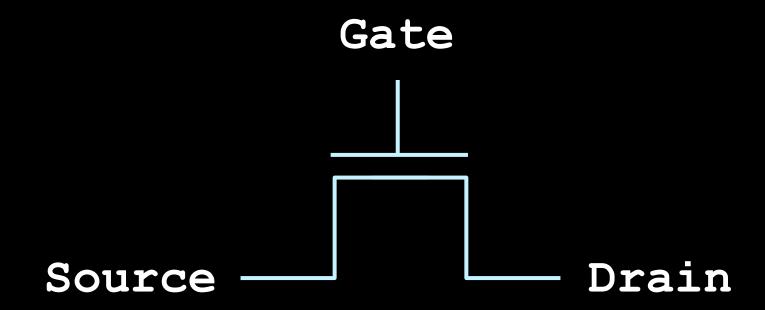
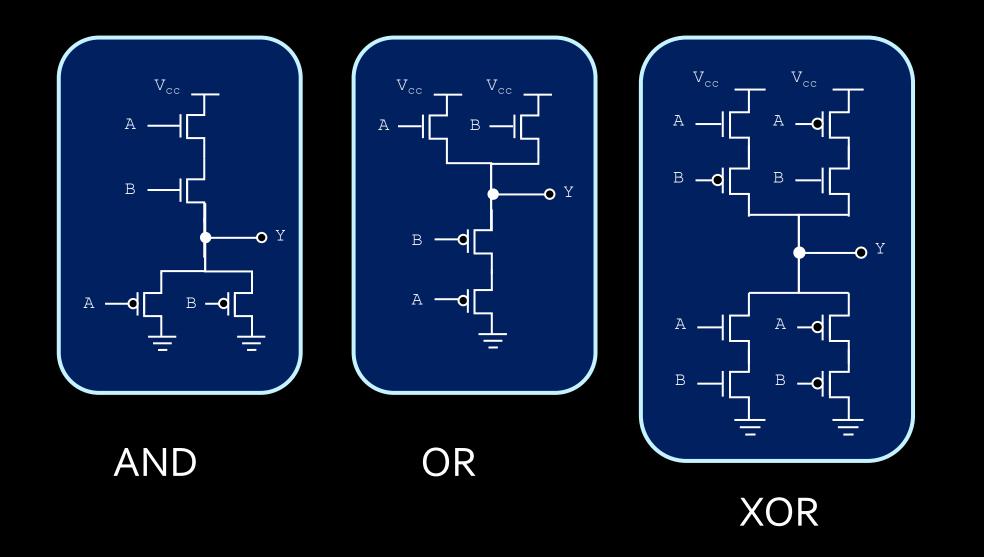
CSC258 Week 2

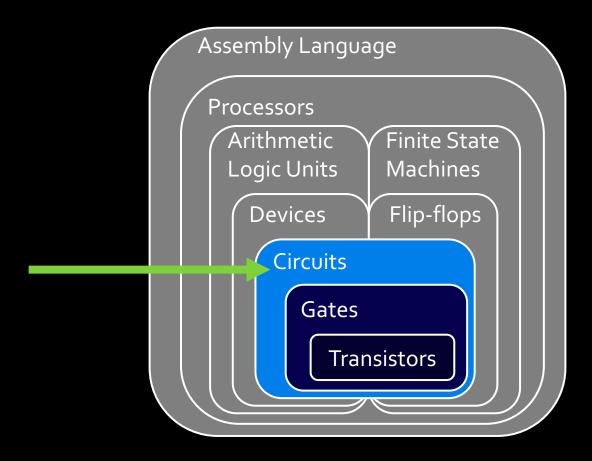
Recap: MOSFET



Recap: Transistors into logic gates



Next: From gates to circuits



The goal

 Use the gates as building blocks to build large circuits that represent complex logics.

■ The beauty of abstraction in system design: from this point on, we will just use the symbolic logic gates (AND, OR, XOR, etc) without having to think about the lower-level details (MOSFET, pnjunctions, etc).

