to — v— V¥
PC, which Mux Mux
looks to that
location for ALU
the next v v
instruction. l‘ M'Z;tgry Mux
s Mux i




J-type 1nstructions

‘ opcode ‘ address

pd
~

\ 4

> 2
7 N

6 26

= Only two J-type instructions:
jump (3)
jump and link (7a1)
= These instructions use the 26-bit coded address field to
specify the target of the jump.

The first four bits of the destination address are the same as the
current bits in the program counter.

The bits in positions 27 to 2 in the address are the 26 bits
provided in the instruction.

The bits at positions 1 and 0 are always 0 since instructions are
word-aligned.

27



Examp|es ‘ opcode ‘ address ‘

pd > 2
~ 7 N

6 26

A

‘ 00001000 11010001 00000000 00100110 ‘

Jump (J) destination address= {PC[31:28], whats-above, 00}

PC jumps to address
{PC[31:28] (4 bits), what’s above (26 bits), 00 (2 bits)}
(32 bits total)

28



J-type instruction datapath

v
Address (PC

Jump and | e I
branch use the —"1—— _ EI:I
datapath in Memory |‘ >{ Instruction | i
similar but J YYVVVIvyy |
different ways: [ sign ext. | ‘ Register File ‘

Branch |

calculates new v v ¥

PC value as old Mux Mux

PC value +

offset. (relative)

Jump loads an AL

immediate D:ta =

value over top ‘ M Mux

of the old PC Y

value.

(absolute) Mux




Takeaway

Different instructions flow in
different datapaths.

In other words, if we can control the
paths of flow, then we can control
what instruction to execute.



Discussion Question

= Why do we not have an instruction with two immediate
values?



Datapath control



Datapath control

= These instructions are executed by turning
various parts of the datapath on and off, to
direct the flow of data from the correct
source to the correct destination.

= What tells the
processor to turn
on these various
components at
the correct times?

33



Control unit

PCWriteCond N\

PCSource

= The control unit takes

PCWrite

ALUOp

TorD

ALUSrcB

in the opcode from the

MemRead ContrOl

ALUSrcA

current instruction, and

MemWrite LJnit

RegWrite

vV V V V V V

MemtoReg

RegDst

N NN AN N AN A

sends signals to the rest ,
of the processor. \ J

Opcode

= Within the control unitis a
finite state machine that can occupy multiple
clock cycles for a single instruction.

The control unit send out different signals on each
clock cycle, to make the overall operation happen.

34



* The control unit sends signals (green lines) to various
processor components to enact all possible operations.

PC

Address

Memo
da{}a/

Write
Pl data

Instruction
[31-26

Instruction
25-21

Instruction
[20-16]

Instruction
[15-0]

Shift left 2 T

1 *I Registers ] T

Memory |

Instruction
Register

Memo
da_tary
register

.| Readreg1
ead A
Readreg2 datal l| I

Write reg §e€d
ata2
4

l—‘{-l
He

Write data

exigny _.E Shift left 2

A
\wwr—lo

35



Sighals > instructions

= A certain combination of signals will make
data flow from some source to some
destination.

Just need to figure out what signals produce
what behaviour.

36



Control unit signals

= PCWrite: Write the ALU output to the PC.

* PCWriteCond: Write the ALU output to the PC,
only if the Zero condition has been met.

* TorD: For memory access; short for “Instruction or
Data”. Signals whether the memory address is being
provided by the PC (for instructions) or an ALU
operation (for data).

» MemRead: The processor is reading from memory.
» MemWrite:The processor is writing to memory.

= MemToRegqg: The register file is receiving data from
memory, not from the ALU output.

* TRWrite:Theinstruction registeris being filled
with a new instruction from memory.

37



More control unit signals

PCSource: Signals whether the value of the PC
resulting from an jump, or an ALU operation.

ALUOp (3 wires): Signals the execution of an ALU
operation.

