CSC258 Week 6

Circuit Timing

Timing

- So far we have been worrying whether a circuit is correct.
- Now let's think about how to make a circuit fast.
- Key concept: latency
- propagation delay
- contamination delay

Delay Example

- We measure the interval between the two " 50% points" of the changing signals

Propagation \& Contamination Delay

- Propagation delay: the maximum time from when an input changes until the output or outputs reach their final value.
- Contamination delay: the minimum time from when an input changes until any output starts to change its value.

Given a circuit diagram, calculate its propagation delay and contamination delay

Need to know

- The propagation and contamination delay of each logic gate used

Gate	t_pd (propagation)	t_cd (contamination)
2-input AND	100 picoseconds	6o picoseconds
2-input OR	120 picoseconds	40 picoseconds

Calculate Propagation Delay

- Find the critical path (path with the largest number of gates)
- then sum up the propagation delay of all the gates on the critical path
- $100+120+100=320$ picoseconds

Gate	t_pd	t_cd
2-input AND	100 ps	60 ps
2-input OR	120 ps	40 ps

Calculate Contamination Delay

- Find the short path (path with the smallest number of gates)
- then sum up the contamination delay of all the gates on the short path
- 60 seconds

Gate	t_pd	t_cd
2-input AND	100 ps	60 ps
2-input OR	120 ps	40 ps

Knowing how to calculate delays allows us to design circuits that are fast.

Quick intro: Tri-state buffer

$W E=1$

$W E=0$

$$
A=Y
$$

Example: design fast circuit

4-1 muxes

Example: design fast circuit

- We care about the propagation delays of the two circuits.
- it tells us "how soon I can get the answer"
- More specifically, we care about the D-to-Y delay and S-to-Y delay because D and S may arrive at different time.

Gate	$\boldsymbol{t}_{p d}(\mathrm{ps})$
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to $Y)$	35

- D-to-Y propagation delay:
- 2 x TRISTATE_AY = 100
- S-to-Y propagation delay
- TRISTATE_ENY + TRISTATE_AY
- = $35+50=85$

Gate	$\boldsymbol{t}_{p d}(\mathrm{ps})$
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to $Y)$	35

- D-to-Y propagation delay:
- TRISTATE_AY = 50
- S-to-Y propagation delay
- NOT + AND2 + TRISTATE_ENY
- = $30+60+35=125$

Analysis result

- Circuit 1 propagation:
- D-to-Y: 100 ps
- S-to-Y: 85 ps

- Circuit 2 propagation

- D-to-Y: 50 ps
- S-to-Y: 125 ps
- Which circuit is faster?
- What if D and S arrive at the same time?
- What if D arrives earlier than S?
- What if S arrives earlier than D?

Delays: the lower/higher, the better?

- Propagation delay, typically, should be upper-bounded.
- shorter propagation means getting answer faster
- How to make it lower?
- shorten the critical path
- Contamination delay, typically, should be lower-bounded
- want to reliably sample the value before change.
- How to make it longer?
- add buffers to the short path

New Topic:

Processor

Components

Using what we have learned so far
(combinational logic, devices, sequential circuits, FSMs), how do we build a processor?

Microprocessors

- So far, we've been talking about making devices, such as adders, counters and registers.
- The ultimate goal is to make a microprocessor, which is a digital device that processes input, can store values and produces output, according to a set of on-board instructions.

The Final Destination

Deconstructing processors

- Processors aren't so bad when you consider them piece by piece:

Microprocessors

- These devices are a combination of the units that we've discussed so far:
- Registers to store values.
- Adders and shifters to process data.
- Finite state machines to control the process.
- Microprocessors are the basis of all computing since the 1970's, and can be found in nearly every sort of electronics.

The "Arithmetic Thing"

aka: the Arithmetic Logic Unit (ALU)

We are here

Arithmetic Logic Unit

- The first microprocessor applications were calculators.
- Recall the unit on adders and subtractors.
- These are part of a larger
 structure called the arithmetic logic unit (ALU).
- This larger structure is responsible for the processing of all data values in a basic CPU.

ALU inputs

- The ALU performs all of the arithmetic operations covered in this course so far, and logical operations as well (AND, OR, NOT, etc.)
- A and B are the oprands
- The select bits (S) indicate which operation is being performed (S_{2} is a mode select bit, indicating whether the ALU is in arithmetic or logic mode).
- The carry bit $\mathrm{C}_{\text {in }}$ is used in operations such as incrementing an input value or the overall result.

ALU outputs

- In addition to the input signals, there are output signals V, C, N \& Z which indicate special conditions in the arithmetic result:

- V: overflow condition
" The result of the operation could not be stored in the n bits of G , meaning that the result is incorrect.
- C: carry-out bit
- N: Negative indicator
- Z: Zero-condition indicator

The "A" of ALU

- To understand how the ALU does all of these operations, let's start with the arithmetic side.
- Fundamentally, this side is made of an adder / subtractor unit, which we've seen already:

ALU block diagram

- In addition to data inputs and outputs, this circuit also has:
- outputs indicating the different conditions,
- inputs specifying the operation to perform (similar to Su.b).