Making logic with gates

- Logic gates like the following allow us to create an output value, based on one or more input values.
 - Each corresponds to Boolean logic that we've seen before in CSC108 and CSC148:

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

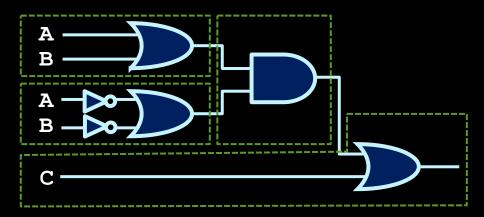


A	Y
0	1
1	0

Making Boolean expressions

So how would you represent Boolean expressions using logic gates?

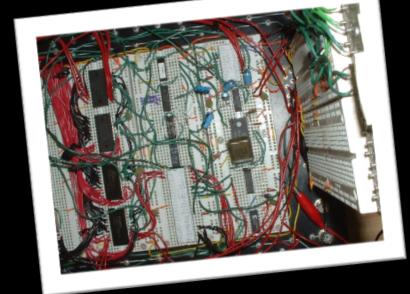
Like so:



Creating complex circuits

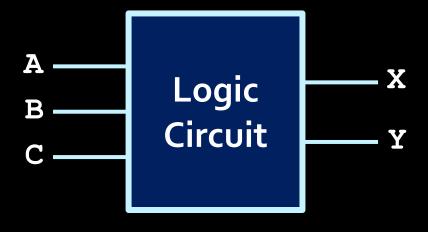
• What do we do in the case of more complex circuits, with several inputs and more than one output?

- If you're lucky, a truth table is provided to express the circuit.
- Usually, the behaviour of the circuit is expressed in words, and the first step involves creating a truth table that represents the described behaviour.



Circuit example

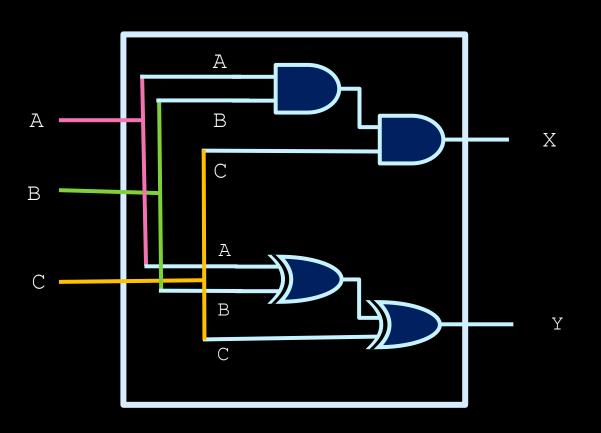
The circuit on the right has three inputs (A, B and C) and two outputs (X and Y).



- What logic is needed to set X high when all three inputs are high?
- What logic is needed to set Y high when the number of high inputs is odd?

Combinational circuits

Small problems can be solved easily.



X high when all three inputs are high

Y high when number of high is odd

For more complicated circuits, we need a systematical approach

Creating complex logic

- The general approach
- Basic steps:
 - Create truth tables based on the desired behaviour of the circuit.
 - 2. Come up with a "good" Boolean expression that has exactly that truth table.
 - 3. Convert Boolean expression to gates.
- The key to an efficient design?
 - Spending extra time on Step #2.

First,
a better way to represent
truth tables

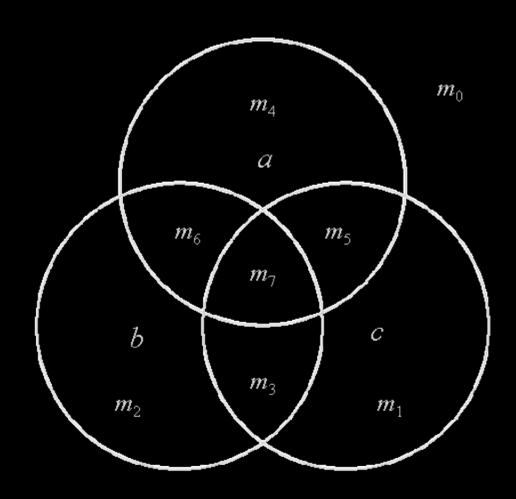
Example truth table

- Consider the following example:
 - "Y is high only when B and C are both high"
- This leads to the truth table on the right.
 - Do we always have to draw the whole table?
 - Is there a better way to describe the truth table?

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

This is all we needed to express!

Yes, use "Minterms" and "Maxterms"



Warm-Up Exercise

For each of the following logic expressions, what are the A, B, C values that make the expression evaluate to 1?