ALUSrcA: Input A into the ALU is coming from the PC
(value=0) or the register file (value=1).

ALUSrcB (2 wires): Input B into the ALU is coming from
the register file (value=0), a constant value of 4
(value=1), the instruction register (value=2), or the
shifted instruction register (value=3).

RegWrite: The processor is writing to the register file.
RegDst: Which part of the instruction is providing the
destination address for a register write (rt versus rd).

38



Example instruction

= addi $t7, $tO,

° PCWrite = 0

© PCWriteCond = 0
= IorD = X

° MemWrite = 0

= MemRead = 0

= MemToReg = 0

= TRWrite = 0

T
L%

e
.
DI

| —

PCSource = X
ALUOp = 001 (add)
ALUSrcA =1
ALUSrcB = 10
RegWrite = 1
RegDst = 0

Setting these signals will result in adding register $t0 by 42

and storing result in register $t7

Q'

t—‘:;

39



» addi $t7, $t0, 42

This is a line of

assembly language

40



Controlling the Datapath




MIPS Datapath

PCWriteCond,
- Control | | pcsource
PCWrite Unit
\ \ ALUOp
IorD
ALUSrcB
MemRead
MemWrite BolSron
RegWrite
MemtoReg
X RegDst
IRWrite Opcode m
e
<[
{1
ok —s ;
Instruction ‘Registers I
[31-26] ]
) o Instruction > Read
o Address [25-21] regr Read
—>| 1 Instruction P >l Read dataa
Memory . [20-16] v reg 2
data > ) 9 P ALU
X Instruction L@ o q Out B
Write [15-0] Write Read o
data 1 reg data 2
Instruction Write
Memory I Register data
o]
Memory 1
dat3 Sign
register | M extand Shift left 2

= So, how do we do the following?
Increment the PC to the next instruction position.
Store $t1 + 12 into the PC.

Assuming that register $t3 is storing a valid memory address,
fetch the data from that location in memory and store it in $ts.



Controlling the signals

PCWriteCond

» Need to understand the

PCWrite

role of each signal, and

TorD

MemRead

what value they need to

MemWrite

MemtoReg

have in order to perform

NN N AN N AN A

IRWrite

the given operation.

= So, what's the best approach
to make this happen?

Control
Unit

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWirite

RegDst

Y V V V VvV V

Opcode

43



Basic approach to datapath

1. Figure out the data source(s) and destination.

2. Determine the path of the data.

3. Deduce the signal values that cause this path:

Start with Read & Write signals (at most one
can be high at a time).

Then, mux signals along the data path.
Non-essential signals get an X value.

4t



Example #1: Incrementing PC
/.JGCCH | T

X 5
LUSr
eeeeee d
- ALUSrcA
ite
egWrit
€9
RegD

Instruction

egisters
[31-26] _
Instruction »pJ Rea
[25-21] regi
Instruction P ea
y [20-16; ] re
d tion L @ J~ é}g B
\éVrlte [15-0] =Y U
Instruction rite
Memory I Register ata
_,\|
Memory
data |
register | >

= Given the datapath above, what signals would
the control unit turn on and off to increment
the program counter by 47

45



Example #1: Incrementing PC

AAAAAAA
AAAAAAA

eeeeeeee

RRRRRR

PC }
w
S Z
= o
® o

a

MMMMM

N
ALU
out [T

= Step #1: Determine data source and destination.

Program counter provides source,
Program counter is also destination.



