CSC258 Week 3

We are here

Circuits

Gates
[Transistors]

Logical Devices

Building up from gates..

= Some common and more complex structures:
Multiplexers (MUX)
Adders (half and full)
Subtractors
Decoders
Seven-segment decoders
Comparators

Multiplexers

\
@ﬁh

Logical devices

= Certain structures are common to many circuits, and have
block elements of their own.

e.g. Multiplexers (short form: mux)

Behaviour: Outputis Xif Sis0,and Y if Sis 1, i.e., S selects which
input can go through

X X ——

O

T
I

Y —f— Y —7—

v
i

\

Multiplexer design

Multiplexer uses

= Muxes are very useful whenever you
need to select from multiple input

values. ——r
Example: Bop - == e

Surveillance video monitors,

Digital cable boxes,

routers.

MPV-116A

Adder circuits

Adders

= Also known as binary adders.

Small circuit devices that add two 1-bit number.

Combined together to create iterative
combinational circuits — add multiple-bit numbers

= Types of adders:
Half adders (HA)
Full adders (FA)

Ripple Carry Adder
Carry-Look-Ahead Adder (CLA)

Review of Binary Math

Review of Binary Math

= Each digit of a decimal number represents a power of 10:

[258 = 2x102 + 5x10! + 8x10¢]

= Each digit of a binary number represents a power of 2:

r)
01101, = 0x2% + 1x23 + 1x2°2 + 0x2! + 1x20

= 134

Unsignhed binary addition

" 27+53
27=00011011
£3=00110101

Carrybit!: ‘
111111

00011011
+00110101
01010000

A 4

01010000

= 95+181

carry bit

N

01011111

+10110101

¥

1111111

01011111

+10110101

1

00010100

h 4

00010100

Half Adder

Input: two 1-bit numbers
Output: 1-bit sum and 1-bit carry

Half Adders

= A 2-input, 1-bit width binary adder that performs
the following computations:

X 0 0 1 1 C=X?Y
+Y +0 +1 +0 +1 S = X?Y
CS 00 01 01 10
= A half adder adds two bits X Y
to produce a two-bit sum. ||
* The sumis expressed as a c— HA
sum bit S and a carry bit C.

Half Adder Implementation

= Equations and circuits for half adder units are
easy to define (even without Karnaugh maps)

()
C = XY S = XY + XY
= X xXor Y
_)
X Y

|| Y

S
c—1 HA “
X

A half adder outputs a carry-bit,
but does not take a carry-bit as input.

Full Adder

takes a carry bit as input

m) —

Full Adders 1

= Similar to half-adders, but with another

input Z, which represents a carry-in bit.
C and Z are sometimes labeledas C_,. and C, .

= WhenZ is o, the unit behaves exactly like...

a half adder.
= WhenZisa: X c o0 1 1
+Y +0 +1 +0 +1
+7 +1 +1 +1 +1

CS 01 10 10 11

Full Adder Design

X
0
0
0
0
1
1
1
1

R P O O kB P O O K

R o B O B O B O N
R P P O P O O O N0
P oo O Fkr O B P O 0

C:

XY + X2 + Y4

C

= XY + (X xor Y) *Z

S = X xor Y Xor 7

For gate reuse (X xor Y)
considering both Cand S

20

S:

X

XO0r Y XOr %

Full Adder Design

= The C term can also be rewritten as:

C = XY + (X xXor Y) ‘2

= Two terms come from this:
X Y = carry generate (G).
Whether X andY generate a carry bit
X xor Y =carry propagate (P).
Whether carry will be propagated to Cout
= Results in this circuit =2

C

ga:!

ol
Y

out S

21

Now we can add one bit properly, but most of the
numbers we use have more than one bits.

= int, unsigned int: 32 bits (architecture-dependent)
» short int, unsigned short int: 16 bits

* long long int, unsigned long long int: 64 bit

= char, unsigned char: 8 bits

How do we add multiple-bit numbers?

23

Each full adder takes in a carry bit and
outputs a carry bit.

Each full adder can take in a carry bit
which is output by another full adder.

That is, they can be chained up.

Ripple-Carry Binary Adder

Full adders chained up,
for multiple-bit addition

Ripple-Carry Binary Adder

= Full adder units are chained together in order to perform
operations on signal vectors.

X Y
4+ + X5 Y5 X, Y, X, Y, XOY
. | | | | | |
< Adder | “&lFAHFAHFAHFAF—
4
+ 53 52 s1 So

S

S55,S,S, isthe sum of X;X,X;X, and Y Y, Y,Y,

26

The role of C;,

= Why can’t we just have a half-adder for the smallest (right-
most) bit?