A'B'C'

■ A=0, B=0, C=0, and only this

ABC

■ **111** and only this

A'BC

011 and only this

ABC'

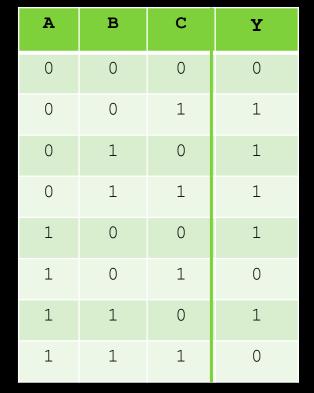
■ **110** and only this

Minterms, informally

 First, sort the rows according to the value of the number "ABC" represents

Then for each row, find the AND expression that evaluates to 1 iff
 ABC are of the values in the row. We name the AND expression as

m_{row number}



A'B'C'	m_{0}
A'B'C	m_1
A'BC'	m_2
A'BC	m_3
AB'C'	m_4
AB'C	m_{5}
ABC'	m_6
ABC	m ₇

Minterm, a more formal description

Minterm: an AND expression with every input present in true or complemented form.

$$m_2$$
: A ·B ·C

$$m_3$$
: A ·B ·C

$$m_7$$
: A ·B ·C

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minterm	Y
\mathbf{m}_0	0
m_1	1
m_2	1
m_3	1
$\mathbf{m_4}$	1
m ₅	0
m ₆	1
m ₇	0

Minterm (m) and Maxterm (M)

Minterm: an AND expression with every input present in true or complemented form.

Maxterm: an OR expression with every input present in true or complemented form.

$$M_0$$
: A+B+C M_1 : A+B+C

$$M_6: A+B+C$$
 $M_7: A+B+C$

Feel something fishy?

Naming!

$$m_o$$
 is $\overline{A} \cdot \overline{B} \cdot \overline{C}$

Minterm is about when the output is 1

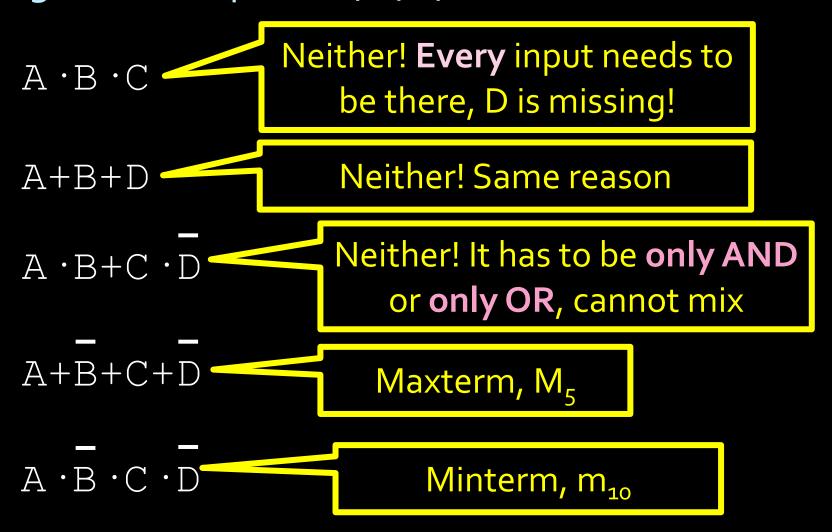
 $A \cdot B \cdot C$ is **1** only when A, B, C are o, o, o

$$M_o$$
 is $A+B+C$

A+B+C is \bigcirc only when A, B, C are \bigcirc , \bigcirc ,

Maxterm is about when the output is o

Exercise: Minterm or Maxterm? given four inputs: (A, B, C, D)



Quick fact

- Given n inputs, how many possible minterms and maxterms are there?
 - 2ⁿ minterms and 2ⁿ maxterms
 possible (same as the number of rows in a truth table).

