
CSC258 Week 7

1

Recap: We are here

Assembly Language

Processors
Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors

2

Storage
Thing

Arithmetic
Thing

Controller
Thing

3

Next

Read reg
1
Read reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Register
s

ALU
result

ZeroA

B AL
U

0
1

0
1
2
3

4

A

B

Instruction
[31-26]

Instructi
on
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0
1Memory

data
register

Memory
data

Memor
y

Address

Write
data

ALU
Out

0
1
2Shift left 2

0
1

PC

PCWriteCond
PCWrite

IorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

Opcode

Contr
ol

Unit

Shift left 2Sign
extend

The Blueprint of
a microprocessor

The Arithmetic ThingThe Storage Thing

The Controller Thing

4

We’ve learned the arithmetic thing

ALU

A B

G

Cin,S VCNZ

With ALU, we can do
addition, subtraction, logic
operations, etc.

5

So this is the ALU

So where do A and B come from?

6

A B

G

Cin,S VCNZ

aka: the register file and main memory

The “Storage Thing”

7

Computer memory hierarchy

Sorted by data access speed

• Registers: in the processor

• Cache: several levels, the closest is next to

the processor

• Memory: off-chip

• Hard disk: for virtualization; requires OS

support to access

• Network: not for process execution …
8

Memory and registers

§ There are units in the CPU that store multiple data values
for use by the CPU:

ú Registers: Small number of fast memory units that allow
multiple values to be read and written simultaneously.

ú Main memory: Larger grid of memory cells that are used to
store the main information to be processed by the CPU.

9

Registers are in here

Memory is in here

10

Registers are in here
in the CPU

Memory chips are
plugged in here

11

12

13

Register file

An array of registers in the CPU

14

Register File Functionality

Register
File

Register 0

Register 1

Register 2

Register 2n

…

…

Destination Reg.
(n-bit address)

Read/Write

Data to write

Register A
(n-bit address)

Register B
(n-bit address)

Value from
Reg. A

Value from
Reg. BRegister File

Typical setup (MIPS):
• Each register is 32-bit
• There are 32 registers.
• 5-bit address

15

Register File – Write Operation

0
1
2
3

0
1
2
3

A

B

B select

A select

R0

R1

R2

R3
Load

Load

Load

Load

Decoder
0 1 2 3

Load Enable

Data

D address

16

Register File – Read Operation

0
1
2
3

0
1
2
3

A

B

B select

A select

R0

R1

R2

R3
Load

Load

Load

Load

Decoder
0 1 2 3

Load Enable

Data

D address

17

The main memory

An array of memory units

18

Electronic Memory

§ Like register files, main memory is made up
of a decoder and rows of memory units.

Row 0

Row 1

Row 2

Row 3

...

Row 2m-1

D
e
c
o
d
e
r

mAddress
Lines

...

Data
Lines

D0 D1 D2 Dn-1These lines are used for both
input and output (called a bus)

19

One-hot decoder

A2 A1 A0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

… …
1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

§ The decoder takes in the m-bit binary address and
activates a single row in the memory array.

20

Controlling the flow

§ Since some lines (buses) will now
be used for both input and output,
we use a tri-state buffer
(remember them from the mux
example?)

§ When WE (write enable) signal is
low, buffer output is a high
impedance signal (connected to
neither high voltage or ground).

WE A Y

0 X Z

1 0 0

1 1 1

WE

A Y

21

WE = 1

WE

A Y

A Y

WE = 0

A Y

WE A Y

0 X Z

1 0 0

1 1 1

22

Control the flow using tri-state buffer

Control c0, c1 and c2 so
that only one of the devices
output is written to the bus.

In general, the bus can be
read by multiple devices at
the same but can only be
written by one device at a
time.

23

Data Bus

§ Communication between
components takes place through
groups of wires called a bus (or data
bus).

ú Multiple components can read from a
bus, but only one can write to a bus at a
time.

ú Each component has a tri-state buffer
that feeds into the bus. When not
reading or writing, the tri-state buffer
drives high impedance onto the bus.

24

Storage cells
§ For storing a single bit
§ Each row is made of an array of storage cells.
§ Multiple ways of representing these cells.

ú e.g. RAM cell (basically a gated latch)

Select

B

RAM cell

C

C

B

S

R

Q

Q

25

SRAM (Static Random Access Memory) Interface

Chip Enable’
(CE’)

Read/Write’ Output Enable’
(OE’)

Access Type

0 0 X SRAM Write

0 1 0 SRAM Read

1 X X SRAM not enabled

SRAM

Address
(n-bit) Data

(m-bit)
CE’

Read/Write’
OE’

26

Memory vs registers

§ Memory houses most of the data values being used by a
program.

§ Registers are more local data stores, meant to be used to
execute an instruction.

ú Registers are not meant to host memory between instructions (like
scrap paper for a calculation).

ú Exception is the stack pointer register, which is sometimes in the
same register file as the others.

27

But … memory is far away

§ Most processor spend most of their time waiting.
ú ... often for memory. This delay is referred to as the “memory wall”.

§ No matter how fast we make a processor, if memory is too far
away, we’ll just spend more time waiting.
ú As processors get faster, more processor cycles can be executed before a

load completes.

§ As a result, Amdahl’s Law tells us memory access time is an aspect
of performance that has become increasingly important.

28

Aside: Amdahl’s Law

§ Amdahl’s law is a statement in computer architecture about
system performance.

