
CSC258 Week 6

1

2

Circuit Timing

Timing

§ So far we have been worrying whether a circuit is correct.
§ Now let’s think about how to make a circuit fast.
§ Key concept: latency

ú propagation delay
ú contamination delay

3

Delay Example

§ We measure the interval
between the two “50% points”
of the changing signals

4

Propagation & Contamination Delay

§ Propagation delay: the
maximum time from when an
input changes until the output or
outputs reach their final value.

§ Contamination delay: the
minimum time from when an
input changes until any output
starts to change its value.

5

Given a circuit diagram,
calculate its propagation delay
and contamination delay

6

Need to know

§ The propagation and contamination
delay of each logic gate used

7

Gate t_pd
(propagation)

t_cd
(contamination)

2-input AND 100 picoseconds 60 picoseconds

2-input OR 120 picoseconds 40 picoseconds

Calculate Propagation Delay

§ Find the critical path (path with the largest number of gates)
§ then sum up the propagation delay of all the gates on the

critical path
§ 100 + 120 + 100 = 320 picoseconds

8

Gate t_pd t_cd

2-input AND 100 ps 60 ps

2-input OR 120 ps 40 ps

Calculate Contamination Delay

§ Find the short path (path with the smallest number of gates)
§ then sum up the contamination delay of all the gates on the

short path
§ 60 seconds

9

Gate t_pd t_cd

2-input AND 100 ps 60 ps

2-input OR 120 ps 40 ps

Knowing how to calculate delays allows us
to design circuits that are fast.

10

WE = 1

WE

A Y

A Y

WE = 0

A Y

WE A Y

0 X Z

1 0 0

1 1 1

11

Quick intro:
Tri-state buffer

Example: design fast circuit

12

4-1 muxes

Example: design fast circuit

13

• We care about the
propagation delays of
the two circuits.
• it tells us “how soon I

can get the answer”
• More specifically, we care

about the D-to-Y delay
and S-to-Y delay because
D and S may arrive at
different time.

§ D-to-Y propagation delay:
§ 2 x TRISTATE_AY = 100

§ S-to-Y propagation delay
§ TRISTATE_ENY + TRISTATE_AY
§ = 35 + 50 = 85

14

§ D-to-Y propagation delay:
§ TRISTATE_AY = 50

§ S-to-Y propagation delay
§ NOT + AND2 + TRISTATE_ENY
§ = 30 + 60 + 35 = 125

15

Analysis result

§ Circuit 1 propagation:
ú D-to-Y: 100 ps
ú S-to-Y: 85 ps

§ Circuit 2 propagation
ú D-to-Y: 50 ps
ú S-to-Y: 125 ps

§ Which circuit is faster?
ú What if D and S arrive at the same time?
ú What if D arrives earlier than S?
ú What if S arrives earlier than D?

16

Delays: the lower/higher, the better?

§ Propagation delay, typically, should
be upper-bounded.
ú shorter propagation means getting

answer faster
ú How to make it lower?
ú shorten the critical path

§ Contamination delay, typically,
should be lower-bounded
ú want to reliably sample the value

before change.
ú How to make it longer?
ú add buffers to the short path

17

18

New Topic:

Processor
Components

19

Using what we have learned so far
(combinational logic, devices, sequential
circuits, FSMs), how do we build a processor?

20

Microprocessors

§ So far, we’ve been talking
about making devices,
such as adders, counters
and registers.

§ The ultimate goal is to
make a microprocessor, which is a digital
device that processes input, can store values
and produces output, according to a set of
on-board instructions.

21

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

The Final Destination

22

Deconstructing processors

§ Processors aren’t so bad when you consider
them piece by piece:

Storage
Thing

Arithmetic
Thing

Controller
Thing

23

Microprocessors

§ These devices are a
combination of the
units that we’ve
discussed so far:
ú Registers to store values.
ú Adders and shifters to process data.
ú Finite state machines to control the process.

§ Microprocessors are the basis of all
computing since the 1970’s, and can be found
in nearly every sort of electronics.

24

aka: the Arithmetic Logic Unit (ALU)

The “Arithmetic Thing”

25

We are here

Assembly Language

Processors
Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors

26

Arithmetic Logic Unit

§ The first microprocessor
applications were calculators.
ú Recall the unit on adders and

subtractors.
ú These are part of a larger

structure called the arithmetic
logic unit (ALU).

§ This larger structure is responsible for the
processing of all data values in a basic CPU.

27

ALU inputs
§ The ALU performs all of

the arithmetic operations
covered in this course so
far, and logical operations
as well (AND, OR, NOT, etc.)
ú A and B are the oprands
ú The select bits (S) indicate which operation is

being performed (S2 is a mode select bit,
indicating whether the ALU is in arithmetic or
logic mode).

ú The carry bit Cin is used in operations such as
incrementing an input value or the overall result.

A B

G

Cin,S VCNZ

28

ALU outputs

§ In addition to the input
signals, there are output
signals V, C, N & Z which
indicate special conditions
in the arithmetic result:
ú V: overflow condition

 The result of the operation could not be stored in
the n bits of G, meaning that the result is incorrect.

ú C: carry-out bit
ú N: Negative indicator
ú Z: Zero-condition indicator

A B

G

Cin,S VCNZ

29

The “A” of ALU
§ To understand how the ALU does all of these operations,

let’s start with the arithmetic side.
§ Fundamentally, this side is made of an adder / subtractor

unit, which we’ve seen already:

Cin
FA

X0

Y0

S0

FA

X1

Y1

S1

C1
FA

X2

Y2

S2

C2
FA

X3

Y3

S3

C3Cout

Sub

30

ALU block diagram
§ In addition to data inputs and outputs, this circuit

also has:
ú outputs indicating the different conditions,
ú inputs specifying the operation to perform (similar to Sub).

n-bit
ALU

A0
A1
…
An

B0
B1
…
Bn

...