Quick note about notations

- AND operations are denoted in these expressions by the multiplication symbol.
 - e.g. A ⋅B ⋅C or A*B*C or A∧B∧C
- OR operations are denoted by the addition symbol.
 - e.g. A+B+C or AVBVC
- NOT is denoted by multiple symbols.
 - e.g. $\neg A$ or A' or \overline{A}
- XOR occurs rarely in circuit expressions.
 - e.g. A ⊕ B

Use minterms and maxterms to go from truth table to logic expression

Using minterms

- What are minterms used for?
 - A single minterm indicates a set of inputs that will make the output go high.
 - Example: Describe the truth table on the right using minterm:

M₂ A'B'CD'

A	В	С	D	m_2
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Using minterms

- What happens when you OR two minterms?
 - Result is output that goes high in both minterm cases.
 - Describe the truth table with the right-most column of outputs

m		m	
			0

A	В	С	D	\mathbf{m}_2	m ₈	m ₂ +m ₈
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	1
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	1	1
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	0	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	0	0	0

We came up with a logic expression that has the desired truth table, easily: A'B'CD' + AB'C'D'

Creating Boolean expressions

- Two canonical forms of boolean expressions:
 - Sum-of-Minterms (SOM): AB + A'B + AB'
 - Each minterm corresponds to a single high output in the truth table.
 - Also known as: Sum-of-Products.
 - Product-of-Maxterms (POM): (A+B)(A' + B)(A+B')
 - Each maxterm corresponds to a single low output in the truth table.
 - Also known as Product-of-Sums.

Every logic expression can be converted to a SOM, also to a POM.

$Y = m_2 + m_6 + m_7 + m_{10}$ (SOM)

A	В	С	D	m_2	m ₆	m ₇	m ₁₀	Y
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	0	1
0	1	1	1	0	0	1	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

$Y = M_3 \cdot M_5 \cdot M_7 \cdot M_{10} \cdot M_{14}$ (POM)

A	В	С	D	M ₃	M ₅	M ₇	M ₁₀	M ₁₄	Y
0	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	0
0	1	0	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	0
0	1	1	0	1	1	1	1	1	1
0	1	1	1	1	1	0	1	1	0
1	0	0	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1
1	0	1	0	1	1	1	0	1	0
1	0	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	1	1	1	1	1

Sum-of-Minterms vs Product-of-Maxterm

- SOM expresses which inputs cause the output to go high.
- POM expresses which inputs cause the output to go low
- SOMs are useful in cases with very few input combinations that produce high output.
- POMs are useful when expressing truth tables that have very few low output cases...

What if we do this using POM?

$$Y = m_2 + m_6 + m_7 + m_{10}$$
 (SOM)

A	В	С	D	m ₂	m ₆	m ₇	m ₁₀	Y
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	0	1
0	1	1	1	0	0	1	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

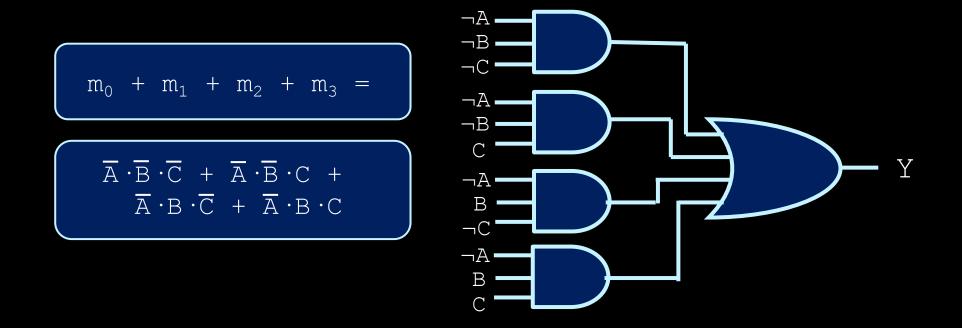
What if we do this using SOM?

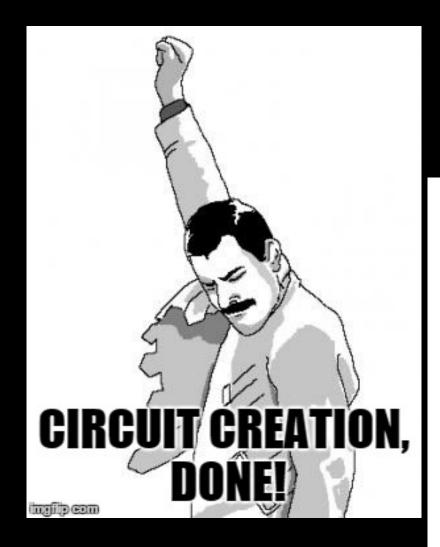
$$Y = M_3 \cdot M_5 \cdot M_7 \cdot M_{10} \cdot M_{14}$$
 (POM)