Example #1: Incrementing PC

PCWriteCond
—— | Control [ § pcsource
PCWrite Unit
ALUOp
S~ IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrit
MemtoReg
- RegDst
IRWrite Opcode B

Instruction egisters
[31-26] _J
Instruction pf Rea
[25-21]
Ny Instruction 9
-16.
@ | t[zot'l] -
nnnnnnnn & o
‘éV [15-0] ma
Instruction rite
Memory Register ata
o

Memory
data |
register | M oxt

= Step #2: Determine path for data
Operand A for ALU: Program counter
Operand B for ALU: Literal value 4
Destination path: Through mux, back to PC

47



Example #1: Incrementing PC

ALUOp
IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrite
MemtoReg
- RegDst
IRWrite —

Opcode
st

o
1
hift left 2 l 4 2

— [t
Instruction ‘ Registers
[32-26] _
@] o Instruction »] Read
o X Address | [25-21] regi ﬁead
nstruction Py >l Read ata1
Memory L [20-16] > reg 2 R
data g Instruction N ALU )
Write [15-0] B ° —p Write Read Out
ki 1 reg data2
Instruction Write
Memory I Register data
-1
Mgmow 1 —J
ata .
i —" Sign .
R | M extand Shift left 2

= Setting signals for this datapath:

Read & Write signals:
PCWriteis high, all others are low.



Example #1: Incrementing PC

PCWriteCond
- Control | | pcsource
PCWrite Unit
N\ ALUOp
IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrite
MemtoReg
- RegDst
IRWrite Opcode 7

o
| IR 1 )
I 15Mﬁhﬂzl T 2
Ins t[ uction fon ‘Registers I L
31- —
U o Instructio »] Read
o Address [25- 21] LCHEE Read >
1 Instruct| ® »J Read data1
Memory > [20-26] "freq2
data —— ~ P ALU B d
N nstruction
Write [15-0] B ° —p Write Read Out
data reg data 2
Instruction Write
Memory | Register r data

Memory
data Si
register —» v Shift left 2

= Setting signals for this datapath:

Mux signals:
PCSourceis 0, A1USrcAis 0, ALUSrcBIis 1
all others are “don’t cares”.

49



Example #1: Incrementing PC

PCWriteCond
: Control [} pcsource
PCWrite Unit
ALUOp
S~ IorD
LUS
eeeeee d
—4% = B ALUSrcA
ite
egWrit
e
J RegD
e -
Opcode

Instruction

Instruction

Instruction

—>
re:
™ Instruction rite
emory I Register r ata

Memory
data |
register | M oxt

= QOther signals for this datapath:
ALUOpis 001 (Cin=0,51=0,50=1:A+B)
PCWriteCondisXwhen PCWriteis1
Otherwise it is 1 except when branching.

50



Example

" PCWrite=1

1 (final signals)

= PCSource=0

" PCWriteCond=X = ALUOp =001

"= JorD=X

" MemRead=0
= MemWrite =
" MemToReqg =
= TRWrite=0

= ALUSrcA=0

= ALUSrcB=01
0 "= RegWrite=0
X " RegDst =X

51



add $r7, $r1, $r2

Another example

AAAAAAA
AAAAAAA

eeeeeeee

RRRRRR

'Y
ALU
out [T

= Given the datapath above, what signals would
the control unit turn on and off in order to add
Srlto Sr2 and storetheresultin Sr7?



PCWriteCond
PCWrite

add $r7, $r1, $r2

|Control |
Unit PCSource

ALUOp
IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrite
MemtoReg
X RegDst
IRWrite Opcode m
[
<)
— » 1
| Shift left 2 ) T 2
Instruction ‘Registers I
[32-26] _
@] o Instruction »] Read A
e Address [25-21] regi Read A
1 Instruction P »l Read data1
Memory L [20-16] 14 reg 2
data N instructi - e Pl ALY o
N nstruction
Write [15-0] B © L—pJ Write Read Ot
data A reg data2 B
Instruction N Write
Memory I Register data
—
o1 |
Memory 1
data Sign
R | M extand Shift left 2

= Step #1: Data source and destination

Data starts in register block.

Data goes to register block.

53



Question #1 (cont'd)

add $r7, $r1, $r2

»| ALU
Out B

= Step #2: Determine the path of the data
Data needs to go through the ALU before heading

back into the register file.