The performance gain in task achievable by optimizing a
subproblem is limited by the proportion of time spent in that
subproblem in the unoptimized task.

§ Ex: If you only spend 1/100 of your time doing task A, then
even if you reduce the time required for A to zero, you’ll only
save 1%.

29

Cache: Scaling the Memory Wall

§ Caches are a structure that makes it appear that memory is
closer than it is.

§ Every load to memory fetches more than just the value that is
loaded.
ú In fact, a lot of values -- a block (or line) -- is brought from the

memory to a location close to the processor.
ú The closer location is called a cache. It stores the value that was

loaded and the values near it, in case they are needed soon.

30

Big Idea: Locality

Caches rely on spatial and temporal locality.

This is a Big Idea in computing. Basically: if we used something
recently, we’re likely to use it again (or something near it) soon.

§ “It or something near it” is spatial locality.
§ “… soon” is temporal locality.

31

Examples of Locality

§ “Iterating over an array” exhibits both temporal and spatial
locality.

§ “Executing code” often exhibits temporal and spatial locality.
§ “Accessing items from a dictionary” does not: the items in the

dictionary may not be close to each other in memory.
§ Linked lists and other dynamically allocated structures can

also cause locality problems.

32

First, some key terms …

§ Address
§ Tag
§ Block
§ Set
§ Associativity
§ Hit rate (and miss rate)
§ Average Memory Access Time (AMAT)
(Read Textbook Chapter 8.3 for detailed definitions!)

33

First, some key terms …

§ The cache has a few sets of blocks
§ In a direct mapped cache, each set has one block
§ In a N-way set associative cache, each set has N blocks.
§ A fully associative cache has one set with all the blocks.
§ A memory address gets “hashed” to a set.
§ Different memory addresses may be hashed to the same set.

34

Addresses and Caches

§ Each load fetches an entire cache block -- not just a single
value.
ú The size of a cache “block” is dependent on the cache.
ú A “block” is a set of words with closely related addresses.
ú Why fetch a whole block when you just need part of it?

 spatial locality

§ The easiest way to define a block is to look at its mask.

35

Bit Masking

§ A bit vector is an integer that should be interpreted as a sequence of
bits.
ú We can think of an address as a bit vector.

§ A mask is a value that can be used to turn specific bits in a bit vector on
or off.

§ For example, let’s set a mod-16 mask.
value =
mod_16 = 15 # 0x000000F
print (value & mod_16) # Only the bottom 4 bits

“&” is “bitwise and”

36

A small example

§ Consider an 8-bit memory address (byte-addressable)
§ 10101010, 256 different addresses
§ What if we divide 256 addresses into 8-byte blocks?
§ How many blocks are there?
§ The address is now “hierarchical”:

ú block number
ú offset within the block

§ 10101010
§ block number, block offset

37

Exercise: Cache Masking

Given a 32-bit address space, identify the tag, set, and block
offset for a (direct mapped) cache that stores 16 32-byte
blocks.

00000000 00000000 00000000 00000000 <- 32 bits

38

Exercise: Cache Masking

Given a 32-bit address space, identify the tag, set, and block
offset for a (direct mapped) cache that stores 16 32-byte
blocks.

In a direct-mapped cache, we use part of the address as an index
into the cache. Since there are 16 storage locations in this cache,
we need 4 (2^4 = 16) bits from the address as the index.

39

Exercise: Cache Masking

Given a 32-bit address space, identify the tag, set, and block
offset for a (direct mapped) cache that stores 16 32-byte
blocks.

00000000 00000000 00000000 00000000 <- 32 bits
^^^^^ <- offset into a block

^ ^^^ <- set

Everything else is the tag.
We match the tag to make sure the memory address matches.

40

Associativity

§ Most caches use some form of hashing.
ú The caches are smaller than the memory they are caching from, so

they can’t store everything!

§ If two blocks hash to the same value, they can’t both be
stored. To avoid that, caches are often associative.
ú A 2-way set associative cache can store two blocks that hash to the

same value.
ú A fully associative cache doesn’t have to worry about hash collisions

at all.

41

2-way set associative cache: how it’s done in hardware

42

Cache Loading and Evicting

§ Each cache has a finite size.
ú It can store some maximum number of blocks.
ú Based on its associativity, it can store a set number of blocks

with a specific hash.

§ Every time a load is performed from memory, the block must be
stored.
ú This means that another block might need to be evicted.

43

How do we choose what to evict?

§ Ideally, we’d kick out data we never need again.

§ But we can’t see the future, so we do the next best thing. We
rely on locality and kick out … something old.

§ The most common heuristic is “least recently used” (LRU).
ú The cache block that was accessed the longest time ago is dropped.

§ Other heuristics include “first in first out” (FIFO), “least
frequently used”, and others.

44

Exercises
(See the “Cache Exercises” handout)

45

Discussion

What is the effect of increasing:

(a) block size
(b) associativity
(c) cache size

(Read Textbook Chapter 8.3 for more discussion!)

46

Read reg
1
Read reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Register
s

ALU
result

ZeroA

B AL
U

0
1

0
1
2
3

4

A

B

Instruction
[31-26]

Instructi
on
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0
1Memory

data
register

Memory
data

Memor
y

Address

Write
data

ALU
Out

0
1
2Shift left 2

0
1

PC

PCWriteCond
PCWrite

IorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

Opcode

Contr
ol

Unit

Shift left 2Sign
extend

Next… The Controller Thing

47