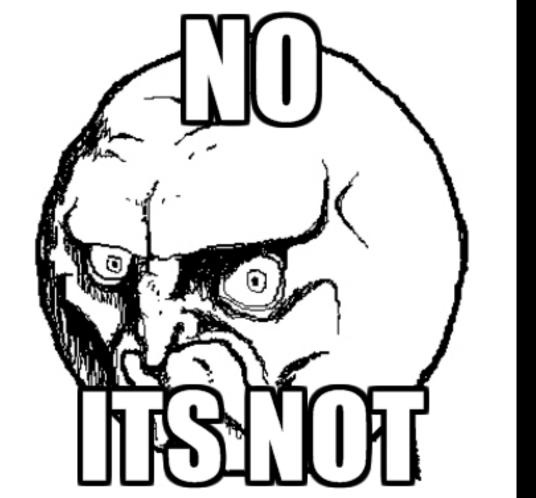
A	В	С	D	M ₃	M ₅	M ₇	M ₁₀	M ₁₄	Y
0	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	0
0	1	0	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	0
0	1	1	0	1	1	1	1	1	1
0	1	1	1	1	1	0	1	1	0
1	0	0	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1
1	0	1	0	1	1	1	0	1	0
1	0	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	1	1	1	1	1

Converting SOM to gates

 Once you have a Sum-of-Minterms expression, it is easy to convert this to the equivalent combination of gates:

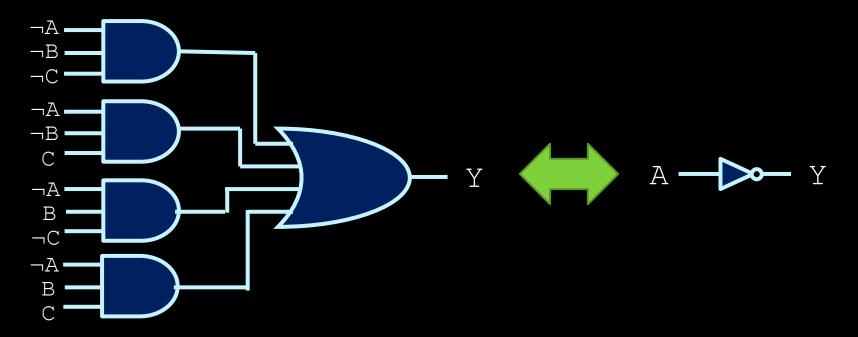






Reducing circuits

Reasons for reducing circuits



- To minimize the number of gates, we want to reduce the Boolean expression as much as possible from a collection of minterms to something smaller.
- This is where math skills come in handy ©

Boolean algebra review

Axioms:

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 1 \cdot 0 = 0$
 $1 \cdot 1 = 1$ if $x = 1$, $\overline{x} = 0$

From this, we can extrapolate:

$$x \cdot 0 = 0 \qquad x+1 = 1$$

$$x \cdot 1 = x \qquad x+0 = x$$

$$x \cdot x = x \qquad x+x = x$$

$$x \cdot \overline{x} = 0 \qquad x+\overline{x} = 1$$

$$\overline{x} = x$$

Other boolean identities

Commutative Law:

$$x \cdot y = y \cdot x$$
 $x+y = y+x$

Associative Law:

$$x \cdot (y+z) = (x+y)+z$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Distributive Law:

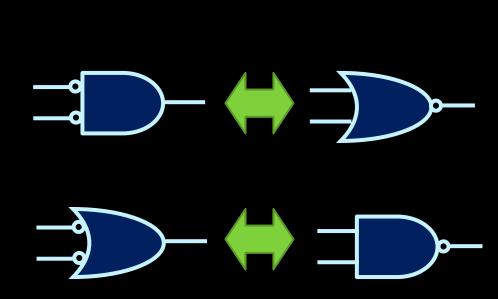
$$x \cdot (\lambda \cdot z) = (x+\lambda) \cdot (x+z)$$