54



Question #1 (cont'd) add sr7, $r1, $r2

PCWriteCond
—— | Control
PCWrite Unit
[}

PCSource
N\ ALUO
IorD
ALUSrcB
eeeeee d
ALUSrcA
MemWrite
RegWrit
MemtoReg
RegDst
IRWrit Opcode J|
—
P o
1
| Shift left I 2
Instruction ‘Registers |
[31-26] ] S~
Instruction »{ Read —P»|o
[25-21] regi Read »
Instruction Py Read dataa A v 1/
Mergory [20-16] reg
ata : — ALU
) Instruction Py o . , out [
Write [15-0] L Write Read N
data reg data 2 B =< o
. 1
Instruction Write >l >
Memory Regist data 4 3
Memory J
data .
" —J Sign I;i ! I
register | M extand Shift left 2

= Step #3a: Read & Write signals
Only RegWrite needs to be high.

PCWrite, PCWriteCond, MemRead, MemiWrite,
IRWrite would be low.




Question #1 (cont'd) add sr7, $r1, $r2

PCWriteCond
——— | Control [} pcsource
PCWrite Unit
\ \ ALUOpP
IorD
ALUSrcB
eeeeee d
ALUSrcA
MemWrite
RegWrit
MemtoReg
- RegDst
IRWrit opcode J
e
P o
NE
2
Instruction ‘Registers |
[31-26] —
Instruction P> Read
[25-21] regi
Instruction P Read
M rg ry [20-26] reg
Instruction | g ) o R
Write [15-0] p ° —pJ Writ O
d 9
Instruction Write
Memory Register r data
=0 ]
Memory
data .
! —J Sign
register | ¥ extend

= Step #3b: Relevant mux signals

Muxes before ALU: ALUSrcA =2 1, ALUSrcB =2 00.
ALUOp =2 001 (Add)

Mux before registers: MemToReg =2 0




Question #1 (cont'd) add sr7, $r1, $r2

PCWriteCond
—— | Control | § pcsource
PCWrite Unit
A \ ALUOpP
IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrite
MemtoReg
- RegDst
IRWrite Opcode m
e
P o
NE
J1 Shift left 2 II T 2
Instruction ‘Registers |
[32-26] ] S~
U o Instruction »] Read 171°
o Address [25-21] =gt Read >
—»| 1 Instruction ° »] Read dataz A 4 1/
Memory IS [20-26] reg 2 >
data » : — »| ALU
) Instruction | @ o . , out [
Write [15-0] L Write Read N
data a reg data 2 B o
. 1
Instruction Write 2
Memory | Register data 3
L—

=
|

mil
Mzmory 1
ata .
register > i | 1 shift left 2

= Step #3c: Irrelevant mux signals

No writing to PC: PCSource =2 X.
No reading from memory: TorD =2 X.




Question #1 (cont’d)

" PCWrite=0

"= PCWriteCond=0
= JorD=X

= MemRead =0

= MemWrite=0

= MemToReg=0

" TRWrite=0

= PCSource=X

= ALUOp =001

ALUSrcA=1
ALUSrcB=00
" RegWrite=1
= RegDst=1

-

\_

~

high for 3-register operations
low for 2-register operations
X if not using register file

Note: RegDst rule

J

58



The Tale of “Hello world”

1.

You, the programmer, write a piece of code called
hello.c/java/whatever

. You compile the code, which translate the code into

machine instructions and save the in an executable file
(e.g., hello, hello.exe)

. You run the executable, OS load the executable (the

instructions) into memory, set PC.

. CPU loads the instruction pointed by PCinto instruction

register.

. Control Unit checks the opcode (first 6 bits), decode the

rest of the instruction and send signals to setup the
datapath (billions of MOSFETSs switching ON/OFF).

. Data flow through the datapath, electrons move around...
. And BOOM!, “hello world” shows up on your screen

59



The Tale of “Hello world”

TRUE STORY