...

G0
G1
…
Gn

...

Data input A

Data input B

Data output G

Cin
S0

S2
S1

Carry input

Operation &
Mode select

Cout Carry output
Overflow indicator
Negative indicator
Zero indicator

V

N
Z

31

Arithmetic components

§ In addition to addition and subtraction, many more
operations can be performed by manipulating what
is added to input B, as shown in the diagram above.

B input
logic

n-bit
parallel
adder

A

B

Cin

S0
S1

G

G = X + Y + Cin

Cout

X

Y

n

n
n

n

32

Arithmetic operations

§ If the input logic circuit on the left sends B straight through
to the adder, result is G = A+B

§ What if Bwas replaced by all ones instead?
ú Result of addition operation: G = A-1

§ What if Bwas replaced by B?
ú Result of addition operation: G = A-B-1

§ And what if Bwas replaced by all zeroes?
ú Result is: G = A. (Not interesting, but useful!)

à Instead of a Sub signal, the operation you want is signaled
using the select bits S0 & S1.

33

Operation selection

§ This is a good start! But something is missing…
§ What about the carry bit?

Select
bits Y

input
Result Operation

S1 S0

0 0 All 0s G = A Transfer

0 1 B G = A+B Addition

1 0 B G = A+B Subtraction - 1

1 1 All 1s G = A-1 Decrement

34

Full operation selection

§ Based on the values on the select bits and the
carry bit, we can perform any number of basic
arithmetic operations by manipulating what
value is added to A.

Select Input Operation

S1 S0 Y Cin=0 Cin=1

0 0 All 0s G = A (transfer) G = A+1 (increment)

0 1 B G = A+B (add) G = A+B+1

1 0 B G = A+B G = A+B+1 (subtract)

1 1 All 1s G = A-1 (decrement) G = A (transfer)

35

The “L” of ALU
§ We also want a circuit

that can perform
logical operations,
in addition to
arithmetic ones.

§ How do we tell
which operation
to perform?
ú Another select bit!

§ If S2 = 1, then logic circuit block is activated.
§ Multiplexer is used to determine which block

(logical or arithmetic) goes to the output.

4-to-1
mux

A

B

S0
S1

G

1

0

3

2

36

Single ALU Stage

Logic
circuit

S0
S1

Gi

S0
S1

Ai
Bi

Ai
Bi Arithmetic

circuit
S0
S1

Ai
Bi

Ci
Ci+1Ci

0

1

S2

V
N
Z

Gi

Gi

37

Multiplication

38

What about multiplication?

§ Multiplication (and division) operations are always more
complicated than other arithmetic (addition, subtraction) or
logical (AND, OR) operations.

§ Three major ways that multiplication can be implemented in
circuitry:
ú Layered rows of adder units.
ú An adder/shifter circuit
ú Booth’s Algorithm

39

Multiplication

§ Multiplier circuits can
be constructed as
an array of adder
circuits.

§ This can get a little
expensive as the size of the operands grows.

§ Is there an alternative to this circuit?

40

Multiplication

§ Revisiting grade 3 math…

123
x 456

12 3
x 456

1368

1 2 3
x 456

1368
912

1 23
x 456

1368
912
456

123
x 456

1368
912
456

56088

41

Multiplication

§ And now, in binary…

101
x 110

10 1
x 110

110

1 0 1
x 110

110
000

1 01
x 110

110
000
110

101
x 110

110
000
110

11110

42

Observations

§ Calculation flow
ú Multiply by 1 bit of multiplier
ú Add to sum and shift sum
ú Shift multiplier by 1 bit
ú Repeat the above

§ What is “multiply by 1 bit of binary”?
ú 10101 x 1 ?
ú 10101 x 0 ?
ú It’s an AND!

43

101
x 110

110
000
110

11110

Accumulator circuits
§ What if you could perform each stage of the

multiplication operation, one after the other?
ú This circuit would only

need a single row of
adders and a couple
of shift registers.

Adder

Register R

Shift Left 1

Shift Left 1

Register Y

Register X

1xn AND

44

101
x 110

110
000
110

11110

Make it more efficient

Think about 258 x 9999
§ Multiply by 9, add to sum, shift, multiply by 9, add to sum, shift,

multiple by 9, add to sum, shift, multiply by 9, add to sum.

§ 258 x 9999 = 258 x (10000 - 1) = 258 x 10000 – 258
§ Just shift 258, becomes 2580000, then do 2580000 – 258
§ More efficient!

45

Efficient Multiplication: Booth’s Algorithm

§ Take advantage of circuits where shifting is cheaper than
adding, or where space is at a premium.
ú when multiplying by certain values (e.g. 99), it can be easier to think

of this operation as a difference between two products.

§ Consider the shortcut method when multiplying a given
decimal value X by 9999:
ú X*9999 = X*10000 – X*1

§ Now consider the equivalent problem in binary:
ú X*001111 = X*010000 – X*1

§ More details: https://en.wikipedia.org/wiki/Booth%27s_multiplication_algorithm

46

https://en.wikipedia.org/wiki/Booth's_multiplication_algorithm

Reflections on multiplication

§ Multiplication isn’t as common an operation as addition or
subtraction, but occurs enough that its implementation is
handled in the hardware.

§ Most common multiplication and division operations are
powers of 2. For this, we do shifting instead of using the
multiplier circuit.

ú e.g., in your code, do x << 3, instead of x * 8

47

Storage
Thing

Arithmetic
Thing

Controller
Thing

48

Next