 $x \cdot (\lambda + z) = x \cdot \lambda + x \cdot z$

Other boolean identities

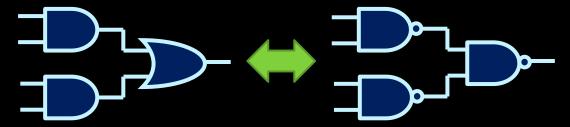
De Morgan's Laws:

$$\frac{x}{\underline{x}} \cdot \underline{\underline{\lambda}} = \frac{x \cdot \overline{\lambda}}{\underline{x} + \overline{\lambda}}$$

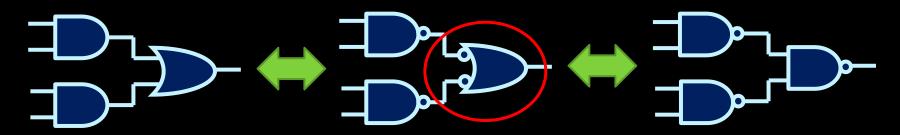


De Morgan and NAND gates

- De Morgan's Law is important because out of all the gates, NANDs are the cheapest to fabricate.
 - a Sum-of-Products circuit could be converted into an equivalent circuit of NAND gates:



This is all based on de Morgan's Law:



Reducing Boolean expressions

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

 Assuming logic specs at left, we get the following:

$$m_3 + m_4 + m_6 + m_7$$

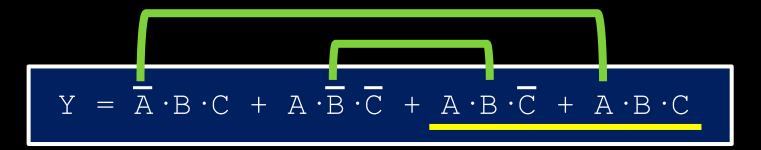
$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Warming up...

$$A \cdot B + A \cdot \overline{B} = A$$

Reduce by combing two terms that differ by a single literal.

Let's reduce this



Combine the last two terms...

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B$$

Combine the middle two and the end two ...

$$X = B \cdot C + A \cdot \overline{C}$$

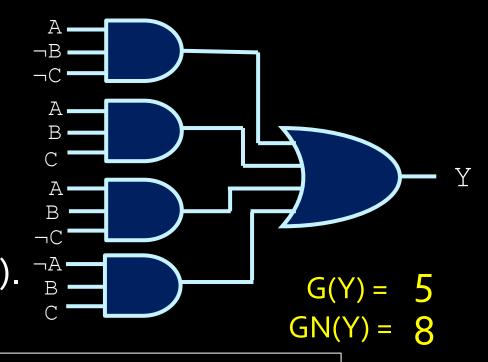
There could be different ways of combining, some are **simpler** than others.

How to get to the simplest expression?

Wait ... What does "simplest" mean?

What is "simplest"?

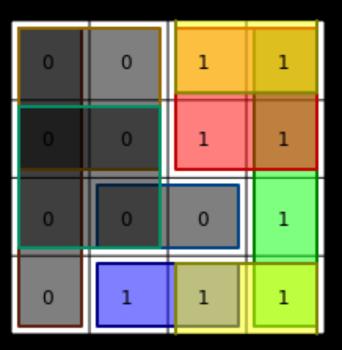
- In this case, "simple" denotes the lowest gate cost (G) or the lowest gate cost with NOTs (GN).
- To calculate the gate cost, simply add all the gates together (as well as the cost of the NOT gates, in the case of the GN cost).



Don't count ¬C twice!

Karnaugh maps

Find the simplest expression, systematically.



Reducing Boolean expressions

- How do we find the "simplest" expression for a circuit?
 - Technique called Karnaugh maps (or K-maps).
 - Karnaugh maps are a 2D grid of minterms, where adjacent minterm locations in the grid differ by a single literal.
 - Values of the grid are the output for that minterm.

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

Compare these...

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Karnaugh maps

- Karnaugh maps can be of any size and have any number of inputs.
- Since adjacent minterms only differ by a single literal, they can be combined into a single term that omits that value.

	C·D	C ·D	C ·D	C ·D
A ·B	$\rm m_{\rm o}$	m_1	m_3	m_2
A ·B	m_4	m_5	m_7	m_6
A·B	m_{12}	m ₁₃	m ₁₅	m_{14}
A·B	m ₈	m ₉	m_{11}	m_{10}

Using Karnaugh maps

- Once Karnaugh maps are created, draw boxes over groups of high output values.
 - Boxes must be rectangular, and aligned with map.
 - Number of values contained within each box must be a power of 2.
 - Boxes may overlap with each other.
 - Boxes may wrap across edges of map.