» Because if we canuse itto do SU btraction!

Let’s play a game..

Pick two numbers between o and 31 * ; @
Convert both numbers to 5-bit binary form “'
Invert each digit of the smaller number

Add up the big binary number and the inverted small binarj('
number

Add 1 to the result, keep the lowest 5 digits
Convert the result to a decimal number

~ W oN R

o N

What do you get? You just did subtraction
without doing subtraction!

Subtractors

= Subtractors are an extension of adders.
Basically, perform addition on a negative number.

= Before we can do subtraction, need to understand negative
binary numbers.

= Two types:

Unsigned = a separate bit exists for the sign; data bits store the
positive version of the number.

Signed = all bits are used to store a 2’s complement negative
number.

29

Two’s complement

= Need to know how to get 1's complement:
Given number X with n bits, take (27-1) -X
Negates each individual bit (bitwise NOT).

01001101 - 10110010
11111111 - 00000000

'\
= 2's complement = (1's complement + 1)
Know
01001101 > 10110011 " thic!
11111111 > 00000001 |
y

» Note: Adding a 2's complement number to the original number
produces a result of zero.

30

(2's complement of A) + A = o.

The 2's complement of A is like -A

Unsigned subtraction (separate sign bit)

= General algorithm for A - B:

Get the 2's complement of B (-B)
Add that value to A

If there is an end carry (C_ . is high), the final result
is positive and does not change.

If there is no end carry (C . is low), get the 2's
complement of the result (B-A) and add a negative
sign to it, or set the sign bit high (-(B-A) = A-B).

Unsigned subtraction example

" 53—27
00110101

-00011011

¥

00110101
carrybit +11100101

\-Tooo11010
| ¥

sign bit is low 00011010

(positive)
26

" 2/7—53
00011011

-00110101

¥

00011011

nocarrybit +11001011
oL 1100110

\l, ‘2’5 complement
sign bit i
(negative)

-26

33

Signed subtraction (easier)
= Store negative numbersin 2's complement
notation.

Subtraction can then be performed by using the
binary adder circuit with negative numbers.

To compute A-B, justdo A + (-B)

Need to get -B first (the 2's complement of B)

34

Signed subtraction example (6-bit)
=21 - 23

= 23 1s 010111

= 21 1is 010101

= -23 is 101001 (2’s complement of 32)
= 21-23 is 111110 which is -2

35

Signed addition example (6-bit)

=21 + 23

23 1s 010111

21 is 010101

23+21: 101100

This is -20!

The supposed result 44 is exceeding the range of 6-bit signed
integers. This is called an overflow.

36

Now you understand C code

#include <stdio.h>

int main()

{

/* char is 8-bit integer */

signed char a = 100;
signed char b = 120;
signed char s = a + b;

printf("%d\n", s);

better

37

Trivia about sign numbers

The largest positive 8-bit signed integer?

e 01111111 = 127 (@ followed by all 1)
The smallest negative 8-bit signed integer?

* 10000000 = -128 (1 followed by all @)
The binary form 8-bit signed integer -1?

e 11111111 (all one)

For n-bit signed number there are 2" possible values

* 2"1arenegative numbers (e.qg. 8 bit, -1t0 -128)
e 2n-1-1 are positive number (e.g. 8 bit, 1to 127)
 andazero

38

-128: 10000000 (signed)

39

Subtraction circuit

Y, YI2 Y, Sub

Y,

|
‘I‘-’L U ‘U’ Invert all the
x? X? x? digits (if sub = 1)
‘ilFAHFAHFAHFA : Add 1, so

getting 2’s
83 52 Sl So complement

* [fsub=0,5=X+Y
= |fsub=1,S=X-Y
One circuit, both adder or subtractor

40

Decoders

What 1s a decoder?

Decoder

5-bit input, encoded

original information

“number 1”
“number 2"
“number 3"

“number 10"
III

“rock

"good job!”

The original information

)

Decoders

= Decoders are essentially translators.

Translate from the output of one circuit to the
input of another.

= Example: Binary signal splitter

Activates one of four output lines, based on a two-
digit binary number.

C — A
X— © |—B
S C
— Q —
Xy 2

43

Demultiplexers

= Related to decoders: demultiplexers.
Does multiplexer operation, in reverse.