Arithmetic components

- In addition to addition and subtraction, many more operations can be performed by manipulating what is added to input B, as shown in the diagram above.

Arithmetic operations

- If the input logic circuit on the left sends B straight through to the adder, result is $\mathrm{G}=\mathrm{A}+\mathrm{B}$
- What if B was replaced by all ones instead?
- Result of addition operation: $\mathrm{G}=\mathrm{A}-1$
- What if B was replaced by $\overline{\mathrm{B}}$?
- Result of addition operation: $\mathrm{G}=\mathrm{A}-\mathrm{B}-1$
- And what if B was replaced by all zeroes?
- Result is: G = A. (Not interesting, but useful!)
\rightarrow Instead of a Sub signal, the operation you want is signaled using the select bits $S_{0} \& S_{1}$.

Operation selection

Select bits		$\begin{gathered} \mathbf{Y} \\ \text { input } \end{gathered}$	Result	Operation
S_{1}	S_{0}			
0	0	All 0s	$\mathrm{G}=\mathrm{A}$	Transfer
0	1	B	$\mathrm{G}=\mathrm{A}+\mathrm{B}$	Addition
1	0	\bar{B}	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}$	Subtraction-1
1	1	All 1s	$\mathrm{G}=\mathrm{A}-1$	Decrement

- This is a good start! But something is missing...
- What about the carry bit?

Full operation selection

Select		Input	Operation	
S_{1}	$\mathrm{~S}_{0}$	Y	$\mathrm{C}_{\mathrm{in}}=0$	$\mathrm{C}_{\mathrm{in}}=1$
0	0	All 0s	$\mathrm{G}=\mathrm{A}$ (transfer)	$\mathrm{G}=\mathrm{A}+1$ (increment)
0	1	B	$\mathrm{G}=\mathrm{A}+\mathrm{B}$ (add)	$\mathrm{G}=\mathrm{A}+\mathrm{B}+1$
1	0	\bar{B}	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}$	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}+1$ (subtract)
1	1	All 1s	$\mathrm{G}=\mathrm{A}-1$ (decrement)	$\mathrm{G}=\mathrm{A}$ (transfer)

- Based on the values on the select bits and the carry bit, we can perform any number of basic arithmetic operations by manipulating what value is added to A .

The "L" of ALU

- We also want a circuit that can perform logical operations, in addition to arithmetic ones.
- How do we tell which operation to perform?

- Another select bit!
- If $S_{2}=1$, then logic circuit block is activated.
- Multiplexer is used to determine which block (logical or arithmetic) goes to the output.

Single ALU Stage

Multiplication

What about multiplication?

- Multiplication (and division) operations are always more complicated than other arithmetic (addition, subtraction) or logical (AND, OR) operations.
- Three major ways that multiplication can be implemented in circuitry:
- Layered rows of adder units.
- An adder/shifter circuit
- Booth's Algorithm

Multiplication

- Multiplier circuits can be constructed as an array of adder circuits.
- This can get a little
 expensive as the size of the operands grows.
- Is there an alternative to this circuit?

Multiplication

- Revisiting grade 3 math...

Multiplication

- And now, in binary...

Observations

- Calculation flow
- Multiply by 1 bit of multiplier
- Add to sum and shift sum
- Shift multiplier by 1 bit
- Repeat the above
- What is "multiply by 1 bit of binary"?
- 10101 x 1 ?
- 10101 x 0 ?
- It's an AND!

Accumulator circuits

- What if you could perform each stage of the multiplication operation, one after the other?
- This circuit would only need a single row of adders and a couple of shift registers.

Make it more efficient

Think about 258×9999

- Multiply by 9, add to sum, shift, multiply by 9, add to sum, shift, multiple by 9 , add to sum, shift, multiply by 9 , add to sum.
- $258 \times 9999=258 \times(10000-1)=258 \times 10000-258$
- Just shift 258, becomes 2580000, then do 2580000-258
- More efficient!

Efficient Multiplication: Booth's Algorithm

- Take advantage of circuits where shifting is cheaper than adding, or where space is at a premium.
- when multiplying by certain values (e.g. 99), it can be easier to think of this operation as a difference between two products.
- Consider the shortcut method when multiplying a given decimal value X by 999 9:
- $X * 9999$ = $X * 10000-X * 1$
- Now consider the equivalent problem in binary:
- $\mathrm{X} * 001111=\mathrm{X} * 010000-\mathrm{X} * 1$
- More details: https://en.wikipedia.org/wik/Booth\%o275_ multiplication_algorithm

Reflections on multiplication

- Multiplication isn't as common an operation as addition or subtraction, but occurs enough that its implementation is handled in the hardware.
- Most common multiplication and division operations are powers of 2. For this, we do shifting instead of using the multiplier circuit.
e.g., in your code, do $x \ll 3$, instead of $x * 8$