	B·C	B·C	B·C	B ·C
Ā	0	0	1	0
A	1	0	1	1

	B·C	B·C	B·C	B⋅C
Ā	0	1	1	0
A	0	0	1	0

Must be rectangle!

	B·C	B·C	B·C	B⋅C
Ā	0	1	1	0
A	0	0	1	0

Two boxes overlapping each other is fine.

	B·C	B·C	B·C	B⋅C
Ā	0	1	1	1
A	0	0	0	0

Number of value contained must be power of 2.

	B·C	B·C	B·C	B Ċ
Ā	0	1	1	1
A	0	0	0	0

1 is a power of 2 1 = 2°

	B⋅C	B·C	в∙с	B⋅C
Ā	0	1	1	0
A	0	1	1	0

Rectangle, with power of 2 entries

	B⋅C	B ⋅C	в∙с	B⋅C
Ā	0	1	0	0
A	0	0	1	0

Must be aligned with map.

	B⋅C	B·C	в∙с	B⋅C
Ā	0	0	0	0
A	1	0	0	1

Wrapping across edge is fine.

So... how to find the smallest expression

Minterms in one box can be combined into one term

	B·C	B·C	в∙с	B⋅C
Ā	0	0	1	0
A	0	0	1	0

$$\overline{A} \cdot B \cdot C + A \cdot B \cdot C = B \cdot C$$

So... how to find smallest expression

The simplest expression corresponds to the smallest number of boxes that cover all the high values (1's).

	B⋅C	B·C	в∙с	B⋅C
Ā	0	0	1	0
A	1	0	1	1

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

So... how to find smallest expression

And each box should be as large as possible.

	B·C	B·C	B·C	B⋅C
Ā	0	1	1	1
A	0	0	1	1

	<u>B</u> . <u>C</u>	B ·C	B·C	B ·C
Ā	0	1	1	1
A	0	0	1	1

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B$$

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

$$Y = B \cdot C + A \cdot \overline{C}$$

K-map: the steps

Given a complicated expression

- 1. Convert it to Sum-Of-Minterms
- 2. Draw the 2D grid
- 3. Mark all the high values (1's), according to which minterms are in the SOM.
- 4. Draw boxes that cover 1's.
- 5. Find the smallest set of boxes that cover all 1's.
- 6. Write out the simpfied result according to the boxes found.

Everything can be done using Maxterms, too

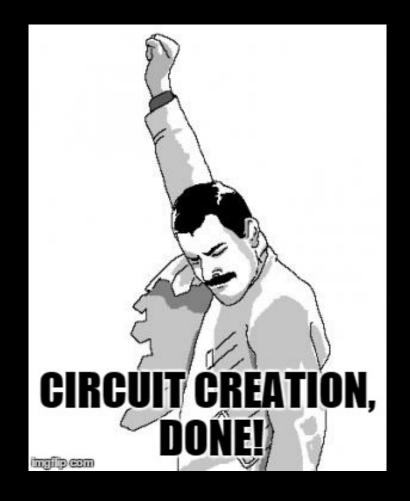
- Can also use this technique to group maxterms together as well.
- Karnaugh maps with maxterms involves grouping

	C+D	C+D	C+D	C +D
A+B	${\rm M}_{\odot}$	M_1	M_3	M_2
A+B	M_4	M_5	M_7	M_6
Ā+B	M ₁₂	M ₁₃	M ₁₅	M_{14}
Ā+B	M_8	M_9	M_{11}	M_{10}

the zero entries together, instead of grouping the entries with one values.

Circuit creation – the whole flow

- 1. Understand desired behaviour
- 2. Write the truth table based on the behaviour
- 3. Write the SOM (or POM) of that truth table
- 4. Simplify the SOM using K-map
- 5. Translate the simplified logic expression into circuit with gates.



Today we learned

- How to create a logic circuit from scratch, given a desired digital behaviour.
- Minterm & Maxterm
- K-Map use to reduce the circuit

Next Week:

Logical Devices