3 S, S,
L 1

n 0 —\—X n
]_\/_[+ .]_\/_[+ 1
1——Y 2
~—_ &

4t

Multiplexer:
Choose one from multiple inputs as output

Demultiplexer:
One input chooses from multiple outputs

45

7-segment decoder 955
o -Il.-tg

= Common and useful decoder application.

Translate from a 4-digit binary number to the seven

segments of a digital display. I
Each output segment has a particular 5| |1
logic that defines it. 2
Example: Segment 0 4n2

Activate forvalues: 0, 2, 3, 5, 6, 7, 8, 9. —

In binary: 0000, 0010, 0011,0101,0110,0111, 1000,
1001 .

First step: Build the truth table and K-map.

46

\o)u=

What we talk about here is NOT the same as what we did in Lab 2

= In labs we translate numbers o, 1, 3, 4, 5, 6 to displayed letters
suchas(H,E,L, L, O, _,EL,I

This is specially defined for the lab

= Here we are talking about translating o, 1, 2, 3, 4,..., to displayed
OI 1I 2[3[4[

This is more common use

47

7-segment decoder

* For 7-seg decoders, turning a segment on involves
driving it low. (active low)
(In Lab 2, we treated it like active high. It's OK because Logisim does
auto-conversion to make it work).
i.e., Assuming a 4-digit binary number, segment 0 is low
whenever input numberis 0000, 0010, 0011, 0101,

0110,0111,10000r1001, and high whenever input
numberis 0001 or0100.

This creates a truth table and map like the following...

()]
S
o) |O
A—

=

wl

48

7-segment decoder

(@)

+ X5 X, X, X
= But what about input

n— values from 1010 to
6 rows missing! 11117

1010 ~ 1111

P B O O O O O O o o
o o B P P PO O O O

0
0
1
1
0
0
1
1
0
0

P oo B O B O = O B O
o o o o o P o o =

49

“Don’t care” values

= Some input values will never happen, so their
output values do not have to be defined.

Recorded as ‘X’ in the Karnaugh map.

* These values can be assigned to whatever
values you
want, when
constructing
the final circuit.

VA e g Boxes can cover “x"’s, or not,
whichever you like.

50

= P O O O O O o o o

o o B P P PO O O O

o o B P o O B =B O O

P oo B O B O = O B O

o o O B B O O O O

HEX1 =X, ‘X, ‘X, +
X, "X, ‘X,

51

Again for segment 2

P B O O O O O O o o
o o B P P PO O O O

0
0
1
1
0
0
1
1
0
0

P oo B O B O = O B O
o O O o o o o == o

|o

()]
S
o)
A—.

HEX2 =X, ‘X, ‘X,

52

The final 7-seg decoder

= Decoders all look the
same, except for the
inputs and outputs.

= Unlike other devices,

t
C

ne implementation
iffers from decoder to

C

ecoder.

7-seg decoder

— HE X6
— HEX5
— HEX4
— HEX3
— HEX?2
— HEX1

— HE X0

53

Comparators (leftover from last week)

54

Comparators

= A circuit that takes in
two input vectors, and
determines if the first
is greater than, less
than or equal to the
second.

= How does one make
that in a circuit?

55

Basic Comparators l|\ 1|_=,

A=B
= Consider two binary numbers A<B

A and B, where A and B are one bit long.
= The circuits for this would be:

A==B: —
A‘B + A-'B
A>B: —
A B
A<B: —
A B

Basic Comparators AA, BB,

= What if A and B are two bits long?

= The terms for this circuit for have to .
expand to reflect the second signal. A>B

= Forexample:

Comparator

A==B: [(A1 ‘B, +A, -_Bl)] -[(AO ‘By+A, -_Bo)}

Make sure that the values | ‘ Make sure that the values

of bit 1 are the same of bit 0 are the same

57

Basic Comparators RiBo BiB,

Comparator

= What about checking if A is greater

or less than B? A=B
A>B
A<B
A>B: — - = —
A By o+ (A B By (B By

A
Check if first bit If not, check that the ...and then do the
satisfies condition first bits are equal... 1-bit comparison

v

A<B:

[Kl -131] " [(Al B, +3, ~_Bl)] -[(KO ~BO)]

A>Bifand only if A1>B1 or (A1=B1and Ao > Bo)

Comparing large numbers

= The circuit complexity of comparators increases
quickly as the input size increases.

= For comparing large number, it may make more sense
to just use a subtractor.

Subtract and then check the sign bit.

59

Today we learned

How a computer does following things

= Control the flow of signal (mux and demux)
= Arithmetic operations: adder, subtractor

= Decoder

= comparators

Next week:
= Sequential circuits: circuits that have memories.

60

